
ORIGINAL RESEARCH
published: 17 November 2020

doi: 10.3389/fnbot.2020.582728

Frontiers in Neurorobotics | www.frontiersin.org 1 November 2020 | Volume 14 | Article 582728

Edited by:

Ganesh R. Naik,

Western Sydney University, Australia

Reviewed by:

Theerawit Wilaiprasitporn,

Vidyasirimedhi Institute of Science and

Technology, Thailand

Noman Naseer,

Air University, Pakistan

Erwei Yin,

Tianjin Artificial Intelligence Innovation

Center (TAIIC), China

*Correspondence:

Stefano Tortora

tortora@dei.unipd.it

†These authors have contributed

equally to this work and share senior

authorship

Received: 13 July 2020

Accepted: 30 September 2020

Published: 17 November 2020

Citation:

Tortora S, Tonin L, Chisari C, Micera S,

Menegatti E and Artoni F (2020)

Hybrid Human-Machine Interface for

Gait Decoding Through Bayesian

Fusion of EEG and EMG Classifiers.

Front. Neurorobot. 14:582728.

doi: 10.3389/fnbot.2020.582728

Hybrid Human-Machine Interface for
Gait Decoding Through Bayesian
Fusion of EEG and EMG Classifiers
Stefano Tortora 1*, Luca Tonin 1, Carmelo Chisari 2, Silvestro Micera 3,4,

Emanuele Menegatti 1† and Fiorenzo Artoni 4,5†

1Department of Information Engineering, University of Padova, Padova, Italy, 2Unit of Neurorehabilitation, Department of

Medical Specialties, University Hospital of Pisa, Pisa, Italy, 3Department of Excellence in Robotics and AI Scuola Superiore

Sant’Anna, The Biorobotics Institute, Pisa, Italy, 4 Bertarelli Foundation Chair in Translational Neuroengineering, Center for

Neuroprosthetics and Institute of Bioengineering, Lausanne, Switzerland, 5 Functional Brain Mapping Laboratory, Department

of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland

Despite the advances in the field of brain computer interfaces (BCI), the use of the

sole electroencephalography (EEG) signal to control walking rehabilitation devices is

currently not viable in clinical settings, due to its unreliability. Hybrid interfaces (hHMIs)

represent a very recent solution to enhance the performance of single-signal approaches.

These are classification approaches that combine multiple human-machine interfaces,

normally including at least one BCI with other biosignals, such as the electromyography

(EMG). However, their use for the decoding of gait activity is still limited. In this work,

we propose and evaluate a hybrid human-machine interface (hHMI) to decode walking

phases of both legs from the Bayesian fusion of EEG and EMG signals. The proposed

hHMI significantly outperforms its single-signal counterparts, by providing high and stable

performance even when the reliability of the muscular activity is compromised temporarily

(e.g., fatigue) or permanently (e.g., weakness). Indeed, the hybrid approach shows a

smooth degradation of classification performance after temporary EMG alteration, with

more than 75% of accuracy at 30% of EMG amplitude, with respect to the EMG classifier

whose performance decreases below 60% of accuracy. Moreover, the fusion of EEG and

EMG information helps keeping a stable recognition rate of each gait phase of more than

80% independently on the permanent level of EMG degradation. From our study and

findings from the literature, we suggest that the use of hybrid interfaces may be the key

to enhance the usability of technologies restoring or assisting the locomotion on a wider

population of patients in clinical applications and outside the laboratory environment.

Keywords: EEG, EMG, hybrid BCI, Bayesian inference, LSTM network, mobile brain/body imaging, locomotion

1. INTRODUCTION

Neurological diseases after brain or spinal cord lesions are one of the major causes of locomotion
impairments, leading to functional disability and loss of independence in daily-living activities for
patients (Barbeau et al., 1999; Sarti et al., 2000). To reach better independence, gait rehabilitation
is key to regain walking capacity and the recent advances in bio-robotics and neuroprostheses have
provided many technological solutions to restore locomotion. Functional improvements have been
reported in stroke survivors (Chisari et al., 2015; Morone et al., 2018) and spinal cord injury (SCI)
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patients (Kolakowsky-Hayner et al., 2013; Donati et al., 2016;
Shokur et al., 2018) after robot-aided training with a lower limb
exoskeleton. Recently, epidural electrical stimulation (EES) has
shown very promising performance in restoring locomotion after
spinal lesion (Harkema et al., 2011; Wenger et al., 2014; Wagner
et al., 2018). In this context, it is of paramount importance
to develop advanced human-machine interfaces to enhance the
interaction between the user and the rehabilitation device and
thus, his active involvement, and maximizing the rehabilitation
outcome (Edgerton et al., 2008).

Electromyography (EMG) is certainly one of the most
used techniques to control rehabilitation and assistive devices,
particularly in robotic applications. EMG has been already
successfully used to decode gait activity (Meng et al., 2010; Joshi
et al., 2013; Li et al., 2016; Luo et al., 2019), and to control
exoskeletons (Fleischer et al., 2005; Ferris and Lewis, 2009;
Takahashi et al., 2015) or neuroprostheses based on functional
electrical stimulation (FES) (Graupe et al., 1982; Dutta et al.,
2008). However, the usability of EMG-based control strategies
strongly depends on the user’s residual muscular functions. If the
EMG activity is highly affected by the limb’s paresis following a
neurological disease, the decoding of user’s movement intention
could be compromised by muscle weakness and early fatigue,
making the use of these assistive technologies unfeasible on
severely impaired patients (Millán et al., 2010). For this reason,
brain computer interface (BCI) technologies based on non-
invasive Electroencephalography (EEG) have been introduced to
decode movement intention from brain electrical signals, even
in absence of any muscular activity. Previous works have proven
the feasibility of predicting motion intention with BCI to detect
sit-to-stand and stand-to-sit movement (Chaisaen et al., 2020),
to trigger lower limb exoskeletons (Kilicarslan et al., 2013; Lee
et al., 2017), but also to decode walking patterns from EEG
signals (Presacco et al., 2011; Nakagome et al., 2020; Tortora
et al., 2020). However, interfaces based on EEG signals alone are
not reliable enough for most clinical applications and to control
advanced neurorobotics devices yet due to their low reliability,
low accuracy and low informative content (Vaughan et al., 1996;
Wolpaw et al., 2000). These issues have strongly limited the
diffusion of these technologies on a wider population of patients
and for applications outside a controlled laboratory environment.

In this study, we propose a hybrid human-machine interface
(hHMI) fusing the motion information coming from the brain
signals with the information coming from the natural muscular
activation with the purpose of decoding walking activity. The
aim of the fusion method proposed in this study is to enhance
the reliability of the human-machine interface by integrating the
outputs of an EEG and an EMG classifiers using principles of
Bayesian inference (Ruta and Gabrys, 2000). The measurement
of a human-machine interface reliability is a current challenging
topic, since it can be analyzed from a 2-fold point-of-view: from
the adaptation of the user to the interface or from the adaptation
of the interface to the user, measured as the performance of the
machine learning system to changes of the input signals (e.g.,
session-to-session variability, non-stationarity of the driving
signals) (Perdikis et al., 2018). In this work, we evaluated the
proposed hHMI from the latter point-of-view. By weighing

the contribution of each classifier based on the confidence
of its prediction, the proposed hybrid interface enhance the
overall decoding performance, particularly when the reliability
of muscular signals is affected, either temporary (e.g., muscle
fatigue) or permanently (e.g., muscle weakness). To evaluate this
capacity, the performance of the proposed hybrid approach was
compared to the single-signal approaches also with respect to
simulated conditions of EMG signal alteration. These evaluations
have been carried out simulating an online usage of the hHMI in
order to exploit this interface to control a lower limb exoskeleton
or a neuroprosthesis in future work.

1.1. Related Work
Recent attempts to overcome the limitations of conventional BCI
systems have brought forward approaches combining multiple
human-machine interfaces, including at least one BCI integrated
with other BCIs or other biosignals (e.g., EMG) or input devices
(e.g., joysticks) (Müller-Putz et al., 2015). This combination may
happen at different levels of the processing flow: at the features
level (Li et al., 2017), at the decision-making level (Leeb et al.,
2011), or at the control level (Kiguchi et al., 2013), by having each
channel controlling a different part or behavior of the assistive
device. These hybrid solutions often rely on a fusion module
integrating the outputs of multiple classifiers driven by different
brain features (Millán et al., 2010). For example, Yin et al. (2015)
proposed a hybrid BCI integrating the classification of a P300
BCI and a steady-state visual evoked potential (SSVEP) BCI
with a maximum probability estimation (MPE) fusion approach.
The same research group implemented also a bimodal P300
BCI approach that simultaneously employs auditory and tactile
stimuli (Yin et al., 2016). In Ferrez and Millán (2008) the
reliability of a motor imagery BCI is improved by discarding
erroneous commands if they generate an error-related potential
(ErrP) right after the classification.

Many patients present residual motor functions that may
be used as additional control inputs in parallel with the BCI.
For example, in Rohm et al. (2011) the remaining shoulder
function of a SCI patient is exploited to control an upper-limb
neuroprosthesis, while the motor imagery of hand movement is
used to toggle the different control modalities of the assistive
device. In this category of hHMIs, solutions based on EEG and
EMG signals may increase the reliability of the interface with
respect to both signals alone in upper limb experiments (Carlson
et al., 2013; Chowdhury et al., 2017). In particular, the additional
analysis of EEG signals in parallel with EMG activity have shown
to improve the detection of motion intention in patients with
compromised muscular functions (Bhagat et al., 2016; Lóopez-
Larraz et al., 2018). Leeb et al. (2011) showed the benefit of a
multimodal EEG-EMG approach to classify between movement
of right and left hands independently of the level of muscular
fatigue. In lower limb applications, EEG and EMG signals
have been primarily used to monitor the user’s condition while
walking, for example to measure the workload (Matthews et al.,
2008) or predict the risk of falling (Annese and De Venuto, 2015).
In walking classification applications, EEG and EMG signals are
rarely used simultaneously, but rather as a cascade of classifiers.
In Du et al. (2012), an EEG-based interface is used to control
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a lower limb exoskeleton by detecting walking direction, while
walking patterns are decoded from the EMG signal alone. In Li
et al. (2019), the intention to take a step is decoded from the
EEG signals only, while the EMG signals from the upper limbs
are exploited to determine the step height while climbing stairs.
In Sherwani and Kumar (2016), the predictions of an EEG and an
EMG classifier are fused to predict sit-to-stand and stand-to-sit
tasks. On the other hand, the development of Mobile Brain/Body
Imaging (MoBI) frameworks (Gennaro and De Bruin, 2018),
allowing the simultaneous acquisition of EEG and EMG signals
during walking, enabled scientists to deepen the understanding of
both cortical and muscular control of gait patterns (Storzer et al.,
2016; Artoni et al., 2017).

Despite these findings however, to the best of our knowledge,
EEG and EMG have never been used simultaneously to decode
walking activity. To this aim, this paper contributes to the field
by proposing and evaluating a hHMI decoding gait events from
the fusion of brain and muscular activity. In particular, two
deep neural networks are trained with EEG and EMG signals,
respectively, in order to predict step onset (i.e., swing phase)
and offset (i.e., stance phase) of right and left legs. Finally, their
predictions are integrated at the decision-making level using a
Bayesian belief fusion method, based on the uncertainty of each
classifier in predicting that the subject is in a certain gait phase.
We believe that the proposed solution may guarantee more stable
performance of the human-machine interface controlling the
walking restoration device, by adapting the fusion parameters
to the changes of input signals reliability in clinical and daily-
living applications.

2. MATERIALS AND METHODS

2.1. Experimental Setup and Data
Acquisition
The hHMI proposed and described in this paper was validated
on a pre-recorded dataset containing one session of EEG and
EMG recordings from eleven healthy subjects (mean age 30 ± 4
years) while walking. During each session, the subject was asked
to walk on a treadmill at 2.5 and 3.5 km/h, for 10 min for each
walking speed, thus 20 min overall. EEG data were recorded
with a signal pre-amplifying active electrode cap (actiCAP, Brain
Products GmbH, Germany) and a 64-channel EEG amplifier (SD
MRI, Micromed S.p.A., Italy) with a sampling rate of 2,048 Hz.
EMG data were simultaneously recorded with a wireless EMG
system (BTS Free EMG 300) at a sampling rate of 1,000 Hz.
EMG electrodes were placed on Tibialis Anterior (TA), Vastus
Medialis (VM) and Biceps Femoris (BF) of each leg, according
to SENIAM guidelines (www.seniam.org). Swing and stance
events were identified from the signals acquired with four foot-
switches positioned under the shoes of each subject, two under
the heel and two under the toes. Data from the foot-switches were
wirelessly acquired through the EMG system with a sampling
frequency of 1,000 Hz. EEG, EMG and foot-switches data were all
resampled to 1,024 Hz. This dataset was previously published and
was acquired within the MoBI framework presented in Artoni
et al. (2018), more details on the experimental protocol and data

acquisition can be found in Artoni et al. (2017) and Tortora
et al. (2020). All subjects provided informed consent prior
to participation in this study. This study was carried out in
accordance with the declaration of Helsinki.

2.2. Data Processing
This section describes the processing procedures applied to EEG
and EMG signals before being used as input to their respective
classifiers. In order to simulate an online condition, the dataset of
each subject was divided into three groups: a training set (60% of
the dataset, about 12 min of walking), a validation set (15% of the
dataset, about 3 min of walking) and a test set (25% of the dataset,
about 5 min of walking). Networks were trained with data of the
training set only, while the parameters for the Bayesian belief
fusion were obtained from the validation set. Once the Bayesian
fusion parameters have been estimated, the networks were re-
trained with the ensemble of training and validation set, in order
to maximize the data available for classifier’s learning. Finally, the
overall performance were evaluated on the data of the test set. All
the processing procedures applied to the test set are compatible
with an online usage of the interface. A representation of the
proposed hHMI is schematically shown in Figure 1.

2.2.1. EEG Processing
Generally, EEG data are contaminated by many external
sources (Gwin et al., 2010), particularly gait-locked artifacts
overlapped with brain signals (Kline et al., 2015). Thus,
preprocessing procedures are necessary to clean the EEG dataset
from non-brain activity. To this aim, we applied a previously
validated processing procedure, described in detail in Tortora
et al. (2020). Different processing stages were applied on the three
groups of data. Training and validation set were preprocessed
with a two-step offline preprocessing, following a procedure
previously described and validated in Artoni et al. (2017),
to ensure that the classifier learning and the Bayesian fusion
parameters were not influenced by any source of noise generated
during the locomotion. On the other hand, a more conservative
preprocessing was applied on the test set to guarantee its usability
in an online application:

• Preprocessing Step I: raw EEG data were high-pass filtered
with a zero-phase 24th-order Chebyshev type II filter above
1 Hz and low-pass filtered with a zero-phase 71th-order
Chebyshev type II filter below 98 Hz. Power line interference
were removed with a comb notch filter at 50 Hz. Manual
and automatic procedures were used to reject corrupted
EEG channels and epochs containing high-amplitude (above
100 µV) and irregular artifacts (Artoni et al., 2012). A
Common Average Reference (CAR) filter was then applied to
the remaining channels.

• Preprocessing Step II: raw EEG data were high-pass filtered
with a zero-phase 24th-order Chebyshev type II filter
above 1.5 Hz and low-pass filtered with a zero-phase
71th-order Chebyshev type II filter below 48 Hz. The
data were then resampled to 512 Hz. The channels
removed during Step I were also removed in this step. A
CAR filter was then applied to the remaining channels.
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FIGURE 1 | Schematic representation of the proposed hybrid human-machine interface. Brain activity is registered with a 64-channel EEG system, while three lower

limb muscles per leg are simultaneously recorded within the same acquisition set up. Each subject’s dataset is separated into three distinct groups of data, namely

training, validation and test set. Data from the training set (green arrows) are used to calibrate the parameters of the two classification networks. The performance of

each network, in terms of confusion matrices, are evaluated on the validation set (yellow arrows) for the EEG and EMG signals independently. These performance

measures are then used to guide the Bayesian fusion method of the classifier’s output (cEEG, cEMG), to predict gait events on the data coming from the test set

(red arrows).

Non-stereotypical artifacts (e.g., movement artifacts related
to cable displacement) were removed through Artifacts
Subspace Reconstruction (ASR) (Kothe and Jung, 2016;
Chang et al., 2018). Then, the EEG signals were decomposed
into maximally independent processes through an infomax
Reliable Independent Component Analysis (RELICA) (Artoni
et al., 2014). The ICA weights were applied to the EEG
signals coming from Step I, projecting the data into the
independent components domain. Components that belong
to stereotypical artifacts (e.g., neck muscles, eye movement)
were rejected by backprojecting the EEG signals to the original
domain using only the components related to brain activity
(Artoni et al., 2017).

The two-step preprocessing was necessary to apply the ASR only
on the EEG data used for the estimation of the independent
components (Step II) to enhance their reliability (Artoni et al.,
2014), while the classifier was trained on the data from Step
I, since ASR may remove also useful brain activity (Artoni
et al., 2017). Channels rejected during these offline preprocessing
stages were also removed from the test set. Data belonging
to the training, validation and test set were segmented with a
rectangular time window of 50 ms with 80% overlap, to achieve a
classification at a rate of 1/((1− 0.8) ∗ 0.050 s) = 100Hz. A CAR
filter is applied to the chunk of EEG data inside each window
and the δ-θ band (1-8 Hz) was extracted with a 4th-order zero-
lag Butterworth filter. This frequency range was selected since it
provided the best performance in a previous study (Tortora et al.,
2020) and it is in line with the literature showing that meaningful
changes during walking occur principally at frequencies below 10
Hz (Gwin et al., 2010, 2011). Data were normalized to have zero
mean and unit standard deviation inside each window. Finally,
a single-feature per channel for each window for classification

was obtained by taking the block average of the processed EEG
signals in the non-overlapping portion (i.e., the last 20%) of
each window. The EEG preprocessing is schematically shown in
Figure 2 (top).

2.2.2. EMG Processing
EMG data of training, validation and test set were processed
following the same procedures. Firstly, the EMG signals were
segmented with a rectangular time window of 50 ms with 80%
overlap, as the EEG signals. Inside each window, EMG signals
were band-pass filtered in the range 10-250 Hz with a 8th-order
zero-lag Butterworth filter, in order to remove low-frequency
motion artifacts and high-frequency electrical noise. Then, the
filtered EMG signals were rectified and smoothed using a 4th-
order zero-lag Butterworth low-pass filter with cut-off frequency
at 6 Hz. As for the EEG signals, a single-feature per channel
for each window was obtained by taking the block average
of the processed EMG signals in the non-overlapping portion
(i.e., the last 20%) of each window. The EMG preprocessing is
schematically shown in Figure 2 (bottom).

2.3. EEG and EMG Long-Short Term
Memory (LSTM) Networks
Gait decoding classifiers were implemented as a deep neural
network with recurrent layers, namely Recurrent Neural Network
(RNN), whose output is a non-linear function of the current
input (i.e., EEG or EMG channels) and its outputs at the previous
time steps (Williams and Zipser, 1989). This characteristic
provides the network with memory allowing to encode time
dependency within the classification framework (Elman, 1990).
Herein, we considered a particular implementation of a RNN,
based on Long Short-Term Memory (LSTM) layers. LSTM
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FIGURE 2 | Schematic representation of the preprocessing procedures applied to the EEG and EMG signals. EEG signals are firstly preprocessed with a two-step

preprocessing to reject motion artifacts. Then, EEG and EMG time series are segmented in time windows of 50 ms with 80% overlap. After the windowed signals are

further processed, the non-overlapping samples of each window (i.e., the last 20%) are block averaged in order to obtain a single EEG or EMG features per channel.

networks are recurrent networks capable of learning long-term
dependencies in time series without suffering from the vanishing
gradient problem (Pascanu et al., 2013). This network was
selected since it has already shown to be very effective in decoding
gait events from either EEG (Tortora et al., 2020) and EMG (Luo
et al., 2019) signals. The implementation of a LSTM network
can be found in Hochreiter and Schmidhuber (1997), Gers et al.
(1999), and Tortora et al. (2020) and it is beyond the scope of
the paper.

In this study, two separated LSTM networks, running in
parallel, were implemented to decode gait events from EEG
and EMG, respectively, and their predictions are subsequently
integrated (see section 2.4). Each network is provided with a
sequence input layer with size equal to the number of channels
used for classification. Then, channels’ signals are processed by
one or more LSTM layers to extract information from each time
series that is correlated with the gait events to be classified.
Channels’ information is integrated in the fully-connected layer,
with size equal to the number of classes to be identified, and

the posterior probability of each class is provided in output by
the softmax layer (see Figure 3A). The EEG network was trained
to classify the swing phase of either right and left leg (SWING)
against the double-stance phase (STANCE). On the other hand,
the EMG network was trained to solve a 3-class classification
problem, detecting the swing phase of the right leg (RIGHT),
of the left leg (LEFT), and the double-stance phase (STANCE).
An EEG and an EMG network were trained for each subject
independently with the data from the training set only. The
networks’ architectures (i.e., number of LSTM layers, number of
units per layer), shown in Figure 3A, were empirically defined
for EEG and EMG signals separately based on the performance
on the validation set, averaged across subjects, and on previous
studies in literature (Craik et al., 2019; Luo et al., 2019; Roy et al.,
2019; Tortora et al., 2020).

2.4. Bayesian Belief Fusion
The reliability of a classifier can be comprehensively described by
means of confusion matrix, measuring the errors distribution of
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FIGURE 3 | (A) LSTM networks’ architecture for gait decoding from EEG and EMG signals. The EEG network consists of two LSTM layers, with 250 and 150 units,

respectively. The output of the last layer is then processed by a fully-connected layer (green oval) and a softmax layer in order to classify between swing and stance

phases. The EMG network contains only one layer with 150 units and it classifies between right swing, left swing, and stance phases. (B) Schematic diagram of

Bayesian belief fusion of EEG and EMG networks classification, for a sample scenario in which both EEG and EMG networks predict the STANCE class. The output of

each classifier (eEEG, eEMG) is used to determine the conditional probability of each true class (cEEGi
, cEMGi

) given the predicted class (cEEGj
, cEMGj

) from the confusion

matrix of each classifier, estimated during the validation phase. The Bayesian belief Bel(ci ) of each class ci is computed by multiplication of the conditional probabilities

of the EEG and EMG classifiers. The class predicted by the hybrid interface is the one maximizing the Bayesian belief.

each network over the classes:

CMk =















nk11 . . . nk1j . . . nk1M
. . . . . . . . . . . . . . .

nki1 . . . nkij . . . nkiM
. . . . . . . . . . . . . . .

nkM1 . . . nkMj . . . nkMM















(1)

where each row corresponds to the class (i.e., c1, . . . , cM) the
samples truly belong, as defined by the foot-switch signals, and
each column to the class which the samples are assigned to.
Thus, nkij represents the number of samples belonging to the

i − th class that were predicted as the j − th class by the k − th
classifier. Given K classifiers predicting among M classes, the
general belief measure of correct assignment can be computed
for each class i by combining the estimation ek of each classifier

as Ruta and Gabrys (2000):

Bel(ci) = P(ci)

∏K
k=1 P(ci|ek = cj)
∏K

k=1 P(ci)
with P(ci|ek = cj)

=
nkij

∑M
i=1 n

k
ij

, i = 1, . . . ,M; j = 1, . . . ,M (2)

where P(ci) is the prior probability of class i and P(ci|ek = cj) is
the probability that the true class is i when the k − th classifier
outputs class j. In our case, K = 2 since we have one EEG
network and one EMG network. However, the two networks
do not provide the same number of classes M, as explained in
section 2.3. Thus, we adapted (2) to our scenario as follow:

Bel(ci) =

∏

k={EEG,EMG} P(cki |ek = ckj )

P(ci)
, with : (3)
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FIGURE 4 | The processing pipeline applied to the EMG signals in order to validate the proposed approach in presence of temporary (Experiment 1) or permanent

(Experiment 2) conditions of EMG alteration. In the first condition, signal attenuation is applied only to the validation and test set, while the original training set is used

to calibrate the classifier. In the second experiment, signal attenuation and reduced signal-to-noise ratio (SNR) are applied on the entire EMG dataset, in order to

simulate a steady condition of impairment.

cEEGi = {SWING, SWING, STANCE};

cEEGj = {SWING, SWING, STANCE};

cEMGi = {RIGHT, LEFT, STANCE};

cEMGj = {RIGHT, LEFT, STANCE};

ci = {RIGHT, LEFT, STANCE};

i, j = 1, 2, 3

In cEEGi and in cEEGj the SWING class is repeated twice since the
EEG network provides the same contribution for either the right
swing (RIGHT) and left swing (LEFT) events classified by the
EMG network. In short, the EEG network detects if the subject
is taking a step forward, regardless of which leg is moving, while
only the EMG network is in charge of discriminating between
the two legs. The class ci with the highest belief Bel(ci) is chosen
as the final decision of the classification framework. A schematic
representation of the Bayesian belief fusion applied in this work is
shown in Figure 3B for a sample scenario in which both EEG and
EMG networks predict the STANCE class. Nevertheless, the same
considerations could be applied when the two networks predict
different classes. The conditional probabilities P(cki |ek = ckj )
of each classifier were obtained on the validation set and the
performance of the fusion method was evaluated on the test set.
Since the walking speed is not known to the classifier, we used the
same prior probability for all the classes.

2.5. Experimental Validation
It can be easily expected that the use of the sole EMG signal
is enough to achieve an accurate decoding of gait phases in
conditions where the nervous and/or muscoloskeletal systems
are not impaired (Luo et al., 2019), with respect to what could
be achieved by an EEG-based classifier, thanks to its higher
correlation with the movement. However, in order to evaluate
the proposed hHMI with the available dataset, containing EEG
and EMG of healthy subjects only (see section 2.1), we simulated

two different conditions in which the reliability of the EMG is
compromised, either temporary (section 2.5.1) or permanently
(section 2.5.2). These simulations were obtained by altering the
distribution of EMG signals’ amplitude in training, validation
and test set, as shown in Figure 4 and explained in the following
sections. Before the experiments, subjects s02 and s04 were
excluded from the analysis since their EEG networks did not
achieve performance above the level of significance (i.e., chance
level of 50%). Since the performance and analysis of the EEG
network on this dataset, including subjects s02 and s04, have been
previously published (Tortora et al., 2020), we decided to focus
the paper on the integration of EEG and EMG signals to deal with
the degradation of muscular activity, excluding those subjects for
which the use of the EEG network would have just worsened the
performance independently on the level of EMG alteration.

2.5.1. Experiment 1: Temporary EMG Alteration
We evaluated the proposed hHMI in presence of a temporary
alteration of the EMG signal. In this experimental condition, we
assumed that only the EMG data during the human-machine
interface usage were compromised, e.g., by fatigued-induced
muscular changes, while muscles activity was unaltered during
data collection for network training. In order to simulate this
condition in the current study, on the one hand we applied a
linear attenuation of EMG amplitude, ranging from 10 to 90%,
to the validation and test set of each subject (Leeb et al., 2011).
On the other hand, the EMG network parameters were calibrated
with the original EMG signals.

2.5.2. Experiment 2: Permanent EMG Alteration
Subjects who suffer of a neuromuscular disease or trauma, like
stroke survivors or SCI patients, are often primarily impaired by
weakness for voluntary muscle contraction due to a permanent
paresis (Thomas et al., 1997; Kamper et al., 2006). This
impairment is often reflected in a permanent alteration of the
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EMG activity. In order to simulate this condition, we considered
to have available only one proximal lower limb muscle (i.e.,
VM) for each leg. Moreover, we applied to the whole EMG
dataset a linear attenuation of 70% of the amplitude (van der
Krogt et al., 2012) and we added a Gaussian noise (Li et al.,
2007; Xu et al., 2012), with standard deviation determined to
have different signal-to-noise ratio (SNR) levels—defined as the
ratio of the signal power (i.e., the EMG activity informative
for the movement) to the noise power, thus the background
EMG activity—of 10, 3, 1.5, 1, 0.5, 0.1 dB, respectively. This
procedure was applied on training, validation and test set of each
subject, since we assumed the impairment to not change between
classifier calibration and evaluation.

3. RESULTS

In order to evaluate the performance of the proposed hybrid
approach, that integrates the information from the brain
signals to support the compromised muscular activity, in the
experiments we evaluated the performance of the single modality
EMG network alone with respect to the performance obtained by
the fusionmethod in detecting right swing, left swing and double-
stance phases. Figure 5A shows the results for the five different
conditions of the Experiment 1 (i.e., 100, 90, 50, 30, 10% of
EMG signals amplitude). Performance is reported as the sample-
by-sample accuracy over the whole test set, averaged across all
the subjects. A statistically significant impact of classifier type
(i.e., EMG only or EEG+EMG) and level of attenuation was
found (Friedman test, p < 0.05). As shown in Table 1, the
EMG network alone achieved an accuracy of 95% for almost
all the subjects when no attenuation had been applied or at
10% of attenuation. Then a drop of EMG network performance
could be seen in relation with the increase in EMG amplitude
attenuation (e.g., higher level of fatigue) reaching less than 90% of
accuracy at 50% of attenuation. A statistically significant decrease
of performance has been found at 70 and 90% of attenuation
up to less than 40% of accuracy (Bonferroni post-hoc, p <

0.05). Figure 5B better highlights the performance achieved in
the Experiment 1 for each gait event to be identified. It can be
seen that the reduction of the classification performance of the
EMG network is mainly related to the difficulty in detecting
the events related to the stance phase, from 91% of correctly
detected samples to less than the chance level with 30 and 10%
of EMG signals amplitude. On the other hand, with the proposed
hHMI the degradation of the performance was remarkably lower,
with a statistically significant improvement of about 20% of
accuracy at 70% (Bonferroni post-hoc, p < 0.05) and 90%
(Bonferroni post-hoc, p < 0.01) of attenuation. In particular,
the stance detection rate was always above 80% even at the
highest levels of EMG alteration. Figure 6 shows the robustness
of the hybrid interface when different levels of attenuation are
applied to the validation set and the test set in Experiment 1. No
statistically significant differences (Kruskal-Wallis test, p > 0.05)
were found between the performance achieved when the same
attenuation is applied to both set (white bars), or when the levels
of attenuation differ of +10% (dark gray bars) or −10% (light
gray bars).

Table 2 summarizes the results of the Experiment 2. Overall,
the hybrid approach improved the classification performance
in all the experimental conditions, with accuracy and precision
always above 80% on average. Figure 7 shows the performance
scores for each gait event and for different SNR levels of the
EMG signals. No statistically significant impact of classifier type
and SNR level has been found for the right swing and the
left swing recognition rate (Friedman test, p > 0.05), with
more than 80% of correctly classified samples on average in
all the conditions for both the EMG network and the hybrid
approach. Differently, a significant improvement in the stance
recognition rate became apparent with the fusion of EEG and
EMG signals (Friedman test, p < 0.001), with the proposed
hHMI keeping stable performance above 80%, regardless of the
SNR level.

4. DISCUSSION

In this study, we propose a hybrid approach based on the
fusion of brain and muscle activity exploiting the principles
of Bayesian inference with the purpose of decoding gait
events. In particular, we show the benefit of coupling a
BCI and a myoelectric interface in order to cope with
impairments affecting the reliability of muscular signals,
either temporary (e.g., muscle fatigue) or permanent (e.g.,
muscle weakness). Indeed, from our experiments, the
proposed hHMI achieved significantly better results than
the single-signal EMG approach, particularly at higher
levels of muscular signals degradation. Nevertheless, it is
worth noting that the introduction of the EEG network
did not affect the performance of the interface even if no
alteration of the EMG signal was applied. Indeed, the EEG
network achieved almost 90% of accuracy in discriminating
between swing and stance phases, independently from the
experimental condition, similarly to what has been obtained in
Tortora et al. (2020).

The detection of walking patterns with the EEG signal alone
is, not surprisingly, less accurate with respect to the results
obtained using the EMG signal. Likely, while the location of
the EMG channels provides a clear indication of which leg
the subject intends to move, the localization of brain activity
related to each leg has been always very challenging in BCI,
due to their representation over the sensorimotor cortex very
close to the deep interhemispheric fissure (Hashimoto and
Ushiba, 2013). Despite this, many studies on MoBI frameworks
have provided interesting evidence of consistent brain signal
modulations correlated with walking patterns (Gwin et al., 2011;
Cevallos et al., 2015; Storzer et al., 2016), revealing a direct
connection between brain areas and lower limb muscles during
locomotion (Artoni et al., 2017). For these reasons, in this study
we decided to limit the output of the EEG network in recognizing
stance and swing phases, regardless of the leg performing
the step. Nevertheless, our results show that the capability of
discriminating between swing and stance phases is what is most
affected by the degradation of muscular information, as it can
be seen by the performance of the EMG network for both
experiments (Figures 5B, 7—right plot). On the other hand,
the detection of right and left swing events remained stable
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FIGURE 5 | (A) Average classification accuracy in five different conditions (100, 90, 50, 30, and 10% of EMG signal amplitude) using only the EMG signals (blue bars)

to classify between right swing, left swing and stance phases, with respect to the performance achieved by the use of EEG and EMG signals together (yellow bars).

(B) Confusion matrices obtained on the test set by the classifier using only the EMG signals and the hybrid (EEG + EMG) approach at different levels of EMG

amplitude. ∗p < 0.05; ∗∗p < 0.01.

over the different experimental conditions, particularly for the
Experiment 2, with accuracy well over the chance level. In this
sense, the proposed fusion approach is capable of integrating the
decision of each classifier according to its estimated confidence
in predicting each class. Thus, the decision making process is
guided by the output of the most reliable interface for each
class: the EMG network predicts the specific movement to be
performed, i.e., a right or left step; the EEG network intervenes
in the detection of intentional movement execution (i.e., swing)
or not (i.e., stance), as suggested in literature (Leeb et al., 2011;
Tonin et al., 2017; Tortora et al., 2019). Nevertheless, we suggest
that the implementation of more advanced deep learning models
including recurrent and convolutional layers (Tan et al., 2017;
Ditthapron et al., 2019; Wilaiprasitporn et al., 2019) may help
the discrimination of right and left leg movements, by integrating

both time features in the low EEG bands [e.g., movement related
cortical potentials (MRCP)] and frequency features in higher
frequency bands (e.g., β-power modulation) (Sburlea et al.,
2015; Storzer et al., 2016), enhancing the overall performance of
our approach.

The physiological origin of muscle fatigue has been
investigated in many studies (Enoka, 1992; Kos et al., 2008)
and both increase and decrease of EMG activity have been
found as a sign of fatigue (Gerdle et al., 2000; Dimitrova and
Dimitrov, 2003). However, EMG increase is mostly present at
the beginning of muscular fatigue occurrence as a compensatory
strategy to keep the generated force constant. On the other hand,
a strong decrease of EMG signals characterizes the steady-state
condition of fatigue (Dimitrova and Dimitrov, 2003). From
Figure 5A, the hybrid approach shows an effective contribution
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TABLE 1 | Classification performance averaged across subjects in five different conditions (100, 90, 50, 30, and 10% of EMG signal amplitude) using only the EMG

signals or by the use of EEG and EMG signals together.

100% EMG 90% EMG 50% EMG 30% EMG 10% EMG

Recall

EMG 0.95 ± 0.01 0.95 ± 0.02 0.88 ± 0.19 0.63 ± 0.31 0.39 ± 0.36

EEG + EMG 0.95 ± 0.02 0.95 ± 0.02 0.90 ± 0.09 0.79 ± 0.17 0.66 ± 0.21

Precision

EMG 0.95 ± 0.01 0.95 ± 0.02 0.87 ± 0.16 0.68 ± 0.21 0.36 ± 0.26

EEG + EMG 0.95 ± 0.02 0.95 ± 0.02 0.89 ± 0.08 0.80 ± 0.18 0.62 ± 0.19

F1-Score

EMG 0.95 ± 0.01 0.95 ± 0.01 0.88 ± 0.16 0.58 ± 0.23 0.36 ± 0.26

EEG + EMG 0.95 ± 0.02 0.95 ± 0.02 0.90 ± 0.09 0.77 ± 0.17 0.56 ± 0.19

Performance are evaluated in terms of recall, precision, and F1-score. Bold values highlight the best classification approach for each condition.

100

80

60

40

20

0

FIGURE 6 | Average classification accuracy of the hybrid approach at four levels of temporary EMG alteration (90, 50, 30, and 10% EMG amplitude). The Bayesian

fusion method provides comparable performance when the level of alteration is precisely known a priori, meaning the same attenuation is applied to both validation

and test set (white bars), with respect to when the test set has a different attenuation level of +10% (dark gray bars) or −10% (light gray bars) of EMG signal

amplitude than the validation set.

when the EMG amplitude drops below 50%, with significant
differences at 30 and 10% of EMG signal amplitude. A precise
condition in which we may find a muscle activity below 30%
of its normal signal amplitude during walking it’s hard to
define from previous studies in literature, since normal gait
analysis is compromised already at 40% loss of strength with
respect to a physiological muscle activity (van der Krogt et al.,
2012). Nevertheless, other biomechanical studies revealed a
drop of more than 60% of the surface EMG amplitude after
60s of sustained isometric (Bigland-Ritchie et al., 1983) or
repeated (Chesler and Durfee, 1997) contractions in healthy
subjects. This behavior is accentuated in paraplegic patients
when the muscle contractions are induced by FES in both upper
limbs (Tepavac and Schwirtlich, 1997) and lower limbs (Mizrahi
et al., 1994). In these cases, the EMG amplitude may drop below
20% of its initial amplitude after <1 min of FES. Although

depending on the type of assistance provided and the severity
of the disability, we suggest our hybrid interface to be effective
if the walking task is sustained for several consecutive minutes
or for several times during the day, which would be the case
when these technologies are used in real-life applications. The
online adaptation of a classifier to non-stationary changes of the
input, such as those induced by muscle fatigue, is a current active
research topic in human-machine interfaces, and in machine
learning in general. One possible solution could be to train
multiple models calibrated with EMG data at different level of
muscle fatigue for each subject (Song et al., 2009; Artemiadis
and Kyriakopoulos, 2010). However, these solutions come at
the cost of a large training dataset required for the calibration
of each model. Moreover, the reliability of the decision rule
that determines when to switch the classification model may
dramatically affect their performance. Differently, our approach
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TABLE 2 | Classification performance averaged across subjects at different levels of signal-to-noise ratio (in dB) of the EMG signal using only the EMG signals or by the

use of EEG and EMG signals together.

EMG 10dB EMG 3dB EMG 1.5dB EMG 1dB EMG 0.5dB EMG 0.1dB EMG

Recall

EMG 0.83 ± 0.15 0.79 ± 0.16 0.71 ± 0.22 0.76 ± 0.13 0.74 ± 0.15 0.74 ± 0.20 0.75 ± 0.17

EEG + EMG 0.89 ± 0.06 0.86 ± 0.08 0.82 ± 0.13 0.85 ± 0.07 0.84 ± 0.08 0.84 ± 0.09 0.83 ± 0.8

Precision

EMG 0.81 ± 0.13 0.79 ± 0.14 0.70 ± 0.20 0.76 ± 0.12 0.74 ± 0.12 0.72 ± 0.17 0.76 ± 0.17

EEG + EMG 0.88 ± 0.06 0.85 ± 0.08 0.80 ± 0.11 0.83 ± 0.07 0.83 ± 0.06 0.82 ± 0.07 0.82 ± 0.09

F1-Score

EMG 0.79 ± 0.15 0.75 ± 0.14 0.66 ± 0.21 0.71 ± 0.14 0.71 ± 0.15 0.69 ± 0.19 0.73 ± 0.18

EEG + EMG 0.89 ± 0.06 0.86 ± 0.07 0.80 ± 0.12 0.84 ± 0.06 0.82 ± 0.07 0.83 ± 0.08 0.82 ± 0.08

Performance are evaluated in terms of recall, precision, and F1-score. Bold values highlight the best classification approach for each condition.

EM
G

10
 d
B
 E
M
G

3 
dB

 E
M
G

1.
5 
dB

 E
M
G

1 
dB

 E
M
G

0.
5 
dB

 E
M
G

0.
1 
dB

 E
M
G

0

10

20

30

40

50

60

70

80

90

100

R
ig

h
t 

s
w

in
g

 r
e
c
o

g
n

it
io

n
 r

a
te

 [
%

]

EM
G

10
 d
B
 E
M
G

3 
dB

 E
M
G

1.
5 
dB

 E
M
G

1 
dB

 E
M
G

0.
5 
dB

 E
M
G

0.
1 
dB

 E
M
G

L
e
ft

 s
w

in
g

 r
e
c
o

g
n

it
io

n
 r

a
te

 [
%

]

EM
G

10
 d
B
 E
M
G

3 
dB

 E
M
G

1.
5 
dB

 E
M
G

1 
dB

 E
M
G

0.
5 
dB

 E
M
G

0.
1 
dB

 E
M
G

S
ta

n
c
e
 r

e
c
o

g
n

it
io

n
 r

a
te

 [
%

]

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

EMG only

EEG+EMG

EMG only

EEG+EMG

EMG only

EEG+EMG

FIGURE 7 | Average results achieved by the hybrid approach (yellow lines), with respect to the EMG only approach (blue lines), is shown at different levels of

signal-to-noise ratio (in dB) of the EMG signals, as right swing (left plot), left swing (mid plot), and stance (right plot) phases recognition rate.

does not require multiple models for the same signal, but to
simply change the weights of the classifiers on the decision
based on a gross estimation of the EMG signal reliability, for
example by monitoring the median frequency of the EMG
signal, that has been shown to be strongly correlated with muscle
fatigue (Al-Mulla et al., 2009). Indeed, Figure 6 shows that
the proposed hHMI provides robust performance even if the
level of EMG alteration is not precisely known (Kruskal-Wallis
test, p > 0.05).

In rehabilitation applications, it is expected for the motor
functions of the patient to change as the therapy sessions
progress, and even inside the same session, hopefully by
progressively reducing the movement impairment and making
the muscular activity more reliable. In this sense, the analysis
of the performance of the hybrid classifier, contrary to the EMG
only classifier, and the analysis of the parameters of the Bayesian
fusion could provide a good quantitative assessment of motor

functions improvement over time, guiding the therapy and the
control strategy of the rehabilitation device.

While many papers may be found in literature on gait phase
classification from EMG (Joshi et al., 2013; Luo et al., 2019;
Morbidoni et al., 2019) with comparable results with respect
to the EMG network used in this study (i.e., classification
accuracy above 90% on healthy subjects), the EEG signals is rarely
used to decode gait activity. Most of the studies in literature
focused on the detection of walking initiation (Kilicarslan et al.,
2013; Sburlea et al., 2015; Zhang et al., 2017) or on the offline
analysis of the neural correlates of walking (Wagner et al.,
2012; Storzer et al., 2016; Artoni et al., 2017). Another research
group explored the use of EEG signals for the decoding of gait
kinematics (Presacco et al., 2011; Nakagome et al., 2020), but
not gait events. In our previous work (Tortora et al., 2020),
we compared the results obtained with the EEG-driven LSTM
network used in this study with respect to the methods proposed
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by Jorquera et al. (2013) and Shokur et al. (2018), that involved
a similar classification problem, showing significantly better
performance of our approach. On the other hand, a comparison
of the performance of our hybrid approach with respect to other
hybrid systems in literature is difficult since, as illustrated in
the section 1.1, hybrid interfaces on lower limb applications
are limited to classification scenarios that are very different
from the one presented in this study. For all these reasons, we
suggest our work to provide a strong contribution to the field of
human-machine interface by proposing for the first time a hybrid
approach for the purpose of decoding gait events from EEG and
EMG signals.

A limitation of the approach described in this work is that it
weights the classifier decision [i.e., ek in (2)] only based on the
performance estimated on the validation set (i.e., the confusion
matrix), without considering the confidence the classifier had
on that decision (i.e., the soft output of the softmax layer).
As an example, considering a binary classification problem,
the posterior probability (e.g., close to chance—0.6 vs. far
from chance—0.9) can be considered as a measure of the
confidence of the classifier. Thus, future works can investigate the
implementation of a probabilistic fusion method to integrate the
probability distribution of each classifier over the classes, so as
to allow the decision making process to take into consideration
both the uncertainty during validation and during online usage.
Another limitation of this study is related to the dataset used
for the evaluation of the hHMI performance, containing only
data from healthy subjects walking over a treadmill, that will
be accounted for in future studies by acquiring and testing this
approach on real end users (e.g., stroke patients). Indeed, muscle
weakness following paresis is a complicated phenomenon still
under study, with many contributors, like loss of descending
corticospinal pathway activation to motoneurons (Thomas
et al., 1998), loss of large motor units (Lukács et al., 2008,
2009; Kallenberg and Hermens, 2009), disuse atrophy, fat
infiltration (Ryan et al., 2011). Nevertheless, from studies on
muscular activity and EMG-torque relationship, the EMG of
muscles affected by weakness is principally characterized by an
overall lower signal amplitude (Wang et al., 2013; Bhadane et al.,
2016) and a worse SNR (Xu et al., 2012). Indeed, in paralyzed
patients, the SNR can be <1.5 dB in the most severe cases, with
respect to able-bodied subjects who are normally characterized
by SNR of 20 dB or more (Wang et al., 2006). These evidences
from literature support the validity of the applied permanent
EMG alteration method during the Experiment 2, and the results
we achieved suggest this approach to be promising to deal with
lower limb paresis. Finally, future evaluations of this approach
will be carried out during over-ground walking, to ensure that
the same performance shown in this study are achieved when
walking intention is purely self-controlled and not induced by an
exogenous stimulation, e.g., treadmill.

5. CONCLUSIONS

This study implements for the first time a classification
framework that simultaneously uses EEG and EMG signals

in reconstructing the walking pattern (i.e., swing and stance
phases of each leg), improving the results we previously achieved
with an EEG-based LSTM network (Tortora et al., 2020). In
neurorobotics applications, the possibility to have a robust
online decoding of gait phases may be exploited to provide a
continuous control input synchronized with the user’s walking
pattern, going beyond the simple detection of walking initiation
to trigger the assistive device (Do et al., 2013; Kilicarslan et al.,
2013; Liu et al., 2017). For example, the proposed interface
may be used online to drive lower limb exoskeletons that
implement different control strategies for swing and stance
phases during locomotion (Kazerooni et al., 2006; Yeh et al.,
2010; Villa-Parra et al., 2017). Moreover, BCI technologies are
gathering a lot of attention also from an economic perspective,
with new commercially available devices every year (Sawangjai
et al., 2019). Thus, the development of software solutions
enhancing their usability may greatly impact their distribution
in both clinical and daily-living applications. Evidence from
literature (Leeb et al., 2011; Müller-Putz et al., 2011; Carlson
et al., 2013) if combined with our findings suggests that the use
of hybrid human-machine interfaces, may be the key to develop
reliable neurorobotics devices to assist or restore locomotion
on a wider population of patients. In fact, they allow to
integrate multiple BCI systems and multimodal information,
like EEG and EMG signals, as well as information from robotic
sensors (Lee et al., 2017; Beraldo et al., 2018a, 2019). In this
context, the development of software ecosystems capable of
integrating multimodal signals and assistive devices (Beraldo
et al., 2018b; Tonin et al., 2019) may enhance the possibility
for these technological solutions to be used outside a laboratory
environment (Leeb et al., 2013).
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