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Enhancing patients’ engagement is of great benefit for neural rehabilitation. However,

physiological and neurological differences among individuals can cause divergent

responses to the same task, and the responses can further change considerably

during training; both of these factors make engagement enhancement a challenge. This

challenge can be overcome by training task optimization based on subjects’ responses.

To this end, an engagement enhancement method based on human-in-the-loop

optimization is proposed in this paper. Firstly, an interactive speed-tracking riding game is

designed as the training task in which four reference speed curves (RSCs) are designed

to construct the reference trajectory in each generation. Each RSC is modeled using a

piecewise function, which is determined by the starting velocity, transient time, and end

velocity. Based on the parameterized model, the difficulty of the training task, which is a

key factor affecting the engagement, can be optimized. Then, the objective function is

designed with consideration to the tracking accuracy and the surface electromyogram

(sEMG)-based muscle activation, and the physical and physiological responses of the

subjects can consequently be evaluated simultaneously. Moreover, a covariance matrix

adaption evolution strategy, which is relatively tolerant of both measurement noises and

human adaptation, is used to generate the optimal parameters of the RSCs periodically.

By optimization of the RSCs persistently, the objective function can be maximized, and

the subjects’ engagement can be enhanced. Finally, the performance of the proposed

method is demonstrated by the validation and comparison experiments. The results

show that both subjects’ sEMG-based motor engagement and electroencephalography

based neural engagement can be improved significantly and maintained at a high level.

Keywords: human-in-the-loop optimization, EEG based neural engagement, sEMG based muscle activation,

tracking accuracy, neural rehabilitation

1. INTRODUCTION

One of the most common sequela following stroke or cerebral injury is motor dysfunction,
which seriously affects a person’s quality of life. To regain their motor abilities, patients need to
perform significant repetitive physical therapy, which is prone to boredom and often leads to low
engagement. Previous studies have demonstrated that high levels of motivation and engagement
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are essential for obtaining relatively satisfactory rehabilitation
outcomes (Tupper and Henley, 1987; Grant et al., 2004; Holden,
2005; Colombo et al., 2007). Developing a rehabilitation training
method that can be used to reduce the boredom of the training
tasks and promote engagement of the patients is therefore
essential for post-stroke rehabilitation.

Engagement can be defined as a complex construct, which is
driven by motivation and executed through active participation
(Li et al., 2016). It was reported that motivating and empowering
patients by providing them with the perception of control can
improve patients’ engagement, thus expediting the achievement
of the patient’s rehabilitation goals (Lenze et al., 2004; Dunn
and Dougherty, 2005). Positive feedback can promote patient
morale and engagement (Paolucci et al., 2012). Virtual reality
(VR), which can be used to provide the task-specific training and
intuitive multi-sensory feedbacks, has been therefore been widely
applied in post-stroke rehabilitation.

The adaptive adjustment of the training task is often
used for improving patient engagement. The challenge level
of training tasks, which is one of the main sub-factors
that contribute to engagement, can be adjusted to match a
patients’ motor abilities by use of training task adaptation
(Csikszentmihalyi and Csikzentmihaly, 1990; Yannakakis and
Hallam, 2009; Xu et al., 2017, 2018; Agarwal and Deshpande,
2019). In 2003, Krebs et al. proposed a performance-based
progressive robotic therapy method (Krebs et al., 2003).
In the Krebs’s method, patients’ active forces and motion-
accuracy-based performance were used to customize the stiffness
parameters of the robot controller and thus to maximize the
recovery benefits (Krebs et al., 2003). Similarly, in 2014, an
intelligent game engine was specifically designed for post-
stroke rehabilitation, where the game parameters can be
adjusted in real time according to patients’ performance
based on a Bayesian framework (Pirovano et al., 2014).
Besides, interaction forces, muscle activity, or other physical
or physiological parameters also have been used for training
challenge adaption (Krebs et al., 2003; Novak et al., 2011; Luo
et al., 2019).

However, due to the complexity of the training tasks
and human-machine systems, the adaptive task adjustment-
based engagement enhancement methods can hardly find an
optimal design of the training tasks. This can be obtained
via the optimization method, though this has rarely been
studied. Besides, considering that physiological and neurological
differences among individuals can cause divergent responses to
the same task, and the responses can further change considerably
during the training (Gordon and Ferris, 2007; Zelik et al., 2011;
Jackson and Collins, 2015; Selinger et al., 2015; Quesada et al.,
2016), subjects’ physiological variations or responses also need
to be considered during the training task optimization. Subjects’
responses based training task optimization belongs to human-in-
the-loop optimization (HILO).

To the best of our knowledge, HILO method-based training
task optimization has rarely been studied. All the key steps
of the HILO, including the training task modeling and design
of the objective function and the optimization algorithm, can
affect the optimization results. On one hand, the parameters

used for modeling the training task should be sensitive to the
engagement variation, based on which subjects’ engagement can
be improved through the parameter optimization. On the other
hand, adding human responses to the engagement enhancement
optimization loop also makes the optimization difficult to
implement due to the time-varying dynamics of the subjects,
such as the self-adaptation ability, the strong history dependence,
and other complex neurocognitive factors (Gordon and Ferris,
2007; Selinger et al., 2015). Both the objective function and the
optimization algorithm should therefore be insensitive to human
dynamic variation and noises.

In this paper, an HILO-based engagement enhancement
method is proposed. The original contributions of this study
can be summarized as follows: 1© an optimization-based
engagement enhancement method is proposed, 2© and the
proposed HILO method is tolerant of both measurement noises
and human adaptation.

Firstly, an interactive speed-tracking riding game is designed
as the training task. In the task, subjects are asked to track the
reference trajectory, which is constructed by four reference speed
curves (RSCs), as accurately as possible. Each RSC is modeled
using a piecewise function and determined by the starting
velocity, transient time, and end velocity. By parameterizing the
RSC, it is possible to optimize the difficulty of the training task,
which is a key factor affecting a user’s engagement level.

Then, the objective function is designed by consideration of
the tracking accuracy (TA) and the muscle activation (MA),
based on which subjects’ physical and physiological responses
can be evaluated simultaneously. By maximizing the subject’s
TA and MA concurrently, the difficulty of the training task
can be optimized to match subject’s current motor ability and
physiological state.

Moreover, the covariancematrix adaptation evolution strategy
(CMA-ES) is used to optimize the parameters of the RSCs
(Hansen, 2006; Akimoto et al., 2012; Zhang et al., 2017; Maki
et al., 2020). In the CMA-ES, neither objective function values
nor their derivatives are used directly, and each generation is
evaluated independently. It is therefore relatively tolerant of both
measurement noises and human adaptation. By optimization of
the RSCs persistently, the objective function can be maximized
and subject engagement enhanced.

Finally, the performance of the proposed HILO method is
demonstrated through a comparison experiment. The results
show that both TA and MA can be improved significantly.
Moreover, the subjects’ neural engagement can also be improved
significantly and maintained at a high level.

2. TASK MODELING AND OPTIMIZATION

An HILO method is designed to enhance the subjects’
engagement in this study. Details of the HILO method are given
in the following text.

2.1. Modeling the Training Task
Based on the previous study (Wang et al., 2019), an interactive
speed-tracking riding game is designed as the training task, which
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FIGURE 1 | The virtual scene of the designed speed-tracking riding game. The four red lines represent the four RSCs, which are used to construct the reference

trajectory in each generation, and the yellow line represents subject’ actual speed tracking trajectory.

can be seen from Figure 1. During the training, subjects need to
try their best to track the reference trajectory.

To increase the complexity of the task and, meanwhile,
facilitate optimization, four relatively simple RSCs were used
to construct the reference trajectory in each generation, which
can be seen from Figure 1. The T and △t are the period of
each RSC and the time interval between the two adjacent RSCs,
respectively. In this study, the T and △t were set to 12 and 3
s, respectively. △t is designed to give the subjects enough time
to adjust their riding speeds to better complete the subsequent
tracking task.

Specifically, each RSC is determined by three parameters:
starting velocity (vs), transient time (ttra), and end velocity (ve).
The definition of these three parameters is given in Figure 2. It
can be seen that each RSC can be defined as a piecewise function
of time, which is given by the following:

Vref(t) =











vs t ∈ [0, T−ttra

2 ]

vs + ve−vs

ttra
(t − ttra) t ∈ (T−ttra

2 , T+ttra

2 )

ve t ∈ [T+ttra

2 , T]

(1)

Based on the parameterized model, the difficulty of the training
task, which is a key factor affecting the engagement, can be
optimized. A wide range of possible RSCs can be obtained by
Equation (1), and some examples of possible RSCs are given in
Figure 2B.

In this study, constraints given in Equation (2) are used to
avoid appearance of some weird RSCs, such as too high reference
speeds and sharp change of the speed.

0 ≤vs ≤ 6, 0 ≤ ve ≤ 6,

ttra ≥
|ve − vs|

6

(2)

where, the units of vs (ve) and ttra are meters per second (m/s)
and seconds (s), respectively.

2.2. Design of the Objective Function
Both electroencephalography (EEG) and surface electromyogram
(sEMG)-based physiological responses, which can reflect
subjects’ engagement levels during the training, can be used to
construct the objective function (Zimmerli et al., 2013; Tacchino
et al., 2016). Compared with sEMG, the EEG signals are much
weaker (microvolt level), and they can be easily contaminated by
the environment noises or the subjects’ physiological variation,
such as emotional fluctuation. If the EEG based objective
function is used for the HILO, the parameters to be optimized
can hardly converge to the optima. In this paper, sEMG-based
MA is thus chosen to measure subjects’ physiological response.
Besides, the subjects’ physical response is evaluated by TA. By
maximizing subject’s TA and MA concurrently, the difficulty
of the training task can be optimized to match the subject’s
current motor ability and physiological state. On one hand, a
relatively high TA can be obtained when the tracking task is
designed relatively easily. However, speed-tracking tasks that
are too easy can easily lead to a phenomenon where a subject’s
MA is relatively low, which is not beneficial for the restoration
of muscle strength. On the other hand, a relatively high MA
can be obtained when the tracking task is designed relatively
difficult. Tasks that are too difficult, however, can cause the
subjects to become discouraged and unwilling to continue the
training. Simultaneously maximizing TA and MA can result in
a suitable challenging task for a specific subject, thus enhancing
the subjects’ engagement. In this paper, TA and MA are therefore
used to construct the objective function.

Specifically, the TA is given by the following:

FTAi = −
||Vref

i − Vact
i ||2√

N
, i = 1, 2, 3, 4 (3)

where, || ∗ ||2 means the calculation of the L2-norm. Vref
i ∈ R

N

and Vact
i ∈ R

N are the reference speed vector and subject’s actual
speed vector with 100 Hz sample rate acquired during tracking
the ith RSC in each generation. The period of each RSC is 12 s,
therefore, N is equal to 1,200. In this study, the subject’s actual
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FIGURE 2 | (A) Parameterization of each RSC. (B) Examples of possible

RSCs.

speeds are collected using a data acquisition card and transmitted
to the computer via TCP/IP protocol.

As for the sEMG-based MA, it has been proved that, when
subjects are focused on the training, the root mean square (RMS)
of sEMG signals can become bigger (Zimmerli et al., 2013). In
this paper, RMS is consequently used to indicate subjects’ MA.

FMA
i =

||SEMG
i ||2√
M

, i = 1, 2, 3, 4 (4)

where, SEMG
i ∈ R

M represents the amplitude vector of the
acquired sEMG signals with 400 Hz sample rate acquired during
tracking the ith RSC in each generation, and M is equal to 4,800.

The muscles contributing to cycling motion, including rectus
femoris (RF), hamstring, soleus, and gastrocnemius, are mainly
considered. During the pre-experiment, it was found that the RF
muscle had the highest activation during the cycling training,
and it is therefore used to calculate the MA in this study. Delsys

TrignoTM device with a 1111.11 Hz sample rate was used to
monitor muscle activities during cycling. The raw sEMG signals
were first filtered by a band-pass butterworth filter (10–400 Hz)
and a notch filter (50 Hz) to reduce the effects of noise and
power line interference. Then, the subjects’ average MA can be
calculated using Equation (4).

Finally, the objective function, which is equal to the weight
sum of the TA and MA, can be given as follows:

F
OBJ
i = FTAi + αFMA

i , i = 1, 2, 3, 4 (5)

where, FTAi and FMA
i represent the values of TA andMA of the ith

sub-racking task in each generation, respectively. α is a scaling
coefficient to weight FTAi and FMA

i , and it is set to 1 in this study.

2.3. CMA-ES Based HILO
In this study, the optimization problem for engagement
enhancement can be defined as follows.

Parameters to be optimized are the following:

mi = [vsi , t
tra
i , vei ], i = 1, 2, 3, 4 (6)

The objective function to be maximized is the following:

F
OBJ
i = FTAi + FMA

i , i = 1, 2, 3, 4 (7)

Constraints to be satisfied are the following:

0 ≤ vsi ≤ 6, 0 ≤ vei ≤ 6,

ttrai ≥
|ve − vs|

6
, i = 1, 2, 3, 4

(8)

It can be seen that the optimization problem of this paper is
strongly non-linear, and it can be easily disturbed by the time-
varying dynamics of the subjects. Therefore, CMA-ES, which
is relatively tolerant of both measurement noises and human
adaptation, is applied to optimize the training task in this paper.
No gradient calculation is involved in the CMA-ES, which makes
this method robust and feasible even for a non-continuous
problem. With each iteration, new task-setting parameters are
generated stochastically using a multivariate normal distribution,
and the distribution parameters, including the mean vector, the
covariance matrix, and the evolution paths, are updated with
successful candidate solutions and their objective value ranking.
In this paper, the algorithm of the CMA-ES (Hansen, 2006; Maki
et al., 2020) based HILO is given in Algorithm 1.
In each generation, four groups of the RSC parameter settings,
(mi)i=1,2,3,4, are generated stochastically using a multivariate
normal distribution N (m̄, σ 2C), to form the tracking trajectory
of the current generation.

mi = m̄+ σN (0,C), i = 1, 2, 3, 4 (9)

where, m̄ = [v̄s, ¯ttra, v̄e]. Specifically, m̄ is the mean vector of the
parameters to be optimized, and it determines the search space
of the mi. σ is the step parameter, which determines the size and
intensity of the search range. C is the covariance matrix, which
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Algorithm 1: CMA-ES based HILO.

1: n: number of parameters to be optimized, defaults to 3.
2: m̄ ∈ R

n, mean vector, initialized with [2.5, 4, 5.5].
3: pc, pσ ∈ R

n, evolution paths, initialized with 0.
4: σ : step size, initialized with 2.
5: C ∈ R

n×n: covariance matrix, initialized with I.
6: λ: population size of each generation, defaults to 4.
7: λopt: number of candidate population, defaults to 2.

8: w ∈ R
λopt ,µw: weight constants for m̄, σ and C update.

w(i) =
log(λopt + 1/2)− log(i)

∑λopt

i=1 (log(λ
opt + 1/2)− log(i))

, i = 1, .., λopt.

µw = 1/
∑λ

i=1 w(i)
2.

9: µn: approximated norm of the expected value of n-
dimension normal distribution.
µn = n1/2(1− 1/4n+ 1/21n2).

10: cc, cσ : cumulation factors for evolution.
cc = (4+ µw/n)/(n+ 4+ 2µw/n).
cσ = (µw + 2)/(n+ µw + 5).

11: dσ : damping factor for σ update.
dσ = 1+ 2max(0, sqrt((µw − 1)/(n+ 1))− 1)+ cσ .

12: c1, cµ: learning rate for covariance update.
c1 = 2/((n+ 1.3)2 + µw).
cµ = min(1− c1, 2(µw − 2+ 1/µw)/((n+ 2)2 + µw)).

13: for each generation do

14: for i = 1 → λ do

15: mi = m̄+ σN (0,C).
16: Generate the RSC and Vref

i with mi using
Equation (1).

17: end for

18: Tracking, acquire Vact
i and SEMG

i , where i = 1, ..., λ.
19: for i = 1 → λ do

20: Compute FTAi with Vref
i and Vact

i using Equation (3).
21: Compute FMA

i with SEMG
i using Equation (4).

22: Compute F
OBJ
i with FTAi and FMA

i using Equation (7).
23: end for

24: Get Iopt : the indices of the top λopt values of FOBJ

in descending order.
25: mopt = {mi}i∈Iopt .
26: md = (

∑

i=1→λopt (m
opt(i))w(i)− m̄)/σ

27: Update pσ = (1− cσ )pσ + (cσ (2− cσ )µw)
1/2 1

√
C
md

28: Update pc = (1− cσ )pc + (cc(2− cσ )µw)
1/2md

29: Update m̄ =
∑

i=1→λopt (m
opt(i))w(i).

30: Update σ = σ exp[ cσ
dσ
(
||pσ ||
µw

− 1)]

31: Update C = C + c1(pcpc
T − C)+ cµ(σ

2md
2 − C)

32: end for

determines the shape of the distribution. In this study, m̄, σ and
C are initialized with [2.5, 4, 5.5], 2 and I, respectively.

When the tracking task in each generation is finished, the
average TA and MA can be calculated according to the subjects’
responses. The value of the objective function can consequently
be calculated by Equation (7). Then, according to the value

ranking of (F
OBJ
i )i=1,2,3,4, λopt parameter settings, mopt, can be

obtained, and these are used to update the two evolution paths,
pσ and pc. Finally, based on the mopt, pσ , and pc, m̄, σ , and C,
which are used to generate the tracking trajectory of the next
generation, can also be updated. The tracking trajectory in each
generation can therefore be updated continuously by using the
current multivariate normal distribution N (m̄, σ 2C). It can be
seen that, by using the proposed CMA-ES based HILO method,
the training task can be optimized automatically and constantly
to achieve engagement enhancement.

2.4. Neural Engagement Evaluation Method
Since the purpose of the proposed optimization method is
to enhance and maintain subjects’ engagement during the
rehabilitation training, the subjects’ neural engagement levels
were also evaluated in this study.

Neural engagement, which is an essential factor in promoting
neural reorganization and compensation, is considered to be
proportional to the level of concentration (attention) during the
rehabilitation training (Park et al., 2014; Li et al., 2016). Previous
researches have demonstrated that EEG signals in the theta
and beta bands can be used to quantitatively represent subjects’
attention states (Mann et al., 1992; Harmony et al., 1996). Good
performance and high attention level have been proven to be
related to the decrease of the theta rhythm power and the increase
of the beta rhythm power (Kropotov, 2009; Gürkök et al., 2011;
Arns et al., 2012; Loo and Makeig, 2012; Marshall et al., 2013).
The EEG-based theta to beta power ratio (TBR) was thus used
to measure subjects’ neural engagement, which can be given by
the following:

TBR = −
E(theta)

E(beta)

En =
∑5

i=1 TBR(i)

5

(10)

where E(theta) and E(beta) represent the energy of theta and beta
bands in the latest 3 s, respectively. TBR was calculated every 3 s.
En, which is equal to themean of the latest 5 TBR values, was used
to indicate subjects’ attention and neural engagement. A high En
represents a high level of neural engagement.

By considering that EEG activities in the frontal and temporal
lobes are most related to human engagement levels (Barkley
et al., 1992; Mann et al., 1992), EEG signals acquired from
these two brain regions can be used to compute En, which
can be seen from Figure 3. However, EEG signals, especially
collected during cycling, can be easily contaminated by ocular
artifacts (OAs) and EMG (Frølich et al., 2015; Kline et al.,
2015; Zink et al., 2016). Many studies focused on eliminating
the artifacts have been conducted, but the results are still
not satisfying.

For the term of OAs, blinking or moving the eyes can produce
large electrical potential, which will spread across scalp and
contaminate the EEG signals. EEG signals in the forehead (FP1
and FP2) are most susceptible to OAs (Babu and Prasad, 2011).
For the term of EMG artifacts, subject movement (riding) can
introduce some muscle artifacts to EEG signals inevitably and
the muscle artifacts are mainly distributed at the outer electrode
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FIGURE 3 | International 10–20 system. The red and blue areas represent the

frontal and temporal regions, respectively.

sites, such as the temporary region (Muthukumaraswamy, 2013).
To reduce the effect of artifacts on EEG signals, therefore, only
signals acquired from FZ electrode are used to indicate the
subject’s neural engagement, which can be seen from Figure 3.

NeuroScan system with 256 Hz sample rate was used to
acquire subjects’ EEG signals. Baseline drift, which is mainly
caused by spontaneous brain waves, was avoided by the removing
mean method. Then the theta (3–8 Hz) and beta (12–30 Hz)
bands were extracted by fast Fourier transform, and subjects’
neural engagement can be calculated by Equation (10) finally.

3. EXPERIMENT AND RESULTS

A contrast experiment was conducted to validate the feasibility of
the proposed HILO method for engagement enhancement. The
experiment was approved by the ethics committee of the Institute
of Automation, Chinese Academy of Sciences. All the recruited
subjects were informed of the experiment contents and signed
the consent forms before the experiment.

3.1. Experiment Design
The interactive speed-tracking riding game was used as the
training task for both the control group (CG) and the experiment
group (EG). More specifically, during the training, subjects
should track the reference trajectory, which is constructed by four
RSCs, as accurately as possible. For the CG, the proposed HILO
based engagement enhancement method was not used, which
was used for the EG. For the CG, the RSCs displayed on the screen
were thus given randomly under the constraints of Equation
(8). But for the EG, the RSCs can be optimized continuously by
the HILO.

FIGURE 4 | One of the experiment scenes during the training process.

A total of 10 healthy subjects (eight men and two women
aged from 24 to 29 years old), numbered from S1 to S10, were
recruited to participate in the experiment. None of them knew
the design process or the purpose of this study. They participated
in the experiments for both CG and EG. Each experiment took
about 25 min, as is similar to the commonly used period of each
post-stroke rehabilitation session. The interval between the two
experiments was about 20 min to give subjects enough time to
rest and thus minimize the influence of the previous experiment
on the next experiment results.

During the previous 2 days before the experiment, the
subjects were required to not engage in any vigorous exercises to
prevent muscle fatigue and avoid affecting the collected sEMG
data. To reduce possible bias, we shuffled the sequence of the
experiments for the CG and EG. Subjects were able to choose
which experiment to conduct first. Before the experiment, one
Delysis sensor was placed on the subjects’ RF muscle to acquire
their sEMG signals during training, which are used to calculate
their MA. Besides, an EEG cap needs to be worn to acquire
subjects’ EEG signals, which is used for neural engagement
evaluation. All subjects received the same task instructions. They
were supposed to try their best to track the reference trajectory.
One of the experiment scenes during the training process is
given in Figure 4. Besides, during the training, they should keep
their upper body motionless to reduce muscle artifacts caused
by movement.

3.2. Analysis of TA and MA
For the EG, one subject’s reference/actual speed curve variations
are given in Figure 5, and his TA and MA during the training are
given in Figure 6.

It can be seen from Figures 5, 6 that, at the beginning of the
experiment, the shape of the four RSCs varied greatly, with the
maximum speed reaching 6 m/s. However, the maximum cycling
speed that the subject can reach was about 4 m/s. The subject
could not follow the RSCs, which led to a low TA. From the
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FIGURE 5 | One subject’s reference/actual speed curves in different generations during the training for the EG. RSCs and actual speed curves are represented by red

lines and blue lines, respectively.

initial state to state i, TA was mainly optimized to ensure that the
RSCs could be tracked by the subject. The purpose of the process
from state i to state ii was to improve MA as much as possible
under the premise of a high TA. In generation 8, both the TA
and MA were acceptable. The purpose of the process from state
ii to iii was thus to maintain the subject’s high TA and MA. By
the 15th generation, the subject was exhausted due to a long time
of training. It can be seen that from state iii to the last state, the
reference speed gradually decreased to ensure that the subjects
could still track the RSCs well.

Boxplots of the average TA and MA of all subjects in different
generations are shown in Figures 7, 8, respectively. In each box,
the central line represents the median value, the dot represents
the mean value, the edges of the box are the 25th and 75th

percentiles. Moreover, the Wilcoxon signed-rank test results also
indicate that there are significant differences between the CG and
EG for both TA and MA (TA: p-value = 2.14e-04 < 0.0001; MA:
p-value = 2.13e-04 < 0.0001).

It can be seen from Figure 7 that, at the beginning of the
experiment, the TA for both EG and CG were relatively low
since the subjects cannot track the randomly generated RSCs
accurately. However, for the EG, TA can be improved obviously
due to the proposed HILO. Besides, as the experiment went
on, subjects became fatigued gradually, which resulted in a
further decrease in the TA for the CG. This phenomenon can
cause the subjects discouraged and unwilling to continue the
training. However, for the EG, the difficulty of the training
task can be adaptively reduced to maintain a relatively high
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FIGURE 6 | The subjects’ corresponding TA and MA variations during the

experiment in the EG.

TA. The proposed HILO method can thus result in a suitable
challenging task for a specific subject to improve the enthusiasm
of the subjects.

It can be seen from Figure 8 that the difference of the MA
between the EG and CG was not obvious in the early stage of the
experiment. One possible reason is that, in the early stage of the
experiment, themain purpose of the optimizationwas to improve
the TA due to the subjects’ relatively bad tracking performance,
during which the MA didn’t change much for the EG.

Besides, for the CG, the ranges of both TA and MA in each
generation fluctuated larger than that for the EG, especially in
the later state of each experiment. One of the possible reasons
is that, for the CG, the RSCs of each generation were given
randomly regardless of subjects’ motor ability or physiological
status. The TA and MA therefore fluctuated with the variation
of the given RSCs.

3.3. EEG-Based Neural Engagement
Evaluation
One of the subjects’ EEG-based engagement variation curves and
fitting curves based on a first-order linear function are given in
Figure 9. The fitting curves’ slopes represent the variation trends
of the subject’s neural engagement during training. It can be seen
from Figure 9 that, for the EG, with the progress of tracking task,
the values of En gradually increased, and these are decreased for
the CG. It denotes that the neural engagement of the subject for
the EG showed different degrees of improvement by using the
proposed method. However, for the CG, neural engagement can
be increased to some extent in the early stage (Wang et al., 2019)
but dropped obviously after that.

Themean values of the En for the 10 subjects, and the results of
the significant test about the neural engagement between CG and
EG by using Wilcoxon signed-rank tests are given in Figure 10.
Compared to the neural engagement in the CG, subjects’ neural
engagement in the EG can be improved significantly.

To clearly show the brain activity variation during the speed-
tracking task, one subject’s time-frequency spectra, which were
obtained by short-time Fourier transformation of the EEG signals
(Wang et al., 2018), are given in Figure 11. From the figure we
can see that, for the EG, the energy of the beta rhythm (12–30

FIGURE 7 | Boxplot of the average TA of all the subjects.

FIGURE 8 | Boxplot of the average MA of all the subjects in different

generations and different groups.

Hz) increased gradually, and the energy of the theta rhythm (3–8
Hz) decreased gradually after around 13 min. For the CG, there
was a little fluctuation of the EEG spectrum in different frequency
bands. Since good performance and high neural engagement
are related to a phenomenon of decreased theta rhythm power
and increased beta rhythm power, the feasibility of the proposed
HILO method in engagement enhancement can be further
proved by Figure 11.

4. DISCUSSION

To maximize engagement during therapy and prevent
frustration, it is essential to design rehabilitation exercises
in such a way where they challenge patients at a difficulty level
neither too simple nor too difficult (Choi et al., 2011; Metzger
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FIGURE 9 | One of the subjects’ EEG-based engagement variation curves

and fitting curves based on a first-order linear functions. A higher En
represents a higher engagement. The up and down figures are results for EG

and CG, represently.

FIGURE 10 | The mean values of the En for the 10 subjects, and the results of

the significant test about the neural engagement between CG and EG.

et al., 2014). The ability to select and maintain an engaging and
challenging training difficulty level in post-stroke rehabilitation,
however, remains an open challenge. In this paper, we presented
an HILO based training task optimization method by which
the difficulty levels of the training task can be optimized
continuously to well match the subject’s current motor ability
and physiological state.

Several strategies have been proposed for online decision
making to modify task parameters and modulate its difficulty.
For example, in Metzger et al. (2014), the difficulty of the

FIGURE 11 | One of the subjects’ time-frequency spectra during the whole

training. (A) EG. (B) CG.

training task is adjusted based on the completion of the task to
maintain the training performance of patients in a certain range.
Besides, interaction forces, muscle activity, or other kinematic
or physiological parameters have also been used for training
challenge adaption (Krebs et al., 2003; Novak et al., 2011; Luo
et al., 2019). However, due to the complexity of the training
tasks and human-machine systems, the adaptive task adjustment
based engagement enhancement methods can hardly find an
optimal design of the training tasks, which can be found by the
optimization method.

In this paper, according to subjects’ current physiological
state and task performances, i.e., MA and TA, the training
task parameters can be optimized continuously, to make sure
that the current task parameter settings are nearly optimal
for engagement enhancement. The proposed optimization
method can be termed as “greedy” optimization since only
the subject’s performance in the latest generation rather than
overall superimposed performance is considered during
the optimization. In this way, the system can quickly
converge to the “greedy” optimal state to improve the
immediate engagement. However, during the experiment,
it was found that the system can fall into a local optimal
situation sometimes, which should be improved in
the future.

In clinical settings, selection of the training difficulty and
its adaptation over the course of therapy is often determined
by the experience of trained therapists and their subjective
perception of a patient’s abilities (Metzger et al., 2014). Our
proposed method can effectively avoid the mismatch between
the difficulty of the task set manually and the patients’
abilities. Moreover, by considering that active engagement of
the human motor and neural system is essential for functional
rehabilitation, the proposed method is promising for transfer
to the rehabilitation of post-stroke patients. In the future,
more experiments are to be conducted to further validate
the feasibility of the proposed method for enhancement of
the post-stroke patients’ engagement and improvement of the
rehabilitation outcomes.
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5. CONCLUSION

In this paper, an HILO-based engagement enhancement method
is proposed to enhance subjects’ engagement. Firstly, subjects are
asked to track the reference trajectory, which is constructed by
four RSCs, as accurately as possible. After finishing the tracking
task of each generation, the value of the designed objective
function, which is equal to the sum of the TA and MA, can
be calculated according to subjects’ responses. Then, CMA-ES is
used to generate the optimal parameters of the RSCs periodically.
By optimization of the reference trajectory continuously, the
objective function can be maximized and subject engagement
enhanced. Finally, the feasibility of the proposed HILO method
in engagement enhancement is validated through the comparison
experiment on 10 subjects. Experiment results show that both TA
and MA can be improved significantly (p < 0.0001). Moreover,
all the recruited subjects’ EEG based neural engagement can also
be improved significantly (p < 0.01) and maintained at a high
level by using the proposed method.
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