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Neuroscience research shows that, by relying on internal spatial representations

provided by the hippocampus and entorhinal cortex, mammals are able to build

topological maps of environments and navigate. Taking inspiration frommammals’ spatial

cognition mechanism, entorhinal-hippocampal cognitive systems have been proposed

for robots to build cognitive maps. However, path integration and vision processing

are time-consuming, and the existing model of grid cells is hard to achieve in terms

of adaptive multi-scale extension for different environments, resulting in the lack of

viability for real environments. In this work, an optimized dynamical model of grid cells

is built for path integration in which recurrent weight connections between grid cells are

parameterized in a more optimized way and the non-linearity of sigmoidal neural transfer

function is utilized to enhance grid cell activity packets. Grid firing patterns with specific

spatial scales can thus be accurately achieved for the multi-scale extension of grid cells.

In addition, a hierarchical vision processing mechanism is proposed for speeding up

loop closure detection. Experiment results on the robotic platform demonstrate that

our proposed entorhinal-hippocampal model can successfully build cognitive maps,

reflecting the robot’s spatial experience and environmental topological structures.

Keywords: path integration, place cell, grid cell, spatial cognition, cognitive map building

1. INTRODUCTION

Based on the inner spatial representation mechanism in the brain, animals can do navigation and
complex high-level cognitive tasks. Spatial cells with regular spatial firing patterns in the brain are
considered to be related (Moser et al., 2008), and these mainly include head direction cells (Taube,
2007), grid cells (Fyhn et al., 2004b), and place cells (O’Keefe and Dostrovsky, 1971). Deciphered
by neuroscience studies, cognitive map theory opened up a new paradigm for modeling spatial
cognition, which provides great insight into bio-inspired mapping and navigation (Milford and
Wyeth, 2010; Yuan et al., 2015; Tang et al., 2016). The nature of the cognitive map mechanism that
supports space-related tasks, however, remains vague.

The discovery of place cells (O’Keefe and Dostrovsky, 1971) marks the beginning of a new era
where scientists in cognitive map fields started to explore the spatial perception and navigation
functions of mammals at the neuron level. Place cells are mainly located in the CA1CA3 regions
of the hippocampus. A specific place cell fires when an animal is at a certain position (the place
field of the cell), and different place cells fire at different locations. The entire environment
can be represented by place cells’ activities throughout the hippocampus, and they are therefore
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considered to serve as a basic component of spatial
representation. Grid cells are discovered in the medial entorhinal
cortex (MEC), which is closely related to the hippocampus. They
show sharply tuned place cell-like spatial firing patterns, but each
has multiple firing fields (Fyhn et al., 2004b). These fields formed
hexagonal grids, tiling the entire environment. Furthermore,
it has been demonstrated that multiple spatial scales in grid
cells increase in discrete steps along the dorsoventral axis,
and each successive scale is suggested to increase by a fixed
factor (Barry et al., 2007; Stensola et al., 2012). Defined by
three parameters: spatial scale (distance between firing fields),
orientation (direction relative to an external reference axis), and
phase (displacement relative to an external reference point), grid
cells are indicated to be a key component of path integration in
rodents’ spatial cognition (Hafting et al., 2005; Moser et al., 2014;
Banino et al., 2018). Head direction cells were discovered in
neighboring regions of the hippocampus and are characterized
by responding to an animal’s head direction. One single cell
fires when the animal’s head is at a specific orientation and is
not influenced by location (Taube, 2007). Head direction cells
can provide directional information like a compass during the
animal’s exploration in environments. Cognitive map theory
generally posited that head direction cells provide direction
information, grid cells perform path integration, and place cells
are responsible for place representation.

When rats explore unfamiliar environments, they can keep
track of relative displacement and rightly return to the original
locations depending on inner path integration, including angular
integration in head direction system and path integration in
grid cell system (McNaughton et al., 2006). Head direction
cells can be modeled through integrating angular velocity into
a one-dimensional continuous attractor network (CAN). In
general, computational models describing grid cell firing pattern
formation are divided into two classes: oscillatory interference
models (Burgess, 2008; Zilli and Hasselmo, 2010) and CAN
models (Fuhs and Touretzky, 2006; Burak and Fiete, 2009). Given
the former faces limitations as a candidate mechanism for spatial
periodicity (Burak and Fiete, 2009; Moser and Moser, 2013),
more and more researchers have become interested in CAN.
By integrating linear and angular velocity (Fyhn et al., 2004b;
McNaughton et al., 2006; Burak and Fiete, 2009), path integration
in two dimensions can be modeled by a two-dimensional CAN.
Grid cells in the CAN are arranged in a 2D sheet (layer or
module), and a recurrent connection among cells in the same
layer with a global inhibition makes the random patterns of
population activity spontaneously merge into organized “bumps”
of grid cell population activity (Burak and Fiete, 2009). The
bumps are envisaged tomove as the animal moves from one place
to another. The firing pattern of a single grid cell is obtained by
averaging the accumulated firing rates over the whole exploration
of environments. Hafting et al. first showed that grid cells in
MEC possibly support a two-dimensional continuous attractor-
based representation of the environment (Hafting et al., 2005).
O’Keefe et al. further described more details of modeling grid
cells (O’Keefe and Burgess, 2005). Fuhs et al. first implemented a
path integration model based on attractor dynamics and periodic
spatial firing fields with regular hexagonal grid patterns are

created (Fuhs and Touretzky, 2006). Moser et al. also maintained
a more positive and optimistic attitude to the CAN (Moser
and Moser, 2013; Moser et al., 2014). Despite requiring further
investigation, they suggest that most of the available evidence
supports the attractor theory. This suggestion is also shared by
other recent studies (Burak and Fiete, 2009; Giocomo et al., 2011;
Zilli, 2012; Schmidt-Hieber and Hausser, 2014). In addition,
there are works, from the deep learning aspect, trying to support
neuroscientific theories about the critical role grid cells play in
spatial cognition. They trained recurrent networks to perform
path integration, leading to the emergence of a neural response
resembling firing patterns in grid cells (Banino et al., 2018; Cueva
and Wei, 2018). Place cells are generally considered to be driven
by grid cells’ activities, and feedforward networks can be used to
form place cell activities. Weighted connections between them
can be established by unsupervised learning (Fuhs et al., 2005;
McNaughton et al., 2006; Solstad et al., 2006), such as Hebbian
learning or competitive learning (Rolls et al., 2007; Savelli and
Knierim, 2010;Monaco andAbbott, 2011; de Almeida et al., 2012;
Zeng and Si, 2017). The appropriate combination of grid cells
across layers can achieve a unique identification for the current
environmental location, and these are represented by place cells
(Hartley et al., 2014).

By modeling spatial cells and integrating their activities, the
neural circuitry in the brain related to spatial cognition can be
simulated to do dead reckoning but with error accumulation.
With the assistance of external sensory information, effective
cognitive map building of the real environment can be
achieved and applied to a mobile robot; this is called the
bio-inspired Simultaneous Localization And Mapping (SLAM)
system. Cuperlier et al. built a neurobiologically inspired mobile
robot navigation system using a new cell type which they named
transition cell, which represents both position and direction of
movement or spatiotemporal transitions (Cuperlier et al., 2007).

FIGURE 1 | A cognitive map-building architecture based on a mobile robot

platform in real environments. The velocity input signals derived from the

robot’s wheel encoders drive the grid cell model for path integration (2), which

is projected to place cells for spatial location decoding (3&5). The vision

process module obtains RGB and depth information of the environment from

the robot’s RGB-D sensor (1). This information is organized into a visual

template library based on tree structure for loop closure detection(4) after

which the cognitive map is corrected and neuronal activities are reset (6).
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Significant progress was made by Milford and Wyeth (2008)
in emulating the spatial navigation ability of the brain, which
can build a semi-metric topological map in a real and large
area. This work has been extended to use an RGB-D sensor to
build environmental cognitive maps for robot navigation (Tian
et al., 2013; Shim et al., 2014). Jauffret et al. used a mathematical
model of grid cells for a mobile robot navigation system in
which adding visual input to recalibrate path integration fixes
noisy path integration input, thus sharpening grid cells’ firing
patterns (Jauffret et al., 2015). Yoan et al. proposed a neural
architecture to tackle the localization challenge for autonomous
vehicles based on a neurobotic model of the place cells found in
the hippocampus of mammals (Espada et al., 2018, 2019).

In this paper, an enhanced cognitive map building system
is designed for a mobile robot in real environments in which
we propose an optimized path integration mechanism of
grid cells and novel hierarchical vision processing methods
to achieve a workable map building system. Here, the path
integration is completed through grid cells with different
scales, which can be obtained by multi-scale extension of
a basic single-scale model. We present an optimized grid
cell modeling mechanism that enhances the model’s ease of
use in a multi-scale extension. In addition, visual processing
is also a key part that cannot be ignored when it comes
to time performance improvement. A novel visual template
organization method based on a hierarchical structure was
proposed to speed up scene matching and loop closure detection.
Moreover, weighted connections from grid cells to place cells
are established by simple and off-line unsupervised learning,
which is a common solution for spatial representation and not
environment-specific. Combining real-time path integration of
grid cells, stable place representation of place cells, and the vision-
assisted map correction mechanism, the successful transition
from a computational model to robotic application in real
environments is achieved. Meanwhile, as an extension of this
work, we demonstrate the potential coding advantage of grid
cells in motion planning by achieving grid cell-based multi-scale
motion planning.

2. MATERIALS AND METHODS

2.1. The System Architecture
Figure 1 shows the system architecture, a cognitive map building
model based on a mobile robot platform in real environments.
The whole framework includes six major components:

(1) Capturing vision information, including RGB and depth
data provided by an RGB-D sensor mounted on the front top
of the mobile base.

(2) Multi-scale path integration with self-motion information
as the driving force, including angular and linear velocity
obtained from wheel encoders equipped on the front wheels
of the robot mobile base.

(3) Stable place encoding with learned weighted connections
from the multi-scale path integration part.

(4) A novel hierarchical VTT (Visual Template Tree) for visual
template organization, speeding up visual scene matching
and further facilitating the time performance of the system.

(5) A topological map reflecting the current environment;
it is built and updated during the robot’s
environmental exploration.

(6) Accumulated error correction in path integration; it is
followed by grid cell activity resetting when loop closures
are detected.

2.2. Multi-Scale Grid Coding for Path
Integration
Although the exact mechanism of hexagonal firing patterns in
grid cells remains unknown, signals about velocity and direction
can be integrated by interconnected cells in the CAN. Since the
population of grid cells in one CAN have the same spatial scale,
then multiple populations of grid cells corresponding to multiple
CANs can achieve multi-scale extension and path integration. In
this section, a modified dynamical model for grid coding and
optimized weight distribution are given for achieving a more
easy-to-use path integration mechanism of multi-scale grid cells.

2.2.1. The Modified Grid Coding Dynamics
For CAN-based grid cell coding, a basic model is considered to
complete multi-scale extension, which must be highly extensible
and easy to use. A representative example is the single-layer
(sheet or module) CAN proposed in Burak and Fiete (2009)
(hereinafter, Burak’s model). Yuan et al. used this basic model for
completing an 80-layer model(hereinafter, Yuan’s model) (Yuan
et al., 2015), each layer with different spatial scales. The dynamics
of the basic model is as follows:

τdgi/dt = −gi + s(
∑

j

Wijgj + Ii) (1)

Ii = 1+ αêθi .vt (2)

where s(x) = 0 if x ≤ 0; otherwise, s(x) = x. gj is the activity
of neuron j and τ the time-constant of neuron response. There
are N × N neurons in one neural sheet, and each neuron i has
a preferred direction θi. The feed-forward excitatory input to
neuron i is defined by Ii, where α is the gain factor of the velocity
response of the network, êθi is the unit vector pointing to θi, and
vt is the velocity at time t. All grid cells have random initial firing
rates and the driving velocity is initially set to 0 during some
time for forming stable grid firing patterns. To adapt grid cells
to the needs of multi-scale extension, the above dynamical model
is modified and the sigmoidal function is utilized as the activation
function. The modified dynamics are as follows:

τdgi/dt = −gi + s(
∑

j

Wijgj + Ii) (3)

s(x) = 1/(1+ exp(−kgx)) (4)

Ii = αêθi .vt (5)
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FIGURE 2 | The grid neural sheet. (A), Grid cells are arranged in a 2D neural sheet, each with a preferred direction (West, East, North, and South). The sheet is

subdivided into many sub-units (right) and each sub-unit contains four grid cells with all preferred directions. (B,C) The activity bumps move in the grid neural sheet

from t = 0 to t = 3 s.

where kg represents the steepness of the sigmoidal curve. The
sigmoidal function is a bounded non-linear transfer function that
can limit input from other neurons and external environments
within a certain range.

By analyzing the activity change in grid cells, we can interpret
how input about running velocity drives the path integration
process. The preferred direction of a grid cell is related to the
velocity input it receives. For rats, preferred directions might
show continuous variation within the range of 0 to 2π . Here, for
convenience in grid cell modeling, they are restricted to North,
East, South, andWest, and these are represented by π/2, 0, 3π/2,
and π , respectively. The grid neural sheet can be considered as
including (N ×N)/4 sub-units, each consisting of 2× 2 neurons
(Figure 2A). The preferred directions of every four grid cells in
one unit are denoted as θ . If the velocity input is vt = [vx vy]

T

at time t, the feed-forward excitatory input I into four neurons in
one unit are as shown below:

θ=
[

θ1 θ2
θ3 θ4

]

=
[

π/2 0
π 3π/2

]

⇒ I =
[

I1 I2
I3 I4

]

=
[

αvy αvx
−αvx −αvy

]

Then the activity of neurons will increase or decrease with
the change of velocity input and result in the movement of
activity bumps in the grid neural sheet (Figures 2B,C), which
is consistent with the movement of the rat. By continuing this
process, the path integration in space can be achieved by the
smooth movement of activity bumps of the grid cell population
in the neural sheet.

2.2.2. The General Multi-Scale Extension Mechanism
The neuroscientific discovery about discrete grid scales (Barry
et al., 2007; Stensola et al., 2012) provides us with theoretical
guidance to optimize Yuan’s model. Experimental recordings
show that grid cells are organized into discrete modules with the
scale increasing in discrete steps. There are only four or five levels
of the grid scale, and each level is referred to as a module. The
ratio between spatial scales of each successive pair of modules is
between 1.4 and 1.7. As shown in CAN-based grid cell modeling,
all cells in one sub-CAN have the same spatial scale and direction
and different phases. Different grid cells will fire together at the
same spatial location, and different sets of grid cells will fire
at different locations. Encoding spatial information through the
combinatorial coding of grid cells, despite only being several

discrete scales, can still provide an efficient way of representing
environmental positions. This organization mechanism of the
grid scale may achieve space encoding with a minimum number
of grid cells. Burak’s and Yuan’s models complete the single-scale
and multi-scale grid cell modeling, respectively, based on CAN.
However, neither gave instructive conclusions and guidelines
about multi-scale extension when grid cells are used for path
integration. In Yuan’s model, spatial scales of grid cells increase
in a step-like manner, and then the corresponding grid period
parameter λ increases linearly ranging from 13 to 21. Then 80
grid cell modules for path integration are generated, leading
to dramatic increase of system computational effort. Moreover,
it is observed that firing patterns in some grid modules were
unsatisfactory and unqualified to be a hexagonal grid.

The distance-related recurrent connections (Figure 3A)
between grid cells are the key to form spatially periodic bumps
and also the key to multi-scale extension. In the basic model they
used, Wij is the synaptic weight from neuron j to neuron i and
can be demonstrated:

Wij = a ∗ exp(−γ |x|2)− exp(−β|x|2) (6)

with

x = xi − xj − lêθj (7)

where a is a constant and l is the shift in the outgoing weights.
In Burak’s simulations, a = 1, γ = 1.05β , β = 3/λ2, and
λ is approximately the periodicity of the formed lattice in the
grid sheet.

In the above, the spatial scale of grid cell is determined by
the weight matrix W0 (depending on γ , β , and λ) and the gain
of the network’s flow response to a velocity input (depending
on l and α). Simply tuning λ fails to make grid cells achieve
spatial scales we need. When it comes to multi-scale extension,
more than one parameter should be taken into account to
accommodate different network sizes and grid scale, which brings
inconvenience. The activity level in networks due to both the size
and number of activity packets could be controlled by the level
of lateral inhibition between neurons. In this paper, the recurrent
weight setting is modified and defined as follows:

Wij = am(exp(−
b|x|2
2σ 2

m

)− exp(− |x|
2

2σ 2
m

)) (8)
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FIGURE 3 | Recurrent weight connections in CAN-based grid cell modeling. (A) The periodic and recurrent connections between grid cells. (B) The heat map and

one-dimensional profiles of Wij between grid cells. According to the 3σ rule in probability distribution, Rw can be approximated by six times the standard deviation σ in

Wij . (C) Rw is roughly twice the grid cell’s period T. (D) A stable spatially firing pattern with specific scale is gradually formed. (E) Spatially periodic firing patterns of grid

cells with different scales are generated in our grid cell model in which nm represents the number of periods.

FIGURE 4 | The weight gain setting in weighted connections between grid cells. (A) Taking m = 5 as an example, spatially periodic bumps are gradually formed with

the increase of the weight gain factor w0. (B) The gridness scores corresponding to firing patterns in (A). (C) Taking m = 4 as an example, spatially periodic firing

patterns can be achieved in grid cell models with different network size (N×N). (D) With the increase in network size (N×N), the weight gain factor w0 will be lowered

to achieve high-quality hexagonal firing patterns of grid cells.

am =
w0 ∗
√
nm

max(
√
n)

(9)

where b = 1.01 is the same for all M grid modules and n =
(n1, n2, · · · , nM) represents the number of periods of grid cells’
firing patterns. σm denotes the gaussian parts’ standard derivation

in themth grid module’s weight matrix. As shown in Figure 3D, a
stable spatial firing pattern of grid cell with 4 periods is gradually
formed.

The weight gain factorw0 modulates the recurrent connection

strength between grid cells. Stronger recurrent connections can
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FIGURE 5 | The gridness of grid cells. Based on our proposed modeling mechanism, a multi-scale grid model including five modules is taken as an example and the

network size of each module is N× N = 84× 84. According to the gridness measure methods, the gridness of each module in the model is quantified.

FIGURE 6 | Learning stable spatial representation from grid cells’ path integration. (A) Taking the multi-scale grid cells’ path integration as upstream of place cells

(colored arrows) and h(x) as the activation function (gray arrow), place cells can encode the space and bring feedback to weight training (light gray arrows). (B) First

row: grid cells’ firing rate maps with multiple scales. Second row: the combinatorial firing rate of grid cells. Third row: place cells’ firing rate map.

helpful for forming periodically organized bumps in neural
sheets, as shown in Figures 4A,B. Taking the grid cell model with
N = 48 as an example, spatially periodic bumps gradually emerge
in the neural sheet with an increase ofw0. Furthermore, the larger
value ofN, the smaller value ofw0 for forming grid firing patterns
of high quality. Figure 4D show us that the relationship ofw0 and
N. When the network size of each grid module increases from
48×48 to 84×84, the suitable value ofw0 will gradually decrease.

σm determines the profile of Wij and the scale of the grid
firing patterns in a neural sheet. According to the 3σ rule in
probability distribution

Tm ≈ Rw/2 ≈ 3 ∗ σ , Tm ≈ N/nm

where Rw is the radius of the grid module’s weight profile and
Tm is the grid period of the mth grid module, as shown in
Figures 3B,C. So σm ≈ N

3∗nm . Thus σm can be approximated as:

σm ≈
N

c ∗ nm
(10)

In practice, the value of c needs some fine-tuning in a range from
3 to 4 for high-quality hexagonal firing patterns of grid cells.

Grid cells are characterized by the periodic spatial distribution
of hexagonal firing patterns. By calculating the “Gridness” of grid
cells’ spatial firing patterns, the six-fold rotational symmetry in
the firing patterns is quantified. From the firing rate map, we can
derive the spatial autocorrelogram and the annulus containing
six peaks nearest the origin. For the annulus and its rotated
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version, grid cells with high-quality firing patterns should have
a greater correlation for 60◦ and 120◦ rotation than for 30◦, 90◦,
and 150◦ rotation. Then, the “Gridness” measure is calculated as
the minimal 60◦ and 120◦ correlation minus the maximum of
30◦, 90◦, and 150◦ correlation. Taking N = 84 as an example, the
gridness of grid cells in our model is illustrated in Figure 5.

Different from the single-scale grid cell model in Burak’s work,
fine-tuning σm and regularly adjusting w0 will achieve grid cell
models with different spatial scales and network size for path
integration. Specifically, grid cells with different scales can be
modeled by fine-tuning σm in the case of the same network
size (Figure 3E), and grid cells with a similar spatial scale can
be modeled by regularly adjusting w0 in the case of different
network size (Figure 4C). Despite many similar works on grid
cell modeling based on CAN, in this paper, the grid cell modeling
mechanism we proposed for path integration is easy to use and
extend, making parameter setting about themulti-scale extension
of grid cell model more convenient, effective, and repeatable.

2.3. Learning to Topologically Represent
Space
Place cells were considered as the first convincing demonstration
(O’Keefe and Dostrovsky, 1971) of a cognitive map, and early
computational models about place cells were constructed for path
integration (Samsonovich and McNaughton, 1997; Conklin and
Eliasmith, 2005). The discovery of grid cells in MEC indicates
that path integration is most likely performed by grid cells (Fyhn
et al., 2004a; Hafting et al., 2005; McNaughton et al., 2006). One
grid cell will fire at different locations, and different grid cells may
fire at the same location. Then the combinatorial coding of grid
cells with multiple spatial scales can form a unique identity for
each spatial position. Place cells are suggested to be one synapse
downstream of grid cells (Fyhn et al., 2004b; Hafting et al., 2005),
which provide animals with an efficient way of encoding spatial
information. Combining grid cells with place cells achieves path
integration in space.

Generally speaking, connections between grid cells and
place cells are built through a feedforward network with full
connections between layers, which is a bit different in this paper.
According to the path integration mechanism in the CAN-based
grid cell model, the path integration in space can be derived from
the smoothmovement of the grid cell population’s activity bumps
in grid neural sheets. When it comes to connecting to place cells
for spatial representation, grid cells with the same scale in a
grid module can be considered as a whole that shares the same
weighted connections to place cells, as shown in Equation (11)
and Figure 6. That is, connection weights between all grid cells
in a grid neural sheet and place cells are the same, and weight
values needing to be learned are equal to the number of grid
cell modules.

pi = h(

M
∑

j=1
weh
j g j) (11)

h(x) = 1/(1+ ekp(x−max(x))) (12)

FIGURE 7 | Path integration based on grid cells and place cells. (A) The

weights learned from grid cell modules with multiple scales to place cell

module. (B) The place field of a place cell. (C) A trajectory in a 10*10m2 open

area. (D) Path integration result illustrated by the activation of place cells

encoding corresponding spatial positions.

where the number of grid modules is denoted as m as above
and weh

j is the synaptic weight from the jth grid module to the

place cell module. kp affects the number of peaks of place cell
population activities. The place cell activation h(x) can transform
the weighted sum of grid cell activities into their exponent’s
product, then the activity of place cells obtaining higher-level
overlapping grid cell activities will be magnified to a larger extent,
which helps select a single activated place cell for place encoding
at a time.

For generating spatially specific patterns from the periodic
activity of grid cells without phase alignment, grid activity—as
the basis of place cell activity—should be appropriately weighted
(Savelli and Knierim, 2010; Zeng and Si, 2017). Place cells learn
to take an appropriately weighted sum of grid cell population
activity as input. As the environment has been extensively
explored, the place cell activity can be refined by learning (as
shown in Figure 6) and a map that reflects the environmental
topology can be built in which place cells are constructed as
nodes in the map. To compute place cell population activity,
competitive Hebbian learning is generally used, which can be
extended to the temporal difference (TD) version in a more
biologic way. For the excellent nature embedded in our proposed
grid cell and place cell models, variant unsupervised learning
rules can be used to achieve stable place representation of place
cells. Here we chose the following:

dweh
i /dt = lr ∗ pi ∗ (gi − pi ∗ weh

i )⊤ (13)

where lr is the learning rate. The learning rule contributes to
the gradually reliable place representation of place cells with
the robot’s further exploration of the environment, as shown in
Figure 6. In addition, we constrain weh

i ≥ 0 and
∑m

j=1(w
eh
j )2 =
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FIGURE 8 | Visual template matching. (A) The typical visual template matching process. (B) An simple example for illustrating VTT mechanism.

FIGURE 9 | Robot platform.

1 to prevent weights becoming negative or some neurons
always winning competition (Rolls et al., 2007). The sum of all
weights is kept constant, and small weights will be reduced by
weight competition.

Before map building for the environment, the robot will
randomly explore the environment for data collection and

learning between grid cells and place cells. As illustrated in
Figure 7A, synaptic weights between place cell modules and grid
cell modules with four spatial scales are taken as an example.
We can see that the learning process converged after 4, 500 steps,
contributing to the ideal firing pattern of place cell (Figure 7B)
and stable place encoding. Figures 7C,D, respectively illustrate
a trajectory in a 10∗10m2 open area and the encoding results
of place cells, in which stable and consistent path integration
is achieved. Moreover, the ability to learn to topologically
represent the environment embedded in place cells can work
well in different environments, which will be verified in the
following experiments.

2.4. Hierarchical-Structure-Based Visual
Template Matching for Real-Time Loop
Closure Detection
Evidence has revealed that when a rat returns to a familiar
environment, the inner path integrator would be reset to adjust
to the perceived environment (Fuhs and Touretzky, 2006; Moser
et al., 2008). However, it remains unclear how the brain perceives
and transforms external sensory cues into partial signals of the
internal cognitive map. In map building and navigation based
on a mobile robot, external sensory inputs, especially visual cues,
are often used for place recognition and loop closure detection.
During the map-building process, fast visual scene matching can
facilitate the whole system’s real-time performance. Inspired by
the hierarchical characteristic of a tree structure, we proposed
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FIGURE 10 | Place representation. (A) Path integration result, illustrated by the activation of place cells encoding corresponding spatial positions. (B) The ground truth

trajectories. (C) The comparison between ground truth and the spatial encoding result. pos_x and pos_y are, respectively, the x and y coordinates’ sequences of (B).

pc_x and pc_y are, respectively, the x and y coordinates’ sequences of (A).

FIGURE 11 | The dead reckoning ability analysis. (A,B) Different trajectories with drift and corresponding dead reckoning results based on spatial cells.

a novel visual template organization method that speeds up the
visual scene matching and loop closure detection process.

Each visual scene is represented by a pair of images, including
RGB and depth information. Depth information helps to relieve
ambiguity caused by RGB images and is less sensitive to lighting
conditions (Lai et al., 2011). By calculating the difference between
two visual scenes, we can determine whether they match or not
(Tian et al., 2013), as shown in the following formula:

d =Wr ∗ dr +Wd ∗ dd (14)

where dr is the difference of RGB information, dd is the
difference of depth information, and Wr + Wd = 1. If d is
larger than the scene-matching threshold Mt , the two scenes are
recognized as different scenes. Otherwise, they are considered
as the same scene. It should be noted that to compute dr
and dd, visual features can be obtained in many ways, such as

Scale-Invariant Feature Transform (SIFT), Convolutional Neural
Network (CNN), and so on.

In our system, visual scenes are classified as different visual
templates and stored in a visual template library for loop closure
detection. When a visual template matching the current scene is
found, a loop closure can be detected for path integration error
correction. Otherwise, a new visual template for the current scene
will be created and stored in the visual template library.

The typical process of visual template matching is described
in Figure 8A. Firstly, the RGB and depth image of the current
scene captured from RGB-D sensor are preprocessed as Icur ,
representing image features. Secondly, the differences between
Icur and all templates in visual template library are calculated,
respectively. Then the minimum difference mdif and the
corresponding visual template vmind

are selected out. If mdif is
larger than Mt , then a new visual template vn+1 representing
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the current scene will be created and inserted into the visual
template library. Otherwise, the current scene will be considered
being the same scene as vmind

, indicating that a loop closure is
detected. It can be seen that every time a visual scene comes,
the differences between it and all templates in the library need
to be obtained, putting stress on the real-time performance.
In previous works (Tian et al., 2013; Yuan et al., 2015), visual
templates were simply linearly organized and retrieved one by
one until a matching template is found. Then the matching time
grows linearly with the number of templates and the real-time
performance is severely impacted.

According to the above matching rule, the visual scene
matching can be done at different levels of granularity by
changing the matching threshold. A larger threshold Mt1

indicates more relaxed matching criteria (coarse granularity)
and a smaller threshold Mt2 indicates more restricted matching
criteria (fine granularity). WithMt1, two visual scenes with larger
differences may be considered to match each other. While with
Mt2, the two scenes may be recognized to not match. In this
paper, the concept of multi-granularity matching is transformed
into a novel hierarchical top-down visual template tree (VTT).
It can relieve the visual template matching stress since the visual
scene matching time performance is mainly related to the tree
depth, not the number of templates in the library.

Figure 8B illustrates a simplified VTT with 5 layers (l1 − l5).
Values in the right-hand table are the corresponding matching
thresholds of layers, wheremt0 is the optimal matching threshold
used to determine whether two visual scenes match each other
or not and △d is the threshold difference between layers. Three
kinds of nodes are included. The root node is just as the root of
the tree without any data. Non-leaf nodes (l1− l4) are responsible
for classifying the current visual scene into the correct child node
of the next layer. Leaf nodes (l5) represent visual templates in the
visual template library. Additionally, vi is denoted as the visual
template belonging to the corresponding leaf node. Every time a
visual scene Icur arrives, and the matching with nodes in l1 will
firstly be done according toMt = mt0+4△d. If so, then consider
the following:

(1) If the minimum matching difference (mind) is smaller than
or equal to mt0 + 4△d, then Icur will be classified into the
mind node. Additionally, the matching with children of the
node mind in l2 continues with matching threshold Mt =
mt0 + 3△d.

(2) If theminimummatching difference with nodes in l1 is larger
thanmt0+4△d, then a new tree branch rooted from the root
is created for Icur (representing a new visual template).

This process is repeated until a new leaf node (a new template) is
created for Icur or it is classified into a leaf node in l5.

VTT has a comparative advantage in real-time visual scene
matching since its time performance is mainly related to the tree
depth and does not linearly increase with the number of visual
templates. It is not noticeable when the visual template library has
a small capacity, while with further environmental exploration
and visual template accumulation, VTT can contribute to
considerable retrieval time reduction compared with a linearly
organized visual template library.

2.5. Cognitive Map Building
By combining path integration of multi-scale grid cells, place
encoding, and visual scene matching, the cognitive map building
can be done for obtaining the topological structure of the
environment. Through the path integration of grid cells and
place encoding of place cells, the robot’s spatial location can
be represented. Nodes in the cognitive map are constructed by
associating these spatial locations with corresponding visual cues
and denoted as cognitive experiences. Algorithm 1 describes
the cognitive map building process, which shows how a robot
can build a topological map for the environment by integrating
self-motion and sensory information. The incoming visual
inputs are compared with historical visual scenes related to
corresponding cognitive experiences. The latest input will be
compared with previous cognitive experiences based on spatial
distance and vision. If it matches one of the previous experiences,
it will be considered as a familiar scene that had been seen
previously by the robot. The status of the grid cell and place
cell population activities are then reset to the previous matched
cognitive experiences. The current visual input and the matched
cognitive experience are merged into one experience. Otherwise,
a new cognitive experience is created. Once a loop closure is
detected, the map will be corrected to adjust to the recalled
cognitive experiences.

Algorithm 1: Cognitive Map Building

Input Raw odometry data from the robot wheel encoders and
visual images from the RGB-D sensor
Output Cognitive map
Begin

Calculate grid cell population activities using Equations (1–4)
Calculate place cell population activities using Equations (7–8)

Obtain the current activated place cell
Perform visual template matching
if The incoming visual scene matches previous cognitive
experiences then
Perform resetting and map correction

else

Create a new visual template for the current scene
Add a new experience node to the cognitive map for the
current scene

end if

End

2.6. Grid Cells and Motion Planning
Because of their unique spatial firing patterns, a relatively small
number of grid cells can code an animals’ location across a
large range of territory. In this section, the coding advantage
of grid cells in motion planning is demonstrated by achieving
grid-cell-based multi-scale motion planning. With the further
application of robots in daily life, motion planning in robotics has
always been a major problem. The objective of motion planning
is to plan available paths from the start position to the target
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region, given the start and target configuration of the robot.Many
motion planning algorithms have been developed for meeting the
increasing robotic application requirement. Rapidly-exploring
Random Tree (RRT) is a popular algorithm, a sampling-based
stochastic searching method, and RRT∗ was introduced as an
optimal variant of RRT (Karaman and Frazzoli, 2011). In RRT∗,
an initial path is first identified and then improved upon by
re-wiring the samples, replacing old parents with new ones
whose cost is less, according to the Euclidean distance from the
initial state.

However, it has very slow convergence rates to the optimal
solution in cluttered environments and high dimensional
spaces, and many RRT∗ variants have been developed. In this
section, we integrate grid cell activity into RRT∗ to achieve
multi-scale motion planning, called GC-RRT∗ methods. The
integration algorithm GC-RRT∗ is illustrated in the pseudocode
of Algorithm 2.

Algorithm 2: GC-RRT*

GCset ← Select_Activecell(qinit , qgoal, GCpatterns)
for gj ∈ GCset do

V ← {qinit}, E← ∅
gscale ← the grid scale of GCpatterns[gj], GPset ←
Get_Activepos(GCpatterns[gj])
for i = 1, · · · , Iter do
qrand ← Sampling(GPset)
qnearest ← Nearest(G=(V , E), qrand)
qnew← Steer(qnearest , qrand)
for ObstacleFree(qnearest , qnew) do
Qnear ← Near(G=(V , E), qnew, γ ∗gscale)
V ← V ∪ {qnew}
qmin ← qnearest , cmin ← Cost(qnearest) + c(qnearest , qnew)
for qnear ∈ Qnear do

if CollisionFree(qnear , qnew) ∧ Cost(qnear) + c(qnear ,
qnew) < cmin then

qmin ← qnear , cmin ← Cost(qnear) + c(qnear , qnew)
end if

end for

E← E ∪ {(qmin, qnew)}
for qnear ∈ Qnear do

if CollisionFree(qnew, qnear) ∧ Cost(qnew) + c(qnew,
qnear) < Cost(qnear) then
qparent ← Parent(qnear)
E← (E\{(qparent , qnear)}) ∪ {(qnew, qnear)}

end if

end for

end for

end for

return Gj=(V , E)
end for

P1, · · · Pj, · · · = Rewiring(G1, · · · ,Gj, · · · )
Poptimal = Select_minCost(P1, · · · Pj, · · · )

Compared with the original RRT∗, under the same spatial
resolution, GC-RRT∗ can not only provide a multi-scale path

TABLE 1 | Statistical results for dead reckoning.

Mt M1 M2 Mp Mr

1 241 172 69 116 67.44%

2 232 159 73 113 71.06%

planning mechanism but can also achieve a greater chance
of success for the agent’s path planning, as shown in the
following experiment.

3. RESULTS

3.1. Robot Platform and Datasets
As illustrated in Figure 9, our system is implemented on amobile
robot platform, which consists of a Pioneer 3-DX mobile base,
an ASUS Xtion PRO Live (RGB-D sensor), and a MiniPC. The
mobile base consists of two front wheels with encoders recording
the self-motion information and a rear wheel for stabilization.
The Xtion PRO Live is mounted on the front-top of the Pioneer
3-DX mobile base to capture RGB-D images of the current scene
in real time.

The datasets used in experiments are listed below:

(1) NCRC Lab datasets, two indoor datasets, respectively, with
939 and 1153 pairs of images (RGB and depth). They are
gathered from a laboratory with images recorded by the
RGB-D sensor of the above robot platform which is remotely
controlled to do semi-automatic environmental exploration.

(2) Singapore Office dataset (Tian et al., 2013), a large office
(35 × 35m2) dataset with 2110 pairs of images (RGB and
depth) captured by a RGB-D sensor.

(3) QUT iRat 2011 Australia dataset (Milford andWyeth, 2008),
an indoor dataset with 16658 RGB images obtained when
an iRat explored a road movie set based on Australian
geography.

(4) Oxford New College dataset (Milford and Wyeth, 2008), a
university campus dataset with 7855 panoramic images (left
and right) captured from Oxford University.

3.2. Place Representation
In our system, the path integration result of velocity-driven
grid cells is converged into place cells for place representation.
Two datasets are chosen as ground truth for verifying the place
representation performance. The first one is from Hafting et al.
(2005) in a 1 × 1m2 open area and the second one is randomly
simulated in a 10 × 10m2 open area, as shown in Figure 10B.
Taking linear and angular velocity information of them as input,
our system can successfully obtain the corresponding trajectories,
as shown in Figure 10A.

To further verify the stable and accurate path integration and
place representation performance of our system, we compared
the x and y coordinates of Figures 10A,B, respectively, as
illustrated in Figure 10C. The spatial encoding results have great
alignment with the ground truth in both small and large areas.
To summarize, the place representation mechanism we proposed
based on offline unsupervised learning rule can not only form
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FIGURE 12 | Time performance analysis of VTT. (A) Time performance comparison between VTT and linear structures for Different datasets: Singapore Office, QUT

iRat 2011 Australia and Oxford New College. (B) Time performance comparison between visual template matching based on VTT with different number of layers

(2, 5, 8).

FIGURE 13 | Scene recognition results based on VTT. (A) The scene recognition result of the Singapore Office dataset. (B,C) The scene recognition results of NCRC

Lab datasets.

effective place encoding but also is a general solution for different
environments, which are indispensable characteristics for dead
reckoning and successful cognitive map building.

3.3. Dead Reckoning
Dead reckoning is a spatial navigation ability based on the inner
path integrator of rodents without vision assistance. Similarly, to
simulate the dead reckoning ability of our system, the mobile
robot platform is required to only depend on odometry from
wheel encoders as the single input into the path integration part
and the whole process only depends on the spatial cells’ location
memorization ability and without external vision’s aids.

Two noisy trajectories are simulated and used for evaluating
the dead reckoning ability without vision assistance. Each
trajectory includes two laps with drift. As displayed in
Figure 11, our system can correct trajectory drift and
build a cognitive map. It is indicated that dead reckoning
ability can be acquired through the spatial memorization
ability of spatial cells. When the robot visits the same
place again, successful localization can be achieved through
activating the corresponding place cell. The system can take
advantage of the space memorization ability of place cells

to correct part of position drift and implement relatively
effective localization.

The dead reckoning ability evaluation is quantified and
illustrated in Table 1. M1 and M2 are denoted, respectively, as
the number of cognitive map experiences created for the first and
second laps of trajectory and Mt = M1 + M2. Mp and Mr are
defined as below:

(1) Mp : the number of positions localizing to history
experiences during the second lap of trajectory.

(2) Mr = (Mp / M1) ×100%, reflecting the place cells’ space
memorization ability.

Table 1 shows the statistical results during the dead reckoning
based on the above two simulated trajectories. Taking the
first simulated trajectory as an example, 67.44% of place cells
representing history experiences are recalled for localization
during the second lap. Therefore, with drift in a certain range,
our system can achieve quite good dead reckoning performance.
However, for large fluctuation of trajectory drifts, it is hard to
keep acceptable performance. External assistance is needed for
loop closure detection and localization error correction in a
cognitive map, such as visual cues.
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FIGURE 14 | Scene recognition. (A) Images recognized as being in the same place. (B) Loop closure detection with visual assistance on the Singapore Office

dataset. (C,D) Loop closure detection with visual assistance in our lab environment.

TABLE 2 | Parameter setting.

Parameter Setting

Shift in outgoing weights l 2

Layers of neural sheet 4

Size of neural sheet N*N 40*40

Time-constant of neuron response τ 5 ms

Learning rate lr 0.0001

3.4. Visual Scene Matching
1) Time Performance Analysis

Three datasets are used for evaluating the real-time matching
performance of our proposed VTT method. Keeping the same
parameter settings and image similarity computation methods,
we compared the time performance with linearly organized
structure (Milford and Wyeth, 2008; Tian et al., 2013).

It can be seen from Figure 12A that, with the rapid
accumulation of visual templates, VTT is much better than
the linear structure. For the latter, much more time is spent
on retrieving visual templates one by one to find matching
ones. While because of VTT’s superiority in visual template
organization, the time spent on visual template matching keep
stable in a certain range. It is important to emphasize that

our proposed VTT has stable time performance even with a
large visual template library so that it would have tremendous
application potential in large environments.

The number of VTT layers will affect the time performance in
the visual scene matching. Taking the Singarpore Office dataset as
an example, we create VTT with different sizes of layer (8, 5, and
2) for visual scene matching. The matching time comparison is
shown in Figure 12B and the total matching time is calculated,
respectively 42.62, 19.29, and 113.96 s. It can be seen that 5 layers
(excluding the root layer) can obtain the best time performance.

2) Scene Recognition Performance Analysis

In this section, the scene recognition performance based
on VTT is analyzed. Experiments are firstly done on the
Singapore Office dataset and Figure 13A demonstrate the scene
recognition results based on VTT. The x-axis and y-axis
represent image frames and corresponding visual templates,
respectively. More regular point distribution and fewer noisy
points mean better visual template matching performance, e.g.,
the point distribution in red circle regions. It means the current
scene is stably matched with existing templates in the visual
template library.

Figure 14A shows a group of images recognized as being in
the same place, i.e., all of them match a specific template in
VTT. It can be seen from Figure 14B that the valid loop closure
detection can be executed based on right scene recognition.
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FIGURE 15 | Cognitive map building. (A) Loop closure detection and path integration resetting. (B,C) Comparison between raw odometry and cognitive map.

FIGURE 16 | Cognitive map building. (A,B) The cognitive map building results based on the NCRC Lab dataset. (C) The cognitive map building result based on the

Singapore Office dataset.

The accumulated odometry error from wheel encoders leads to
different space coordinates in the same place, as shown on the
left-hand side of Figure 14B. With the assistance of loop closure
detection based on scene recognition, the robot can correct
errors, as shown on the right-hand side of Figure 14B. We also
test the scene recognition performance on two other datasets
from NCRC lab. The scene recognition results are illustrated
in Figures 13B,C. Figures 14C,D demonstrate that visual scenes
that are physically near to each other and should belong to
the same place can be successfully considered as being in the
same place.

However, less noise does not always mean that it can assist the
system in achieving the right loop closure detection and better
map correction. Therefore, we should further verify the complete
performance by introducing it into the system for building a
cognitive map.

3.5. Vision-Assisted Cognitive Map
Correction
In this experiment, the dead reckoning based on spatial cells and
the visual template matching based on VTT are combined to
form the system architecture as shown in Figure 1. Table 2 shows
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FIGURE 17 | Motion planning experiments. (A) The 20 × 20 m experiment environment with spatial resolution of 0.1 m. (B,C) The planning results of the original

RRT*. (D–F) The planning results of GC-RRT*. (G) The statistic results of the number of iterations for path planning in the original RRT* and GC-RRT*.

the parameter setting and the map building performance of the
whole model is also analyzed.

Several states of place cells and the corresponding cognitive
map are captured during the map-building process based on
the Singapore Office data. In Figure 15A, a specific position
(the red circle) and the corresponding activated place cell are
illustrated in the first column. The second column describes the
moment when loop closure is detected with the VTT assistance
but neuronal activities are not reset. The system does map
correction and neuronal activities are reset in the third column
and the correspondence between position and activated place cell
is achieved, which is the same as the first column.

Comparisons between raw odometry and cognitive maps have
been done, as shown in Figures 15B,C. The former shows the
raw trajectory obtained from the robot wheel encoders at four
specific moments. It cannot properly represent the environment
map because of accumulated errors. The latter shows the
corresponding cognitive map built by our system. With dead
reckoning of spatial cells and VTT-based visual scene matching,
loop closure detection can be successfully performed and the
accumulated error can be corrected. Finally, a cognitive map is
generated that encodes both topological and metric information
of the environment. It is observed that before the first loop
closure was detected, the cognitive map was the same as the raw
odometry trajectory. When the loop closure was detected (i.e.,
the robot detected a scene which it had experienced), cell activity
resetting is performed, and the map is corrected.

As observed from the above experimental results, our system
can be successfully driven to produce a cognitive map reflecting
the robot’s spatial experience and the environmental topological
structure (Figure 16C). We also run our system in two other
environments and further test its performance of cognitive map
building, as shown in Figures 16A,B. The above experimental
results, to a large degree, prove that the combination of dead
reckoning based on spatial cells and visual cues makes it
possible to complete reasonable and effective environmental
map building.

3.6. GC-RRT∗ for Path Planning
The grid-cell-based multi-scale path planning is shown by the
agent’s path planning from the start position to the goal position
in a 20 × 20 m square environment with several obstacles, as
shown in Figure 17A. Path planning using the original RRT∗

and GC-RRT∗, respectively, are carried out with the same spatial
resolution of 0.1 m.

Figures 17B,C show two path-planning results of the original
RRT∗. Figures 17D–F show the multi-scale path planning results
of GC-RRT∗. It can be seen from the experimental results of 7
trails in Figure 17G that the distributed grid-like firing patterns
of grid cells can not only provide an internal multi-scale path
planning mechanism but can also achieve a greater chance of
success for the agent’s path planning.

4. DISCUSSION

Encoding spatial information through a path integration
mechanism in grid cells may provide an efficient way for a
robot to learn the topological structure of the environment.
This paper presents a cognitive map building system and shows
how the robot can build a topological map of the environment
by integrating neuronal activities and vision-assisted map
correction. To be workable in real environments, optimized
mechanisms for path integration and novel hierarchical vision
processing are proposed, helping to achieve the successful
transition from a computational model to workable mobile
robot application. Burak’s model is undoubtedly a representative
single-scale grid cell model for path integration. When used
for multi-scale extension of grid cells, however, it involves
more parameters, and tuning the corresponding parameter
representing grid periods fails to obtain grid firing patterns with
specific scales we want. In order to enhance the model’s usability,
we present an optimized grid- cell-modeling mechanism for path
integration in order tomake themulti-scale extension easy to use.
To meet lightweight and real-time requirements, most cognitive
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map models tend to follow simple vision processing, in which
visual template matching is done for loop closure detection. And
in these models, visual templates are generally organized into a
linear sequence and the matching (between images representing
the current visual scene and visual templates) time linearly
increases as visual templates accumulate, making the matching
process quite time-consuming. In our work, a novel visual
template organization method based on a hierarchical structure
is proposed to speed up the loop closure detection process.
The result is that the matching time fluctuates in a certain
range, but does not linearly increase. Besides, neuroscience
researches demonstrate that place cells receive information from
different sensory sources and visual sensory inputs can also
supply important contextual information for the formation and
recollection of place field (Jeffery, 2007; Chen et al., 2013; Geva-
Sagiv et al., 2015). To achieve amore biologically plausible model,
we will include the influence of visual sensory input on place cell
tuning into our system in the next work.

This work triggers our rethinking about the relationship
between neuroscience and computing science. Computing
science provides models for simulating neuroscientific
phenomenons (e.g., firing patterns of spatial cells). In turn,
further neuroscientific findings provide computing science with
guidance on the function and time performance optimization
of computational models. In future work, the interaction

between neuroscience and computing science will be further and
thoroughly explored and fully used to push spatial cognition in a
more real-time and intelligent direction.
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