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The objective of this paper is to present a systematic review of existing sensor-based

control methodologies for applications that involve direct interaction between humans

and robots, in the form of either physical collaboration or safe coexistence. To this

end, we first introduce the basic formulation of the sensor-servo problem, and then,

present its most common approaches: vision-based, touch-based, audio-based, and

distance-based control. Afterwards, we discuss and formalize the methods that integrate

heterogeneous sensors at the control level. The surveyed body of literature is classified

according to various factors such as: sensor type, sensor integration method, and

application domain. Finally, we discuss open problems, potential applications, and future

research directions.

Keywords: robotics, human-robot collaboration (HRC), human-robot interaction (HRI), control systems (CS), visual

servoing (VS)

1. INTRODUCTION

Robot control is a mature field: one that is already being heavily commercialized in industry.
However, the methods required to regulate interaction and collaboration between humans and
robots have not been fully established yet. These issues are the subject of research in the fields of
physical human-robot interaction (pHRI) (Bicchi et al., 2008) and collaborative robotics (CoBots)
(Colgate et al., 1996). The authors of De Luca and Flacco (2012) presented a paradigm that specifies
three nested layers of consistent behaviors that the robot must follow to achieve safe pHRI:

• Safety is the first and most important feature in collaborative robots. Although there has been
a recent push toward standardization of robot safety (e.g., the ISO 13482:2014 for robots and
robotic devices; ISO 13482:2014, 2014), we are still in the initial stages. Safety is generally
addressed through collision avoidance (with both humans or obstacles; Khatib, 1985), a feature
that requires high reactivity (high bandwidth) and robustness at both the perception and
control layers.

• Coexistence is the robot capability of sharing the workspace with humans. This includes
applications involving a passive human (e.g., medical operations where the robot is intervening
on the patients’ body; Azizian et al., 2014), as well as scenarios where robot and human work
together on the same task, without contact or coordination.

• Collaboration is the capability of performing robot tasks with direct human interaction and
coordination. There are two modes for this: physical collaboration (with explicit and intentional
contact between human and robot), and contactless collaboration (where the actions are guided
by an exchange of information, e.g., in the form of body gestures, voice commands, or other
modalities). Especially for the second mode, it is crucial to establish means for intuitive control
by the human operators, which may be non-expert users. The robot should be proactive in
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realizing the requested tasks, and it should be capable of
inferring the user’s intentions, to interact more naturally from
the human viewpoint.

All three layers are hampered by the unpredictability of human
actions, which vary according to situations and individuals,
complicating modeling (Phoha, 2014), and use of classic control.

In the robotics literature, two major approaches for task
execution have emerged: path/motion planning (La Valle, 2006)
and sensor-based control (Chaumette and Hutchinson, 2006).
The planning methods rely on a priori knowledge of the future
robot and environment states over a time window. Although they
have proved their efficiency in well-structured applications, these
methods are hardly applicable to human-robot collaboration,
because of the unpredictable and dynamic nature of humans.
It is in the authors’ view that sensor-based control is more
efficient and flexible for pHRI, since it closes the perception-to-
action loop at a lower level than path/motion planning. Note
also that sensor-based control strategies strongly resemble the
processes of our central nervous system (Berthoz, 2002), and
can trace their origins back to the servomechanism problem
(Davison and Goldenberg, 1975). The most known example is
image-based visual servoing (Chaumette and Hutchinson, 2006)
which relies directly on visual feedback to control robot motion,
without requiring a cognitive layer nor a precise model of
the environment.

The aim of this article is to survey the current state of art
in sensor-based control, as a means to facilitate the interaction
between robots, humans, and surrounding environments.
Although we acknowledge the need for other techniques within
a complete human-robot collaboration framework (e.g., path
planning as mentioned, machine learning, etc.), here we review
and classify the works which exploit sensory feedback to directly
command the robot motion.

The timing and relevance of this survey is twofold. On one
hand, while there have been previous reviews on topics such
as (general) human-robot collaboration (Ajoudani et al., 2017;
Villani et al., 2018) and human-robot safety (Haddadin et al.,
2017), there is no specific review on the use of sensor-based
control for human-robot collaborative tasks. On the other hand,
we introduce a unifying paradigm for designing controllers with
four sensing modalities. This feature gives our survey a valuable
tutorial-like nature.

The rest of this manuscript is organized as follows: Section
2 presents the basic formulation of the sensor-based control
problem; Section 3 describes the common approaches that
integrate multiple sensors at the control level. Section 4 provides
several classifications of the reviewed works. Section 5 presents
insights and discusses open problems and areas of opportunity.
Conclusions are given in section 6.

2. SENSING MODALITIES FOR CONTROL

Recent developments on bio-inspired measurement technologies
have made sensors affordable and lightweight, easing their
use on robots. These sensors include RGB-D cameras, tactile
skins, force/moment transducers, etcetera (see Figure 1). The

works reviewed here rely on different combinations of sensing
modalities, depending on the task at stake. We consider the
following four robot senses:

• Vision. This includes methods for processing and
understanding images, to produce numeric or symbolic
information reproducing human sight. Although image
processing is complex and computationally expensive, the
richness of this sense is unique. Robotic vision is fundamental
for understanding the environment and human intention, so
as to react accordingly.

• Touch. In this review, touch includes both proprioceptive force
and tact, with the latter involving direct physical contact
with an external object. Proprioceptive force is analogous to
the sense of muscle force (Proske and Gandevia, 2012). The
robot can measure it either from the joint position errors or
via torque sensors embedded in the joints; it can then use
both methods to infer and adapt to human intentions, by
relying on force control (Raibert andCraig, 1981; Hogan, 1985;
Morel et al., 1998; Villani and De Schutter, 2008). Human tact
(somatosensation), on the other hand, results from activation
of neural receptors, mostly in the skin. These have inspired the
design of artificial tactile skins (Wettels et al., 2008; Schmitz
et al., 2011), thoroughly used for human-robot collaboration.

• Audition. In humans, localization of sound is performed by
using binaural audition (i.e., two ears). By exploiting auditory
cues in the form of level/time/phase differences between
left and right ears we can determine the source’s horizontal
position and its elevation (Rayleigh, 1907). Microphones
artificially emulate this sense, and allow robots to “blindly”
locate sound sources. Although robotic hearing typically uses
two microphones mounted on a motorized head, other non-
biological configurations exist, e.g., a head instrumented with
a single microphone or an array of several omni-directional
microphones (Nakadai et al., 2006).

• Distance. This is the only sense among the four that humans
cannot directly measure. Yet, numerous examples exist in
the mammal kingdom (e.g., bats and whales), in the form
of echolocation. Robots measure distance with optical (e.g.,
infrared or lidar), ultrasonic, or capacitive (Göger et al., 2010)
sensors. The relevance of this particular “sense” in human-
robot collaboration is motivated by the direct relationship
existing between the distance from obstacles (here, the human)
and safety.

Roboticists have designed other bio-inspired sensors, to smell
(see Kowadlo and Russell, 2008 for a comprehensive survey
and Russell, 2006; Gao et al., 2016; Rahbar et al., 2017 for 3D
tracking applications) and taste (Shimazu et al., 2007; Kobayashi
et al., 2010; Ha et al., 2015). However, in our opinion, artificial
smell and taste are not yet mature enough for human-robot
collaboration. Most of the current work on these senses is for
localization/identification of hazardous gases/substances. It is
also worth mentioning the increasing popularity of physiological
signals for controlling robots. These include, for example,
Electromyography and Brain-Computer Interfaces (Ajoudani
et al., 2017). Albeit promising, these technologies generally
provide unilateral (from human to robot) control, without
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FIGURE 1 | Examples of artificial sensors. Clockwise from the top left: Microsoft Kinect® and Intel Realsense® (vision and distance), Sony D-Link DCS-5222L® and

AVT GT® (vision), Syntouch BioTac® and ATI Nano 43® (touch), sound sensor LM393® and 3Dio Free Space Pro II® Binaural Microphone (audition), proximity sensor

Sharp GP2Y0A02YK0F®, Laser SICK®, Hokuyo URG®, and proximity sensor SICK CM18-08BPP-KC1® (distance). Note that Intel Realsense® and Microsoft Kinect®

provide both the senses of vision and of distance.

feedback loop closure. For these reasons, this review will focus
only on the four senses mentioned above, namely vision, touch,
audition, and distance.

3. SENSOR-BASED CONTROL

3.1. Formulation of Sensor-Based Control
Sensor-based control aims at deriving the robot control input
u (operational space velocity, joint velocity, displacement, etc.)
that minimizes a trajectory error e = e(u), which can be
estimated by sensors and depends on u. A general way of
formulating this controller [accounting for actuation redundancy
dim(u) > dim(e), sensing redundancy dim(u) < dim(e), and
task constraints] is as the quadratic minimization problem:

u = arg min
u

1

2
‖e(u)‖2

subject to task constraints.

(1)

This formulation encompasses the classic inverse kinematics
problem (Whitney, 1969) of controlling the robot joint velocities
(u = q̇), so that the end-effector operational space position x

converges to a desired value x∗. By defining the desired end-
effector rate as ẋ∗ = −λ (x− x∗), for λ > 0, and setting
e = Jq̇ − ẋ∗ for J = ∂x/∂q as the Jacobian matrix, it is easy
to show that the solution to (1) (in the absence of constraints) is
q̇ = J+ẋ∗, with J+ the generalized inverse of J. This leads to the
set-point controller1:

1Throughout the paper, λ is a positive tuning scalar that determines the
convergence rate of task error e to 0.

q̇ = −J+λ
(

x− x∗
)

. (2)

In the following sections, we show how each of the four senses
(vision, touch, audition and distance) has been used for robot
control, either with (1), or with similar techniques. Figure 2
shows relevant variables for the four cases. For simplicity, we
assume there are no constraints in (1), although off-the-shelf
quadratic programming solvers (Nocedal and Wright, 2000)
could account for them.

3.2. Visual Servoing
3.2.1. Formulation

Visual servoing refers to the use of vision to control the robot
motion (Chaumette and Hutchinson, 2006). The camera may be
mounted on amoving part of the robot, or fixed in the workspace.
These two configurations are referred to as “eye-in-hand” and
“eye-to-hand” visual servoing, respectively. The error e is defined
with regards to some image features, here denoted by s, to be
regulated to a desired configuration s∗ (s is analogous to x in the
inverse kinematic formulation above). The visual error is:

e = ṡ− ṡ∗. (3)

Visual servoing schemes are called image-based if s is defined
in image space, and position-based if s is defined in the 3D
operational space. Here we only briefly recall the image-based
approach (on its eye-in-hand modality), since the position-
based one consists in projecting the task from the image to the
operational space to obtain x and then apply (2).

The simplest image-based controller uses s = [X,Y]⊤, with
X and Y as the coordinates of an image pixel, to generate u that
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FIGURE 2 | Examples of four sensor-based servo controllers. (A) Visual

servoing: the user hand is centered in the camera image. (B) Indirect force

control: by applying a wrench, the user deviates the contact point away from a

reference trajectory. (C) Audio-based control: a microphone rig is automatically

oriented toward the sound source (the user’s mouth). (D) Distance-based

control: the user acts as a repulsive force, related to his/her distance from

the robot.

drives s to a reference s∗ = [X∗,Y∗]⊤ (in Figure 2A the centroid
of the human hand). This is done by defining e as:

ṡ− ṡ∗=

[

Ẋ − Ẋ∗

Ẏ − Ẏ∗

]

, with ṡ∗=−λ

[

X − X∗

Y − Y∗

]

(4)

If we use the camera’s 6D velocity as the control input u = vc, the
image Jacobian matrix2 relating [Ẋ, Ẏ]⊤ and u is:

Jv =

[

− 1
ζ

0 X
ζ

XY −1− X2 Y

0 − 1
ζ

Y
ζ

1+ Y2 −XY −X

]

, (5)

where ζ denotes the depth of the point with respect to the camera.
In the absence of constraints, the solution of (1) is:

vc = −J+v λ

[

X − X∗

Y − Y∗

]

. (6)

3.2.2. Application to Human-Robot Collaboration

Humans generally use vision to teach the robot relevant
configurations for collaborative tasks. For example, Cai et al.
(2016) demonstrate an application where a human operator
used a QR code to specify the target poses for a 6 degrees-of-
freedom (dof) robot arm. In Gridseth et al. (2016), the user
provided target tasks via a tablet-like interface that sent the
robot the desired reference view; here, the human specified

2Also known as interaction matrix in the visual servoing literature.

various motions such as point-to-point, line-to-line, etc., that
were automatically performed via visual feedback. The authors
of Gridseth et al. (2015) presented a grasping system for a tele-
operated dual arm robot, where the user specified the object
to be manipulated, and the robot completed the task using
visual servoing.

Assistive robotics represents another very common
application domain for visual servoing. The motion of robotic
wheelchairs has been semi-automated at various degrees. For
instance, Narayanan et al. (2016) presented a corridor following
method that exploited the projection of parallel lines. In this
work, the user provided target directions with a haptic interface,
and the robot corrected the trajectories with visual feedback.
Other works have focused on mobile manipulation. The authors
of Tsui et al. (2011) developed a vision-based controller for a
robotic arm mounted on a wheelchair; in this work, the user
manually specified the object to be grasped and retrieved by the
robot. A similar approach was reported in Dune et al. (2008),
where the desired poses were provided with “clicks” on an
screen interface.

Medical robotics is another area that involves sensor-based
interactions between humans and robots, and where vision has
huge potential (see Azizian et al., 2014 for a comprehensive
review). For example, the authors of Agustinos et al. (2014)
developed a laparoscopic camera, which regulated its pan/tilt
motions to track human-held instruments.

3.3. Touch (or Force) Control
3.3.1. Formulation

Touch (or force) control requires the measurement of one or
multiple (in the case of tactile skins) wrenches h, which are (at
most) composed of three translational forces, and three torques;
h is fed to the controller that moves the robot so that it exerts a
desired interaction force with the human or environment. Force
control strategies can be grouped into the following two classes
(Villani and De Schutter, 2008):

• Direct control regulates the contact wrench to obtain a
desired wrench h∗. Specifying h∗ requires an explicit model
of the task and environment. A widely adopted strategy is
hybrid position/force control (Raibert and Craig, 1981), which
regulates the velocity and wrench along unconstrained and
constrained task directions, respectively. Referring to (1), this
is equivalent to setting

e = S
(

ẋ− ẋ∗
)

+ (I− S)
(

h− h∗
)

, (7)

with S = S⊤ ≥ 0 a binary diagonal selection matrix, and I as
the identity matrix. Applying a motion u that nullifies e in (7)
guarantees that the components of ẋ (respectively h) specified
via S (respectively I− S) converge to ẋ∗ (respectively h∗).

• Indirect control (illustrated in Figure 2B) does not require
an explicit force feedback loop. To this category belong
impedance control and its dual admittance control (Hogan,
1985). It consists in modeling the deviation of the contact
point from a reference trajectory xr (t) associated to the
desired h∗, via a virtual mechanical impedance with adjustable
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parameters (inertia M, damping B, and stiffness K). Referring
to (1), this is equivalent to setting:

e = M(ẍ− ẍr)+ B(ẋ− ẋr)+ K(x− xr)− (h− h∗). (8)

Here, x represents the “deviated” contact point pose, with ẋ

and ẍ as time derivatives. When e = 0, the displacement x−xr

responds as a mass-spring-damping system under the action
of an external force h − h∗. In most cases, xr (t) is defined for
motion in free space (h∗ = 0). The general formulation in (1)
and (8) can account for both impedance control (x is measured
and u = h) and admittance control (hmeasured and u = x).

3.3.2. Application to Human-Robot Collaboration

The authors of Bauzano et al. (2016) used direct force
control for collaborative human-robot laparoscopic surgery. In
their method, the instruments are controlled with a hybrid
position/force approach. In Cortesao and Dominici (2017), a
robot regulated the applied forces onto a beating human heart.
Since the end-effector’s 3 linear dof were fully-constrained,
position control could not be performed, i.e., S = 0 in (7).

A drawback of direct control is that it can realize only the tasks
which can be described via constraint surfaces. If their location
is unknown and/or the contact geometry is complex—as often
in human-robot collaboration—indirect control is more suited
since: (i) it allows to define a priori how the robot should react
to unknown external force disturbances, (ii) it can use a reference
trajectory xr (t) output by another sensor (e.g., vision). In the next
paragraph, we review indirect force control methods.

By sensing force, the robot can infer the motion commands
(e.g., pushing, pulling) from the human user. For example,Maeda
et al. (2001) used force sensing and human motion estimation
(based onminimum jerk) within an indirect (admittance) control
framework for cooperative manipulation. In Suphi Erden and
Tomiyama (2010) and Suphi Erden and Maric (2011), an
assistant robot suppressed involuntary vibrations of a human,
who controlled direction and speed of a welding operation. By
exploiting kinematic redundancy, Ficuciello et al. (2013) also
addressed a manually guided robot operation. The papers (Bussy
et al., 2012; Wang et al., 2015) presented admittance controllers
for two-arm robots moving a table in collaboration with a
human. In Baumeyer et al. (2015), a human controlled a medical
robot arm with an admittance controller. Robot tele-operation is
another common human-robot collaboration application where
force feedback plays a crucial role; see Passenberg et al. (2010) for
a comprehensive review on the topic.

All these works relied on local force/moment measurements.
Up to this date, tactile sensors and skins (measuring the wrench
along the robot body, see Argall and Billard, 2010 for a review)
have been used for object exploration (Natale and Torres-
Jara, 2006) or recognition (Abderrahmane et al., 2018), but
not for control as expressed in (1). One reason is that they
are at a preliminary design stage, which still requires complex
calibration (Del Prete et al., 2011; Lin et al., 2013) that constitutes
a research topic per se. An exception is Li et al. (2013), which
presented a method that used tactile measures within (1).
Similarly, in Zhang and Chen (2000), tactile sensing was used

to regulate interaction with the environment. Yet, neither of
these works considered pHRI. In our opinion, there is huge
potential in the use of skins and tactile displays for human-
robot collaboration.

3.4. Audio-Based Control
3.4.1. Formulation

The purpose of audio-based control is to locate the sound source,
and move the robot toward it. For simplicity, we present the two-
dimensional binaural (i.e., with two microphones) configuration
in Figure 2C, with the angular velocity of the microphone rig as
control input: u = α̇. We hereby review the two most popular
methods for defining error e in (1): Interaural Time Difference
(ITD) and Interaural Level Difference (ILD)3. The following is
based on Magassouba et al. (2016b):

• ITD-based aural servoing uses the difference τ between the
arrival times of the sound on each microphone; τ must be
regulated to a desired τ ∗. The controller can be represented
with (1), by setting e = τ̇ − τ̇ ∗, with the desired rate
τ̇ ∗ = −λ (τ − τ ∗) (to obtain set-point regulation to τ ∗).
Feature τ can be derived in real-time by using standard cross-
correlation of the signals (Youssef et al., 2012). Under a far
field assumption:

e = τ̇ − τ̇ ∗ = −
(

√

(b/c)2 − τ 2
)

u− τ̇ ∗ (9)

with c the sound celerity and b the microphones baseline.

From (9), the scalar ITD Jacobian is: Jτ = −
√

(b/c)2 − τ 2.
The motion that minimizes e is:

u = −λJ−1
τ (τ − τ ∗), (10)

which is locally defined for α ∈ (0,π), to ensure that |Jτ | 6= 0.
• ILD-based aural servoing uses ρ, the difference in intensity

between the left and right signals. This can be obtained in
a time window of size N as ρ = El/Er , where the El,r =
∑N

n=0 γl,r[n]
2 denote the signals’ sound energies and the γl,r[n]

are the intensities at iteration n. To regulate ρ to a desired ρ∗,
one can set e = ρ̇ − ρ̇∗ with ρ̇∗ = −λ (ρ − ρ∗). Assuming
spherical propagation and slowly varying signal:

e = ρ̇ − ρ̇∗ =
ys(ρ + 1)b

L2r
u− ρ̇∗ (11)

where ys is the sound source frontal coordinate in the
moving auditory frame, and Lr the distance between the
right microphone and the source. From (11), the scalar
ILD Jacobian is Jρ = ys(ρ + 1)b/L2r . The motion that
minimizes e is:

u = −λJ−1
ρ (ρ − ρ∗) (12)

where J−1
ρ is defined for sources located in front of the rig. In

contrast with ITD-servoing, here the source location (i.e., ys
and Lr) must be known or estimated.

3Or its frequency counterpart: Interaural Phase Difference (IPD).
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While the methods above only control the angular velocity of
the rig (u = α̇), Magassouba extended both to also regulate 2D
translations of amobile platform (ITD inMagassouba et al., 2015,
2016c and ILD in Magassouba et al., 2016a).

3.4.2. Application to Human-Robot Collaboration

Due to the nature of this sense, audio-based controllers are
mostly used in contact-less applications, to enrich other senses
(e.g., force, distance) with sound, or to design intuitive human-
robot interfaces.

Audio-based control is currently (in our opinion) an
underdeveloped research area with great potential for human-
robot collaboration, e.g., for tracking a speaker. Besides the cited
works (Magassouba et al., 2015, 2016a,b,c), that closely followed
the framework of section 3, others have formulated the problem
differently. For example, the authors of Kumon et al. (2003, 2005)
proposed a linear model to describe the relation between the pan
motion of a robot head and the difference of intensity between its
two microphones. The resulting controllers were much simpler
than (10) and (12). Yet, their operating range was smaller, making
them less robust than their—more analytical—counterparts.

3.5. Distance-Based Control
3.5.1. Formulation

The simplest (and most popular) distance-based controller is
the artificial potential fields method (Khatib, 1985). Despite
being prone to local minima, it has been thoroughly deployed
both on manipulators and on autonomous vehicles for obstacle
avoidance. Besides, it is acceptable that a collaborative robot stops
(e.g., because of local minima) as long as it avoids the human user.
The potential fields method consists in modeling each obstacle
as a source of repulsive forces, related to the robot distance
from the obstacle (see Figure 2D). All the forces are summed up
resulting in a velocity in the most promising direction. Given
d, the position of the nearest obstacle in the robot frame, the
original version (Khatib, 1985) consists in applying operational
space velocity

u =

{

λ

(

1
‖d‖ − 1

do

)

d
‖d‖2

if ‖d‖ < do,

0 otherwise.
(13)

Here do > 0 is the (arbitrarily tuned) minimal distance required
for activating the controller. Since the quadratic denominator
in (13) yields abrupt accelerations, more recent versions adopt
a linear behavior. Referring to (1), this can be obtained by setting
e = ẋ− ẋ∗ with ẋ∗ = λ

(

1− d0/‖d‖
)

d as reference velocity:

e = ẋ− λ

(

1−
d0

‖d‖

)

d. (14)

By defining as control input u = ẋ, the solution to (1) is:

u = λ

(

1−
d0

‖d‖

)

d. (15)

3.5.2. Application to Human-Robot Collaboration

Many works have used this (or similar) distance-based methods
for pHRI. To avoid human-robot collisions, the authors of De

Santis et al. (2007) applied the controller (15) by estimating
the distance d between a human head and a robot with vision.
Recently, these approaches have been boosted by the advent of
3D vision sensors (e.g., theMicrosoft Kinect and Intel RealSense),
which enable both vision and distance control. The authors
of Flacco et al. (2012) designed a Kinect-based distance controller
(again, for human collision avoidance) with an expression similar
to (15), but smoothed by a sigmoid.

Proximity servoing is a similar technique, which regulates—via
capacitive sensors—the distance between the robot surface and
the human. In Schlegl et al. (2013), these sensors modified the
position and velocity of a robot armwhen a human approached it,
to avoid collisions. The authors of Bergner et al. (2017), Leboutet
et al. (2016), and Dean-Leon et al. (2017) developed a new
capacitive skin for a dual-arm robot. They designed a collision
avoidance method based on an admittance model similar to (8),
which relied on the joint torques (measured by the skin) to
control the robot motion.

4. INTEGRATION OF MULTIPLE SENSORS

In section 3, we presented the most common sensor-based
methods used for collaborative robots. Just like natural senses,
artificial senses provide complementary information about
the environment. Hence, to effectively perform a task, the
robot should measure (and use for control) multiple feedback
modalities. In this section, we review various methods for
integrating multiple sensors in a unique controller.

Inspired by how humans merge their percepts (Ernst and
Banks, 2002), researchers have traditionally fused heterogeneous
sensors to estimate the state of the environment. This can be done
in the sensors’ Cartesian frames (Smits et al., 2008) by relying
on an Extended Kalman Filter (EKF) (Taylor and Kleeman,
2006). Yet the sensors must be related to a single quantity,
which is seldom the case when measuring different physical
phenomena (Nelson and Khosla, 1996). An alternative is to
use the sensed feedback directly in (1). This idea, proposed for
position-force control in Raibert and Craig (1981) and extended
to vision in Nelson et al. (1995), brings new challenges to the
control design, e.g., sensor synchronization, task compatibility,
and task representation. For instance, the designer should take
care when transforming 6 D velocities or wrenches to a unique
frame. This requires (when mapping from frame A to frame B)
multiplication by

BVA =

[

BRA

[

BtA
]B

×
RA

03
BRA

]

(16)

for a velocity, and by BV⊤
A for a wrench. In (16), BRA is the

rotation matrix from A to B and
[

BtA
]

×
the skew-symmetric

matrix associated to translation BtA.
According to Nelson et al. (1995), the three methods for

combining N sensors within a controller are:
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FIGURE 3 | The most common scheme for shared vision/touch (admittance) control, used in Morel et al. (1998), Agravante et al. (2013, 2014). The goal is to obtain

desired visual features s∗ and wrench h∗, based on current image I and wrench h. The outer visual servoing loop based on error (3) outputs a reference velocity ẋr

that is then deformed by the inner admittance control loop based on error (8), to obtain the desired robot position x.

• Traded: the sensors control the robot one at a time. Predefined
conditions on the task trigger the switches:

u =



















arg min
u

‖e1(u)‖2 if (condition 1) = true,

...
arg min

u
‖eN(u)‖2 if (condition N) = true.

(17)

• Shared: All sensors control the robot throughout operation. A
common way is via nested control loops, as shown—for shared
vision/touch control—in Figure 3. Researchers have used at
most two loops, denoted o for outer and i for inner loop:

u = arg min
u

‖ei (u, uo) ‖
2 (18)

such that uo = arg min
uo

‖eo (uo) ‖
2.

In the example of Figure 3: u = x, uo = ẋr , eo = ev
applying (3) and ei = et applying (8).

• Hybrid: the sensors act simultaneously, but on different axes
of a predefined Cartesian task-frame (Baeten et al., 2003). The
directions are selected by binary diagonal matrices Sj, j =

1, . . . ,N with the dimension of the task space, and such that
∑N

j=1 S = I:

u = arg min
u

‖

N
∑

j=1

Sjej (u) ‖2. (19)

To express all ej in the same task frame, one should apply BVA

and/or BV⊤
A . Note the analogy between (19) and the hybrid

position/force control framework (7).

We will use this classification to characterize the works reviewed
in the rest of this Section.

4.1. Traded Control
The paper (Cherubini et al., 2016) presented a human-robot
manufacturing cell for collaborative assembly of car joints.
The approach (traded vision/touch) could manage physical
contact between robot and human, and between robot and
environment, via admittance control (8). Vision would take over

in dangerous situations to trigger emergency stops. The switching
condition was determined by the position of the human wrt
the robot.

In Okuno et al. (2001, 2004), a traded vision/audio controller
enabled a mobile robot to exploit sound source localization for
visual control. The robot head would automatically rotate toward
the estimated direction of the human speaker, and then visually
track him/her. The switching condition is that the sound source
is visible. The audio-based task is equivalent to regulating τ

to 0 or ρ to 1, as discussed in section 3.4. Paper (Hornstein
et al., 2006) presented another traded vision/audio controller
for the iCub robot head to localize a human speaker. This
method constructed audio-motor maps and integrated visual
feedback to update the map. Again, the switching condition
is that the speaker’s face is visible. In Chan et al. (2012),
another traded vision/audio controller was deployed on a mobile
robot, to drive it toward an unknown sound source; the
switching condition is defined by a threshold on the frontal
localization error.

The authors of Papageorgiou et al. (2014) presented a
mobile assistant for people with walking impairments. The
robot was equipped with: two wrench sensors to measure
physical interaction with the human, an array of microphones
for audio commands, laser sensors for detecting obstacles,
and an RGB-D camera for estimating the users’ state. Its
controller integrated audio, touch, vision, and distance in a traded
manner, with switching conditions determined by a knowledge-
based layer.

The work (Navarro et al., 2014) presented an object
manipulation strategy, integrating distance (capacitive proximity
sensors) and touch (tactile sensors). While the method did not
explicitly consider humans, it may be applied for human-robot
collaboration, since proximity sensors can detect humans if
vision is occluded. The switching condition between the two
modes is the contact with the object.

Another example of traded control—here, audio/distance—
is Huang et al. (1999), which presented a method for
driving a mobile robot toward hidden sound sources, via an
omnidirectional array of microphones. The controller switched
to ultrasound-based obstacle avoidance in the presence of
humans/objects. The detection of a nearby obstacle is the
switching condition.
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4.2. Shared Control
In applications where the robot and environment/human are
in permanent contact (e.g., collaborative object transportation),
shared control is preferable. Let us first review a pioneer
controller (Morel et al., 1998) that relied on shared vision/touch,
as outlined in Figure 3; Morel et al. (1998) addressed tele-
operated peg-in-hole assembly, by placing the visual loop outside
the force loop. The reference trajectory ẋr output by visual
servoing was deformed in the presence of contact by the
admittance controller, to obtain the robot position command x.
Human interaction was not considered in this work.

The authors of Natale et al. (2002) estimated sensory-
motor responses to control a pan-tilt robot head with shared
visual/audio feedback from humans. They assumed local linear
relations between the robot motions and the ITD/ILD measures.
This resulted in a controller which is simpler than the one
presented in section 3.4. The scheme is similar to Figure 3, with
an outer vision loop generating a reference motion, and audio
modifying it.

4.3. Hybrid Control
Pomares et al. (2011) proposed a hybrid vision/touch controller
for grasping objects, using a robot arm equipped with a hand.
Visual feedback drives an active camera (installed on the robot
tip) to observe the object and detect humans to be avoided,
whereas touch feedback moves the fingers, to grasp the object.
The authors defined matrix S in (7) to independently control arm
and fingers with the respective sensor.

In Chatelain et al. (2017), a hybrid scheme controlled an
ultrasonic probe in contact with the abdomen of a patient.
The goal was to center the lesions in the ultrasound image
observed by the surgeon. The probe was moved by projecting,
via S, the touch, and vision (from the ultrasound image) tasks in
orthogonal directions.

4.4. Other Control Schemes
Some works do not strictly follow the classification given above.
These are reviewed below.

The authors of Agravante et al. (2013, 2014) combined vision
and touch to address joint human-humanoid table carrying.
The table must stay flat, to prevent objects on top from falling
off. Vision controlled the table inclination, whereas the forces
exchanged with the human made the robot follow his/her
intention. The approach is shared, with visual servoing in
the outer loop of admittance control (Figure 3), to make all
dof compliant. However, it is also hybrid, since some dof are
controlled only with admittance. Specifically vision regulated
only the table height in Agravante et al. (2013), and both table
height and roll angle in Agravante et al. (2014).

The works (Cherubini and Chaumette, 2013; Cherubini
et al., 2014) merged vision and distance to guarantee lidar-
based obstacle avoidance during camera-based navigation. While
following a pre-taught path, the robot must avoid obstacles which
were not present before. Meanwhile, it moves the camera pan
angle, to maintain scene visibility. Here, the selection matrix
in (19) was a scalar function S ∈ [0, 1] dependent on the time-
to-collision. In the safe context (S = 0), the robot followed the
taught path, with camera looking forward. In the unsafe context

(S = 1) the robot circumnavigated the obstacles. Therefore,
the scheme is hybrid when S = 0 or S = 1 (i.e., vision and
distance operate on independent components of the task vector),
and shared when S ∈ (0, 1).

In Dean-Leon et al. (2016), proximity (distance) and tactile
(touch) measurements controlled a robot arm in a pHRI scenario
to avoid obstacles or—when contact is inevitable—to generate
compliant behaviors. The framework linearly combined the two
senses, and provided this signal to an inner admittance-like
control loop (as in the shared scheme of Figure 3). Since the
operation principle of both senses was complementary (one
requires contact while the other does not), the integration can
also be seen as traded.

The authors of Cherubini et al. (2015) enabled a robot to
adapt to changes in the human behavior, during a human-
robot collaborative screwing task. In contrast with classic hybrid
vision–touch–position control, their scheme enabled smooth
transitions, via weighted combinations of the tasks. The robot
could execute vision and force tasks, either exclusively on different
dof (hybrid approach) or simultaneously (shared approach).

5. CLASSIFICATION OF WORKS AND
DISCUSSION

In this section, we use five criteria to classify all the surveyed
papers which apply sensor-based control to collaborative
robots. This taxonomy then serves as an inspiration to drive
the following discussion on design choices, limitations, and
future challenges.

In total, we refer to the 45 papers revised above. These
include the works with only one sensor, discussed in section 3
(Maeda et al., 2001; Kumon et al., 2003, 2005; De Santis et al.,
2007; Dune et al., 2008; Suphi Erden and Tomiyama, 2010;
Suphi Erden and Maric, 2011; Tsui et al., 2011; Bussy et al.,
2012; Flacco et al., 2012; Youssef et al., 2012; Ficuciello et al.,
2013; Schlegl et al., 2013; Agustinos et al., 2014; Baumeyer
et al., 2015; Gridseth et al., 2015, 2016; Magassouba et al., 2015,
2016a,b,c; Wang et al., 2015; Bauzano et al., 2016; Cai et al.,
2016; Leboutet et al., 2016; Narayanan et al., 2016; Bergner et al.,
2017; Cortesao and Dominici, 2017; Dean-Leon et al., 2017) and
those which integrated multiple sensors, discussed in section 4
(Huang et al., 1999; Okuno et al., 2001, 2004; Natale et al.,
2002; Hornstein et al., 2006; Pomares et al., 2011; Chan et al.,
2012; Cherubini and Chaumette, 2013; Cherubini et al., 2014,
2015, 2016; Navarro et al., 2014; Papageorgiou et al., 2014; Dean-
Leon et al., 2016; Chatelain et al., 2017). The five criteria are:
sensor(s), integration method (when multiple sensors are used),
control objective, target sector, and robot platform. In Table 1,
we indicate these characteristics for each paper. Then, we focus
on each characteristic, in Tables 2–54.

Table 2 classifies the papers according to the sensor/s. Column
mono indicates the papers relying only on one sensor. For the
others, we specify the integration approach (see section 4). Note
that vision (alone or not) is by far the most popular sense, used
in 22 papers. This comes as no surprise, since even for humans,

4In the Tables, we have used the following notation: V, T, A, D for Vision, Touch,
Audition, and Distance, and sh., hyb., tra. for shared, hybrid, and traded.
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TABLE 1 | Classification of all papers according to four criteria: sense(s) used by the robot, objective of the controller, target sector, and type of robot.

References Sense(s) Control objective Sector Robot

Cai et al. (2016) and Gridseth et al. (2016) Vision Contactless guidance Service Arm

Gridseth et al. (2015) Vision Remote guidance Service Arm

Dune et al. (2008), Tsui et al. (2011), and Narayanan et al. (2016) Vision Contactless guidance Medical Wheeled

Agustinos et al. (2014) Vision Contact w/humans Medical Arm

Bauzano et al. (2016) Touch Contact w/humans Medical Arm

Remote guidance

Cortesao and Dominici (2017) Touch Contact w/humans Medical Arm

Maeda et al. (2001), Suphi Erden and Tomiyama (2010), Suphi Erden and

Maric (2011), and Ficuciello et al. (2013)

Touch Direct guidance Production Arm

Wang et al. (2015) Touch Carrying Production Wheeled

Bussy et al. (2012) Touch Carrying Production Humanoid

Baumeyer et al. (2015) Touch Remote guidance Medical Arm

Kumon et al. (2003, 2005), Magassouba et al. (2016b) Audition Contactless guidance Service Heads

Magassouba et al. (2015, 2016a,c) Audition Contactless guidance Service Wheeled

De Santis et al. (2007), Flacco et al. (2012), and Schlegl et al. (2013) Distance Collision avoidance Production Arm

Leboutet et al. (2016), Bergner et al. (2017), and Dean-Leon et al. (2017) Distance Collision avoidance Service Arm

Cherubini et al. (2016) V+T (tra.) Assembly Production Arm

Okuno et al. (2001), Okuno et al. (2004), and Hornstein et al. (2006) V+A(tra.) Contactless guidance Service Heads

Chan et al. (2012) V+A(tra.) Contactless guidance Service Wheeled

Papageorgiou et al. (2014) V+T+A+D Direct guidance Medical Wheeled

(tra.)

Navarro et al. (2014) D+T(tra.) Collision avoidance Production Arm

Huang et al. (1999) D+A(tra.) Collision avoidance Service Wheeled

Natale et al. (2002) V+A(sh.) Contactless guidance Service Heads

Pomares et al. (2011) V+T(hyb.) Collision avoidance Production Arm

Chatelain et al. (2017) V+T Contact w/humans Medical Arm

(hyb.) Remote guidance

Agravante et al. (2013, 2014) V+T Contact w/humans Production Humanoid

(sh.+hyb.)

Cherubini and Chaumette (2013), Cherubini et al. (2014) D+V Collision avoidance Production Wheeled

(sh.+hyb.)

Dean-Leon et al. (2016) D+T Direct guidance Service Arm

(sh.+tra.)

Cherubini et al. (2015) V+T Assembly Production Arm

(sh.+hyb.)

vision provides the richest perceptual information to structure
the world and perform motion (Hoffman, 1998). Touch is the
secondmost commonly used sensor (18 papers) and fundamental
in pHRI, since it is the only one among the four that can be
exploited directly to modulate contact.

Also note that, apart from Papageorgiou et al. (2014), no
paper integrates more than two sensors. Given the sensors wide
accessibility and the recent progress in computation power, this
is probably due to the difficulty in designing a framework capable
of managing such diverse and broad data. Another reasonmay be
the presumed (but disputable) redundancy of the three contact-
less senses, which biases toward opting for vision, given its
diffusion and popularity (also in terms of software). Touch—
the only sensor measuring contact—is irreplaceable. This may
also be the reason why, when merging two sensors, researchers
have generally opted for vision+touch (7 out of 17 papers). The

most popular among the three integration methods is traded
control, probably because it is the easiest to set up. In recent
years, however, there has been a growing interest toward the
shared+hybrid combination, which guarantees nice properties in
terms of control smoothness.

An unexploited application of shared control is the
combination of vision and distance (proximity sensors) to avoid
collisions with humans. This can be formulated as in Figure 3 by
replacing touch control error et with an admittance-like distance
control error:

ed = −(d− d∗)+M(ẍ− ẋr)+ B(ẋ− ẋr)+ K(x− xr), (20)

where d and d∗ represent the measured and desired distance
to obstacles. With this approach, the robot can stabilize at
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TABLE 2 | Classification based on the sensors.

Vision Dune et al., 2008; Tsui et al., 2011; Agustinos

et al., 2014; Gridseth et al., 2015, 2016; Cai

et al., 2016; Narayanan et al., 2016

Touch Maeda et al., 2001; Suphi Erden and

Tomiyama, 2010; Suphi Erden and Maric,

2011; Bussy et al., 2012; Ficuciello et al.,

2013; Baumeyer et al., 2015; Wang et al.,

2015; Bauzano et al., 2016; Cortesao and

Dominici, 2017

tra. (Cherubini et al., 2016),

hyb. (Pomares et al., 2011;

Chatelain et al., 2017)

sh.+hyb. (Agravante et al., 2013,

2014; Cherubini et al., 2015)

Audition Kumon et al. (2003, 2005), Youssef et al.

(2012), Magassouba et al. (2015, 2016a,b,c)

tra. Okuno et al. (2001, 2004),

Hornstein et al. (2006), Chan

et al. (2012), Papageorgiou et al.

(2014), sh. (Natale et al., 2002)

tra. (Papageorgiou et al.,

2014)

Distance De Santis et al., 2007; Flacco et al., 2012;

Schlegl et al., 2013; Leboutet et al., 2016;

Bergner et al., 2017; Dean-Leon et al., 2017

sh.+hyb. (Cherubini and

Chaumette, 2013; Cherubini

et al., 2014)

sh.+tra. (Dean-Leon et al.,

2016)

tra. (Huang et al., 1999;

Papageorgiou et al., 2014)

tra. (Navarro et al., 2014)

Mono Vision Touch Audition

a given “safe” distance from an obstacle, or move away
from it.

In the authors’ opinion, no sensor(s) nor (if needed)
integration method is the best, and the designer should choose
according to the objective at stake. For this, nature and evolution
can be extremely inspiring but technological constraints (e.g.,
hardware and software availability) must also be accounted for,
with the golden rule of engineering that “simpler is better.”

Table 3 classifies the papers according to the control objective.
In the table, we also apply the taxonomy of pHRI layers
introduced in De Luca and Flacco (2012), and evoked in
the introduction: safety, coexistence, collaboration. Works that
focus on collision avoidance address safety, and works where
the robot acts on passive humans address coexistence. For the
collaboration layer, we distinguish two main classes of works.
First, those where the human was guiding the robot (without
contact, with direct contact, or with remote physical contact
as in tele-operation), then those where the two collaborated
(e.g., for part assembly or object carrying). The idea (also in
line with De Luca and Flacco, 2012) is the lower lines in the
table generally require higher cognitive capabilities (e.g., better
modeling of environment and task). Some works, particularly
in the field of medical robotics (Agustinos et al., 2014; Bauzano
et al., 2016; Chatelain et al., 2017) cover both coexistence and
collaboration, since the human guided the robot to operate on
another human. Interestingly, the senses appear in the table
with a trend analogous to biology. Distance is fundamental for
collision avoidance, when the human is far, and his/her role in
the interaction is basic (s/he is mainly perceived as an obstacle).
Then, audio is used for contactless guidance. As human and robot
are closer, touch takes over the role of audio. As mentioned above,
vision is a transversal sense, capable of covering most distance
ranges. Yet, when contact is present (i.e., in the four lower lines),
it is systematically complemented by touch, a popular pairing as
also shown in Table 2 and discussed above.

TABLE 3 | Classification based on the control objective with corresponding pHRI

layer as proposed in De Luca and Flacco (2012) (in parenthesis).

Collision avoidance

(safety)

Distance (De Santis et al., 2007; Flacco et al., 2012;

Schlegl et al., 2013; Leboutet et al., 2016; Bergner et al.,

2017; Dean-Leon et al., 2017), distance+touch (Navarro

et al., 2014),

Distance+audition (Huang et al., 1999), vision+touch

(Pomares et al., 2011),

Vision+distance (Cherubini and Chaumette, 2013;

Cherubini et al., 2014)

Contact with passive

humans

(coexistence)

Vision (Agustinos et al., 2014), touch (Bauzano et al.,

2016; Cortesao and Dominici, 2017),

Vision+touch (Chatelain et al., 2017)

Contactless guidance

(collaboration)

Vision (Dune et al., 2008; Tsui et al., 2011; Cai et al.,

2016; Gridseth et al., 2016; Narayanan et al., 2016)

Audition (Kumon et al., 2005; Youssef et al., 2012;

Magassouba et al., 2015, 2016a,b,c)

Vision+audition (Okuno et al., 2001, 2004; Natale et al.,

2002; Hornstein et al., 2006; Chan et al., 2012)

Direct guidance

(collaboration)

Touch+audition+distance+vision (Papageorgiou et al.,

2014),

Touch (Maeda et al., 2001; Suphi Erden and Tomiyama,

2010; Suphi Erden and Maric, 2011; Ficuciello et al.,

2013), touch+distance (Dean-Leon et al., 2016)

Remote guidance

(collaboration)

Vision (Agustinos et al., 2014; Gridseth et al., 2015),

touch (Baumeyer et al., 2015; Bauzano et al., 2016),

Vision+touch (Chatelain et al., 2017)

Collaborative assembly

(collaboration)

Vision+touch (Cherubini et al., 2015, 2016)

Collaborative carrying

(collaboration)

Touch (Bussy et al., 2012; Wang et al., 2015),

vision+touch (Agravante et al., 2013, 2014)

Table 4 classifies the papers according to the target (or
potential) sector. We propose three sectors: Production,Medical,
and Service. Production is the historical sector of robotics;
applications include: manufacturing (assembly, welding,
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TABLE 4 | Classification based on target/potential sectors.

Production

(manufacturing,

transportation,

construction)

Touch (Maeda et al., 2001; Suphi Erden and Tomiyama,

2010; Suphi Erden and Maric, 2011; Bussy et al., 2012;

Ficuciello et al., 2013; Wang et al., 2015), distance (De

Santis et al., 2007; Flacco et al., 2012; Schlegl et al.,

2013),

D+T (Navarro et al., 2014) V+T (Pomares et al., 2011;

Agravante et al., 2013, 2014; Cherubini et al., 2015,

2016),

V+D (Cherubini and Chaumette, 2013; Cherubini et al.,

2014)

Medical (surgery,

diagnosis,

assistance)

Vision (Dune et al., 2008; Tsui et al., 2011; Agustinos

et al., 2014; Narayanan et al., 2016), touch (Baumeyer

et al., 2015; Bauzano et al., 2016; Cortesao and

Dominici, 2017),

V+T+A+D (Papageorgiou et al., 2014), V+T (Chatelain

et al., 2017)

Service

(companionship,

domestic, personal)

Vision (Gridseth et al., 2015, 2016; Cai et al., 2016),

audition (Kumon et al., 2005; Youssef et al., 2012;

Magassouba et al., 2015, 2016a,b,c),

distance (Leboutet et al., 2016; Bergner et al., 2017;

Dean-Leon et al., 2017), V+A (Okuno et al., 2001, 2004;

Natale et al., 2002; Hornstein et al., 2006; Chan et al.,

2012),

D+A (Huang et al., 1999), T+D (Dean-Leon et al., 2016)

pick-and-place), transportation (autonomous guided vehicles,
logistics) and construction (material and brick transfer). The
medical category has become very popular in recent years,
with applications spanning from robotic surgery (surgical
grippers and needle manipulation), diagnosis (positioning of
ultrasonic probes; Tirindelli et al., 2020 or endoscopes), and
assistance (intelligent wheelchairs, feeding and walking aids).
The service sector is the one that in the authors’ opinion
presents the highest potential for growth in the coming years.
Applications include companionship (elderly and child care),
domestic (cleaning, object retrieving), personal (chat partners,
tele-presence). The table shows that all four sensors have been
deployed in all three sectors. The only exception is audition not
being used in production applications, probably because of the
noise—common in industrial environments.

Finally, Table 5 gives a classification based on the robotic
platform. We can see that (unsurprisingly) most works use
fixed base arms. The second most used platforms here are
wheeled robots. Then, the humanoids category, which refers
to robots with anthropomorphic design (two arms and biped
locomotion capabilities). Finally, we consider robot heads, which
are used exclusively for audio-based control. While robot heads
are commonly used for face tracking in Social Human Robot
Interaction, such works are not reviewed in this survey as they
do not generally involve contact.

6. CONCLUSIONS

This work presents a systematic review of sensor-based
controllers which enable collaboration and/or interaction
between humans and robots. We considered four senses:

TABLE 5 | Classification based on the type of robot platform.

Arms Vision (Agustinos et al., 2014; Gridseth et al., 2015, 2016; Cai

et al., 2016), touch (Maeda et al., 2001; Suphi Erden and

Tomiyama, 2010; Suphi Erden and Maric, 2011; Ficuciello

et al., 2013; Baumeyer et al., 2015; Bauzano et al., 2016;

Cortesao and Dominici, 2017), distance (De Santis et al.,

2007; Flacco et al., 2012; Schlegl et al., 2013; Leboutet et al.,

2016; Bergner et al., 2017; Dean-Leon et al., 2017),

V+T (Pomares et al., 2011; Cherubini et al., 2015, 2016;

Chatelain et al., 2017), D+T (Navarro et al., 2014; Dean-Leon

et al., 2016)

Wheeled Vision (Dune et al., 2008; Tsui et al., 2011; Narayanan et al.,

2016), touch (Wang et al., 2015), audition (Magassouba et al.,

2015, 2016a,b), V+A (Chan et al., 2012), V+T+A+D

(Papageorgiou et al., 2014), D+A (Huang et al., 1999),

V+D (Cherubini and Chaumette, 2013; Cherubini et al., 2014)

Humanoids Touch (Bussy et al., 2012), V+T (Agravante et al., 2013, 2014)

Heads Audition (Kumon et al., 2003, 2005; Magassouba et al.,

2016b), V+A (Okuno et al., 2001, 2004; Natale et al., 2002;

Hornstein et al., 2006)

vision, touch, audition, and distance. First, we introduce
a tutorial-like general formulation of sensor-based control
(Navarro-Alarcon et al., 2020), which we instantiate for visual
servoing, touch control, aural servoing, and distance-based
control, while reviewing representative papers. Next, with the
same formulation, we model the methods that integrate multiple
sensors, while again discussing related works. Finally, we classify
the surveyed body of literature according to: used sense(s),
integration method, control objective, target application,
and platform.

Although vision and touch (proprioceptive force rather
than tact) emerge nowadays as the most popular senses
on collaborative robots, the advent of cheap, precise, and
easy to integrate tactile, distance, and audio sensors present
great opportunities for the future. Typically, we believe that
robot skins (e.g., on arms and hands, Guadarrama-Olvera
et al., 2019; Navarro et al., 2020) will simplify interaction,
boosting the opportunities for human-robot collaboration. It is
imperative that researchers develop the appropriate tools for this.
Distance/proximity feedback is promising to fully perceive the
human operating near the robot (something monocular vision
cannot do). Audio feedback is key for developing robotic heads
that can interact in a natural way with human speakers.

Finally, some open problems must be addressed, to develop
robust controllers for real-world applications. For example, the
use of task constraints has not been sufficiently explored when
multiple sensors are integrated. Also, difficulty in obtaining
models describing and predicting human behavior hampers
the implementation of human-robot collaborative tasks. The
use of multimodal data such as RGB-D cameras with multiple
proximity sensors may be an interesting solution for this human
motion sensing and estimation problem. More research needs to
be conducted in this direction.
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