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Autonomous trajectory and torque profile synthesis through modulation and

generalization require a database of motion with accompanying dynamics, which is

typically difficult and time-consuming to obtain. Inspired by adaptive control strategies,

this paper presents a novel method for learning and synthesizing Periodic Compliant

Movement Primitives (P-CMPs). P-CMPs combine periodic trajectories encoded as

Periodic Dynamic Movement Primitives (P-DMPs) with accompanying task-specific

Periodic Torque Primitives (P-TPs). The state-of-the-art approach requires to learn TPs

for each variation of the task, e.g., modulation of frequency. Comparatively, in this paper,

we propose a novel P-TPs framework, which is both frequency and phase-dependent.

Thereby, the executed P-CMPs can be easily modulated, and consequently, the

learning rate can be improved. Moreover, both the kinematic and the dynamic profiles

are parameterized, thus enabling the representation of skills using corresponding

parameters. The proposed framework was evaluated on two robot systems, i.e., Kuka

LWR-4 and Franka Emika Panda. The evaluation of the proposed approach on a Kuka

LWR-4 robot performing a swinging motion and on Franka Emika Panda performing

an exercise for elbow rehabilitation shows fast P-CTPs acquisition and accurate and

compliant motion in real-world scenarios.

Keywords: adaptive control, autonomous learning, human-robot interaction, internal dynamic model, compliant

movement primitives

1. INTRODUCTION

Programming by demonstration (PbD) is a typical approach for transferring skills to robots by
mirroring human actions (Billard et al., 2008; Argall et al., 2009; Calinon et al., 2014; Peternel
et al., 2018). For simple tasks, human demonstrations are typically recorded using vision-based
systems (Welschehold et al., 2016) or motion tracking suites (Filippeschi et al., 2017). For a more
challenging task where force constraints and compliance strategies are required, the kinesthetic
guidance or multi-modal human-in-the-loop skill transfer approaches can be used (Peternel et al.,
2014; Rozo et al., 2016). Besides, such learning has the advantage of already being adapted to
the kinematic and dynamic parameters of the robotic system. Here, typically a well-established
inverse dynamic control approach is in use (Sciavicco and Siciliano, 2012). However, due to the
increasing complexity of robot mechanisms and tasks, they are performing, accurate dynamical
models’ of both the robot and the task are often difficult to obtain. To bridge the gap, machine
learning algorithms were adopted because of their ability of learning complex models. Although
learning algorithms are powerful enough to learn the inverse dynamics of both the robot and the
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task (Nguyen-Tuong and Peters, 2011), they still require a large
amount of data for the learning processes, which makes them
unsuitable for on-line learning of tasks-specific dynamics.

Knowing the exact dynamical model is crucial to achieving
compliant robot behavior, which is needed when robots
are operating in an unstructured environment. Hence, exact
dynamical models of both, the robot and the task makes it
possible to either adjust the controller feedback gains to obtain
the desirable compliance or to prescribe the desired dynamic
behavior (Buchli et al., 2011; Kronander and Billard, 2013;
Žlajpah and Petrič, 2019). Skill learning approaches that can
expand the database can be time-consuming. For example,
reinforcement learning might take a long time to tune the skill
because a high number of repetitions is needed (Kober et al.,
2012). Such exploitative learning methods were successfully used
for learning force profiles for in-contact tasks (Racca et al., 2016).
On the other hand, supervised learning methods are typically
faster but require a reference for the optimization process (Wang
et al., 2009). Nevertheless, even these methods might take too
much time to produce a large enough database enabling statistical
methods to generate an accurate dynamic model for a given
task. However, when using PbD methods, dynamic models of
both the robot and the task, are usually not known and can
not be easily learned from imitation. Since modeling of system
dynamics is typically a difficult and time-consuming task, this
work instead addresses the problem of how to obtain the task-
specific dynamics through autonomous learning and thereby
avoid the need for an expert to define them.

Learning of task-specific dynamics was proposed in Deniša
et al. (2016), where Compliant Movement Primitives (CMPs)
were introduced. CMPs encode both the kinematic trajectory
in the form of Dynamic Movement Primitives (DMP) (Ijspeert
et al., 2013) and accompanying dynamics called Torque
Primitives (TPs), i.e., joint-torques encoded with weighted radial-
basis functions. In Deniša et al. (2016) TPs were obtained through
execution of the desired movement trajectories using high-gain
feedback control. This limitation was mitigated in Petrič et al.
(2018), where TPs were learned iteratively until the error of
compliant tracking was reduced below a predefined threshold.

The main contribution of this paper is a two-layered system
that combines Phase-synchronized Adaptive Fourier Series (P-
AFO) with Periodic Compliant Movement Primitives (P-CMPs).
The P-AFO is an incremental improvement of AFO proposed
in Petrič et al. (2011), which guaranties unambiguous frequency
and phase synchronization to an arbitrary input signal, which
is crucial for P-CMPs. Furthermore, the P-CMPs is a periodic
extension of CMPs proposed in Deniša et al. (2016) and Petrič
et al. (2018). Here the kinematic trajectory is encoded in
Periodic Dynamic Movement Primitives (Gams et al., 2009)
and the corresponding task-specific dynamics with Periodic
Torque Primitives (P-TPs). For the P-TPs we propose a novel
combination of weighted kernel functions that are frequency
and phase-dependent. The novel P-TPs framework allows direct
modulation of frequency, which was not possible before (Deniša
et al., 2016). Inspired by human sensorimotor learning (Kawato,
1990), the P-TPs are learned on-line using a feed-back error
learning approach. The learning is active until the tracking

error of a compliant controller robot is reduced below a
predefined threshold.

This paper is organized as follows. In the next section, we
describe related work detailing the topics of learning of robot
torque profiles and their modulation and generalization. In
section 3 we describe the main contributions of this paper,
i.e., unambiguous phase synchronization (P-AFO), periodic
torque primitives (P-TPs), and the integration of feedback error
learning. Results of experimental evaluation on a Kuka LWR-4
robot arm learning to perform a swinging task and evaluation on
Franka Emika Panda robot learning to rehabilitate the elbow by a
stretching task are presented in section 4. A discussion concludes
the paper in section 5.

2. RELATED WORK

2.1. Torque Learning
For accurate and compliant execution of tasks, the task-space
dynamics is required (Del Prete and Mansard, 2016), whereby a
dynamic model of the task might be hard to obtain (Petrič et al.,
2010). To mitigate mathematical modeling, different biologically
inspired methods were proposed to enhance robot control
(Franklin and Wolpert, 2011). Merging them with robots that
have joint-torque sensors led to the development of Compliant
movement Primitives (CMPs), first reported in Petrič et al.
(2014). Originally, CMPs recorded feed-forward torques during
initial task execution with stiff robot behavior that ensures
accurate motion tracking. Once torques were recorded, they
were used as feed-forward components of the CMPs in the
next repetitions of the same task. Since the torque profiles
had to be recorded for each variation of the tasks, even for
different execution speeds, a statistical generalizationmethodwas
proposed in Deniša et al. (2016). They showed that generalization
between CMPs can successfully be used to generate CMPs for
tasks where kinematic or dynamic parameters were changed.
Besides generalization, a statistical-graph search was shown to
effectively generate new CMPs by joining together different parts
of several CMPs (Deniša et al., 2013).

Exploiting the feed-forward torque was also utilized when the
possibility of measuring joint torque was available. For example
in Calandra et al. (2015) they use tactile sensors to compute
joint torques on an iCub humanoid robot. The computed joint-
torques were used as feed-forward signals similar to the CMPs
framework. Learning of joint torques together with kinematic
trajectory was also implemented in Steinmetz et al. (2015), where
the recorded torques were used as a feed-forward signal to
increase the motion accuracy of the in-contact task. Originally
the learning of CMPs torque signals was performed during an
exact motion execution, whereby the robot was stiff due to
the high feedback gains. As a consequence, the application of
CMPs during learning was limited and potentially dangerous
when interacting with the environment or humans. To mitigate
this issue, an approach using autonomously learning of torque
profiles while using compliant robot behavior, i.e., low feed-
back gains, was introduced in Petrič et al. (2018). However, the
approach was not suitable for periodic tasks.
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Other approaches for torque learning not directly related to
CMPs were also proposed. Gaussian process regression for on-
line learning of the dynamical model was proposed in Nguyen-
Tuong and Peters (2011), where the accuracy of the dynamical
model was improved while keeping compliant robot behavior.
While results were promising, this approach required a large
amount of data, hence it was not focused on learning only task-
specific torques. For learning only task-specific torques iterative
learning control (ILC) was utilized in Schwarz and Behnke
(2013). Here ILC was used to identify model parameters for
motor and friction models. Similarly, in Kronander et al. (2015)
ILC was used to update the dynamical model. Inspired by human
sensorimotor learning, Kawato (1990) introduced a feedback
error learning approach for learning task-specific dynamics for a
given kinematic trajectory. The feedback error learning was later
adopted in Gopalan et al. (2013), where it was used to stabilize
the controller’s output for adapting the gait of an under-actuated
bipedal robotic system.

2.2. Modulation and Generalization
Trajectory modulation and generalization is a wide topic that
can be considered from different domains of application. Mostly,
methods for modulation and generalization were focused on
the kinematic trajectory and only a few dealt with dynamics.
The modulation and generalization ability of kinematic and
dynamic parameters are specifically important for the P-CMPs
framework proposed in this paper. The kinematic part of P-
CMPs is encoded with P-DMPs, which already allow a certain
degree of modulation and generalization. In Gams et al. (2009),
the modulation abilities of DMPs to change the goal and the
frequency was demonstrated. Furthermore, the DMPs were also
used as means to represent results of statistical generalization
using locally weighted regression in Ude et al. (2010) and
generalization between weights of DMPs using Gaussian process
regression (GPR) in Forte et al. (2012). For both approaches,
a task parameter is required to generate a new trajectory
from a motion database. Similarly, in Stulp et al. (2013) the
task parameter was used to learn the weights of DMPs of a
single demonstration. Instead of rallying on one demonstration,
Matsubara et al. (2011) used several demonstrations to create a
parametric attractor landscape in a set of differential equations.
Similarly, a variation of DMPs as a Mixture of Motor Primitives
(MoMP) was introduced in Mülling et al. (2013), where they
proposed an algorithm that can autonomously update the
weights. By exploiting the external inputs the on-line modulation
and adaptation of DMPs are also possible as shown in Gams et al.
(2010) and Kulvicius et al. (2013).

The DMPs are not the only trajectory representation method
or even the only dynamical systems used for modulation and
generalization. However, because our proposed approach in this
paper is composed also of DMPs, other possible alternatives
are only briefly listed below. The task-specific Gaussian Mixture
Models (TP-GMM) were proposed by Khansari-Zadeh and
Billard (2011) and were also used in Calinon (2016). Another
possibility is also Hidden Markov Models (HMM) that were
used in Lee and Ott (2011). While these approaches rely on
generating trajectories based on existing database entries, the

trajectory generation based on extrapolation and the database
expansion is still an open research topic. Extrapolation was
mentioned in Calinon et al. (2013), where statistical methods
were used to encode the movements. The algorithm for
autonomous database expansion was proposed in Petrič et al.
(2018), where the new compliant motion trajectories were
generated also by extrapolating the database. The literature
related to modulation and generalization of dynamic parameters
is even more sparse. Besides already mentioned (Calinon et al.,
2013; Deniša et al., 2013; Petrič et al., 2018), modulation, and
generalization of dynamic parameters, such as forces and torques,
was also researched in Gams et al. (2015), where a statistical
generalization was used on force-based coupling terms. However,
their approach was limited, since it requires user interaction
to generate new database entries. Similarly, in Koropouli et al.
(2015) a new policy was proposed where the input was motion
data and the output was a force.

The generalization of both kinematic trajectories and torque
profiles has been reported with the aforementioned CMPs in
Deniša et al. (2013) and later extend with an approach enabling
autonomous learning in Petrič et al. (2018). Our paper extends
the approach in Deniša et al. (2013) and Petrič et al. (2010)
first by introducing the Periodic-CMPs framework and second
by proposing novel P-TPs formulation which includes frequency
modulation capabilities.

3. PERIODIC COMPLIANT MOVEMENT
PRIMITIVES

The inspiration for the P-CMPs multi-layered framework has
been taken from the two-layered imitation system reported in
Gams et al. (2009) and Petrič et al. (2011). In their work, the
authors introduced a system that can be used for imitation
learning, because it allows autonomous frequency adaption and
learning of kinematic trajectories. The extension of kinematic
trajectory with corresponding dynamic parameters in the form
of P-CMPs is proposed in this paper and illustrated in Figure 1.

Periodic Compliant Movement Primitives (P-CMPs) h(�,φ)
are defined as a combination of the adaptive oscillators (P-AFO),
kinematic trajectories encoded in periodic Dynamic Movement
Primitives (P-DMPs) and corresponding task-specific dynamics
encoded in Periodic Torque Primitives (P-TPs).

h(�,φ) = [pd(�,φ); ṗd(�,φ); p̈d(�,φ); τf (�,φ)]. (1)

Here � and φ are the desired motion frequency and phase,
respectively. p̈d(�,φ), pd(�,φ) and ṗd(�,φ) are the desired
acceleration, velocity and position trajectories, respectively,
encoded within P-DMPs. τf (�,φ) are the corresponding joint
torques encoded in P-TPs.

Similar to the discrete CMPs, the two-stage process is used
to obtain the P-CMPs. First, the kinematic motion trajectories
are obtained typically by imitation learning (Gams et al., 2009).
Next, the corresponding periodic torques are obtained using the
feedback error learning approach (Kawato, 1990).
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FIGURE 1 | The multi-layered structure of the control system based on P-CMPs. The input q is a measured quantity and the output is the desired kinematic trajectory

pd; ṗd; p̈d and the corresponding torque profiles τf . Note that the system can work in parallel for an arbitrary number of dimensions.

3.1. Phase-Synchronization
The adaptive phase oscillator with the adaptive Fourier series
was originally proposed in Petrič et al. (2011). The core is a
second-order system of differential equations governed by

φ̇ = �− κǫ sin(φ), (2)

�̇ = −κǫ sin(φ). (3)

Here � is the estimated motion frequency, κ is the coupling
strength, φ is the corresponding phase and ǫ is governed by

ǫ = q− q̂, (4)

where q is the input signal and q̂ is the estimated oscillator
feedback. It is governed by

q̂ =

m
∑

i=0

Ai cos(iφ)+
m
∑

j=2

Bj sin(jφ) (5)

wherem denotes the size of the modified Fourier series. Note that
in this paper the sinus part of the series starts with index j = 2,
which ensures unambiguously defined phase synchronization.
The parameters Ai and Bj are updated as in Petrič et al. (2011).

Ȧi = ηǫ cos(iφ), i ∈ [0, 1, ...,m], (6)

Ḃj = ηǫ sin(jφ), j ∈ [2, 3, ...,m], (7)

where η is the parameter update rate. By skipping the first
parameter of the sinusoidal part of the Fourier series, i.e., j =

1, we ensure the phase is always well-defined with respect
to the input signal q. This is because the main frequency
component and corresponding phase is now only related to
cosine and not from a combination of cosine and sine as it was
in the original system. The novel system is denoted with Phase-
synchronized Adaptive Fourier Series (P-AFO). The evaluation
results, focused on the novelty, i.e., phase synchronization, are
shown in section 4.1.

3.2. Motion Trajectories
The second layer ensures the proper waveform of the kinematic
trajectories. It is encoded by P-DMPS, which are anchored to the
phase signal φ of the adaptive oscillator as in Petrič et al. (2011).
The equations for a single-degree-of-freedom are summarized
from Ijspeert et al. (2013). The second-order dynamic system of
P-DMP is governed by

ż = �
(

αz
(

βz(g − y)− z
)

+ f
)

, (8)

ẏ = �z, (9)

where αz and βz are the positive constants, which guarantee that
the systemmonotonically converges, g is the center of oscillation,
and f is the non-linear forcing term that determines the shape of
the trajectory. It is given by

f (φ) =

N
∑

i=1
wiψi(φ)

N
∑

i=1
ψi(φ)

. (10)

Here w is the vector determining the shape and ψ are the
Gaussian-like kernel functions given by

ψi(φ) = exp
(

h (cos (φ − ci)− 1)
)

, (11)

whereN is the number of kernels, h are the kernels width and ci is
their distribution concerning the phase. Typically they are spread
equally between 0 and 2π .

To learn the shape of the trajectory different methods where
proposed. When data is available upfront, a batch regression can
be used as in Ude et al. (2010). Alternatively, when learning
on-line, recursive locally weighted regression can be used. The
equations summarizing online learning for the incremental
learning approach are summarized from Gams et al. (2009). By
rewriting Equations (8) and (9) as one second-order differential
equation we get

fd =
ÿd

�2
− αz

(

βz(g − yd)−
ẏd

�

)

. (12)
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Here the triplet of yd, ẏd and ÿd denotes the desired position,
the velocity and the acceleration. To update the weights
wi of the kernel function ψi, we use the flowing recursive
least-squares method.

Pi(t + 1) =
1

λ

(

Pi(t)−
Pi(t)2

λ
ψi(φ(t))

+ Pi(t)

)

, (13)

wi(t + 1) = wi(t)+ ψi(φ(t))Pi(t + 1)er(t), (14)

er(t) = fd(t)− wi(t). (15)

The regression typically starts with wi = 0 and Pi = 0. Note that
Pi is the inverse covariance. λ is the forgetting factor.

Essentially the combination of P-AFO and P-DMP ensures
robustness against perturbations and allows frequency
modulation of the trajectory. Especially frequency modulation is
crucial when performing human-robot cooperative tasks.

3.3. Torque Trajectories
The third layer encodes the corresponding torque trajectories
τf (�,φ) and it is denoted by P-TPs. Note that torques are
task-specific, which means they are dependent on the dynamic
properties of the task including the execution speed, e.g.,
frequency. Therefore we propose that P-TPs τf (�,φ) are both,
phase φ and frequency� dependent. They are governed by

τf (�,φ) =

M
∑

i=1

K
∑

j=1
νi,jψi(φ)9j(�)

M
∑

i=1

K
∑

j=1
ψi(φ)9j(�)

(16)

where ν is aM×K matrix that encodes the torque profiles andψ
and9 are the Gaussian like kernel functions given by

ψi(φ) = exp
(

hφ
(

cos
(

φ − c
φ
i

)

− 1
))

, (17)

9j(�) = exp(−h�(�− c�j )
2). (18)

Here, hφ are the width of the kernel and c
φ
i is their distribution

concerning the phase spread equally between 0 and 2π . h� are
the kernels width and c�j is their distribution concerning the

frequency. Typically c�j is equal between 0 and 4π . Note that
M is the number of phase kernels, and K is the number of
frequency kernels.

The P-TPs are learned on-line while executing the encoded
DMP motion with low gain impedance control using the
following law

τu = τb + τf , (19)

τb = Kpe+ Kd ė+ Kië (20)

Here, e, ė, and ë are the differences between desired pd, ṗd,
and p̈d and actual position p, velocity ṗ, and acceleration p̈,
respectively. Kp, Kd, and Ki are the constants selected to ensure
robot behaves compliantly, i.e., set to match the low impedance
control requirements.

To learn task-specific torque profiles, we used the feedback
error learning approach (Nakanishi and Schaal, 2004). It is
governed by

ν̇i,j = ιτb, (21)

where ι is a positive constant determining the rate of learning.
Note that stability analysis was given in Nakanishi and Schaal
(2004).

Because the torques are updated on-line, the task
performance, i.e., tracking accuracy, improves over time
even if the feedback gains are low. The main idea used in
the proposed P-CMPs framework approach is to assure the
nominal behavior of the robot for the given periodic task even
if compliant robot control is used, i.e., using low feedback gains.
In this way, we can assure both, the good tracking accuracy and
the compliant behavior. This increases safety aspects for robots
working in an unstructured environment or with humans.

4. EXPERIMENTAL VALIDATION

In this section we describe the simulations used to compare the P-
AFO phase and frequency synchronization performance with the
original AFO (Petrič et al., 2011); and two examples of P-CMPs
applications with real-world robots, i.e., Kuka LWR-4 and Franka
Emika Panda. Note that stability proofs of CMPs system and
the AFO systems were already shown in the above-mentioned
research (Nakanishi and Schaal, 2004; Petrič et al., 2011, 2018;
Deniša et al., 2016). We therefore focused the evaluation on the
system improvements and innovations.

4.1. P-AFO Evaluation
In this numerical simulation example, we compare the phase
and frequency synchronization abilities of the original AFO
system with the proposed P-AFO system. Note that in both
cases the adaptation is done without any signal processing since
the entire process of frequency and phase synchronization is
completely embedded in the dynamics of the oscillator. In the
following example we used for both, AFO and P-AFO, the
flowing parameters: κ = 20, µ = 2,m = 4, and Ai(0) = Bj(0) =
0.5. The input q was a sinusoidal signal with a frequency of 1 Hz.

Frequency and phase adaption results are illustrated in
Figure 2. We can see in the top plot that there is no difference
between AFO and P-AFO systems performance regarding the
adaptation toward the input signal. Similarly, we can also see in
the bottom plot that there is no difference between AFO and
P-AFO in frequency extraction performance. This shows and
confirms that both systems can correctly adapt to extract the
frequency of the input signal. However, the crucial difference is
in the ability to unambiguously extract the phase signal from
the input signal. Clearly, the original AFO signal can extract the
phase, which is synchronized to the input signal. However, due to
the sum of the first sinusoidal and cosinusoidal elements in the
adaptive Fourier series in the original AFO system, a phase shift
between the input signal and the extracted phase might appear.

Figure 3 shows the adaptation to the periodic signal with
different initial conditions of parameters Ai and Bj. The results
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FIGURE 2 | Typical convergence of an AFO and P-AFO systems driven by a sinusoidal periodic signal. In the top plot, the comparison between the input signal and

the approximation of the system is shown. The middle plot shows the phase synchronization and the bottom plot shows the frequency adaption.

FIGURE 3 | Typical convergence of an AFO and P-AFO systems driven by a periodic signal with different initial conditions. Top plots, shows the comparison between

the input signal and the approximation of the system and middle plots shows the phase synchronization.

shows that the phase synchronization of the original AFO
concerning the input signal is not repeatable. Note, that if we
change the initial parameters or the start of the input signal,

the phase shift between the input signal and the extracted phase
of AFO will be different. Extracting the exact phase of the
input signal is crucial for the P-CMPs. In the middle plot of
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FIGURE 4 | Learning of internal dynamical models for different motion frequencies on 7 degrees of freedom Kuka LWR-4 robot. The left plot shows the desired

kinematic motion qd dependent on the phase parameter φ and the right plot shows the sum of square motion tracking error during the leaning process.

FIGURE 5 | Top and middle plots show example joint and torque trajectories, respectively (� = 2π example). The bottom plot shows the sum of the square motion

tracking error during the leaning process.
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Figure 2 and on the bottom plot of Figure 3, we can see that
the proposed P-AFO system ensures that the phase is always
unambiguously defined concerning the input signal. This allows
us to precisely anchor the P-TPs to the corresponding P-DMPs,
which, therefore, provides all the aforementioned advantages of a
P-CMPs system.

4.2. Robot Dynamics Learning Example
To illustrate the ability to learn the internal dynamical model,
we implemented the P-CMPs approach on a real robot Kuka
LWR-4. In this example, the goal was to learn the corresponding
dynamical model in P-TPs using the approach proposed in
section 3. The kinematic trajectory for this task was predefined
for all 7 degrees of freedom and it is shown on the left hand side of
Figure 4. The robot feedback loop gains for all joints were set to
50 Nm/rad and the feed-back error learning parameter ι was set
to 10. Note that in general the dynamical model of the robot is not
strictly necessary for the proposed approach, however, we made
use of the dynamical model provided by the Kuka controller.
Even so, by using the provided dynamical model the tracking
accuracy is still poor with selected feed-back gain as shown in
Deniša et al. (2016).

By using the proposed P-CMPs system we can see that
the tracking error, and hence the learning of the internal
dynamical model, is rapid and successful. In the left plot in
Figure 5, we can see several examples of learning dynamics
with a different frequency of motion. Despite the fact that the
robot axes are not fully dynamically decoupled, the proposed P-
CMPs system is able to successfully learn the internal dynamic
models, i.e., corresponding feed-forward parameters, and thereby
significantly reduce the tracking error. Hence learning was
successful for all desired frequencies of motion. Note that the rate

of learning does not depend on the frequency of movement, as
can be seen on the right-hand side-plot in Figure 4.

The kinematic motion improvements and the evolution of the
corresponding internal dynamical models, i.e., torque profiles,
is for a � = 2π example shown in Figure 5. Here we can see

FIGURE 7 | Experimental setup for physically simulated human elbow

stretching tasks.

FIGURE 6 | Difference between AFO and P-AFO system, both used with P-CMPs. The top plots show the desired and actual joint movements when using previously

learned P-CMPs from the example in Figure 5. The middle plots show the tracking error and the bottom plots show the phase synchronization of CMPs.
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FIGURE 8 | Results of elbow stretching example. The top plot shows the desired motion frequency. The second plot shows the sum of square tracking errors. The

third plot shows the relationship between current and final weight matrix. Bottom plots show the P-TPs weight matrix values for one joint at a certain time during the

learning process.
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from the bottom plot that tracking error is significantly reduced
in a relatively short time. After about four periods of motion, the
feed-forward torque signals converge to the final shape.

In Figure 6 also we show why it is crucial to ensure that the
phase φ is unambiguously defined considering the input signal.
In this experiment we used the learned P-CMPs from the example
in Figure 5 to compare the original AFO system with the P-
AFO system. Note that both AFO and P-AFO systems were
used with the proposed multi-layered control system based on P-
CMPs. As expected when AFO is used, the feed-forward torque
primitives might be shifted due to the properties of the original
AFO approach. The phase shift of the torque primitives encoded
in P-TPs, clearly results in a larger error compared to the new P-
AFO approach which has an unambiguously define phase. As also
shown in the example on Figure 3 the extracted phase of the P-
AFO system is always clearly defined with respect to the input
signal regardless of the initial conditions, while the extracted
phase from the original AFO system might vary, with respect to
the input signal. Note that an unambiguously defined phase is
needed to ensure a reliable response of the P-CMPs.

4.3. Physical Interaction Example
In the last example, the proposed P-CMPs method was
demonstrated on a task where the robot was holding a human
hand model with the simulated elbow joint as shown in Figure 7.
In this experimental setup, we used a Franka Emika Panda robot.
Note that the dimensional proportions and weight are equal
to an adult human arm. The physical arm model is part of
the evaluation of the possibility to help rehabilitation specialists
during rehabilitation procedures. Here a typical strategy would
be that the rehabilitation specialist defines the desired kinematic
motion for rehabilitation using imitation learning. In such a case,
considering that the robot could also hold an actual human hand,
it would be difficult to obtain a mathematical dynamical model.
Due to human variability, it would be a very specific, complex,
and time-consuming task.

Instead, we can use the proposed P-CMPs approach to
learn task-specific, appropriate torques for a given kinematic
trajectory. This task could be performed with the original CMPs
system combined with the statistical generalization. However,
this would not be most effective since it would require to learn
the CMPs at the specific frequency to build the database. In
contrast, the proposed P-CMPs framework allows learning at
an arbitrary frequency, as the frequency dependence is built
into the P-TPs system. Working with a compliantly controlled
robot, i.e., low feedback gains, with the ability to produce
accurate trajectory tracking makes the system also safer for the
environment, operator, and user.

To show the P-CMPs performance, the kinematic motion
for elbow stretching was defined by using kinesthetic teaching
(Deniša et al., 2013). The robot feedback loop gains for all joints
were set to 20Nm/rad and the feed-back error learning parameter
ι was set to 10. The performance of the P-CMPs framework for
this example is shown in Figure 8, where we show in the top
plot the desired frequency of motion, in the second plot the
corresponding kinematic tracking error and in the third plot we
show the relationship between current and final weight matrix for

one joint. The experiment was divided into three parts, motion
tracking without feed-forward P-TPs model, learning of P-TPs
model, and validation of learned P-TPs model, respectively. The
bottom plots show the evolution of P-TPs weights for one degree
of freedom during the learning process. Note that P-TPs weights
for one degree of freedom are a matrix ν with size of M × K,
where M = 25 and K = 6. Note that M is the number of phase

kernels, and K is the number of frequency kernels. Here the cφi ,
i = 1, 2, ...M is equally distributed between 0 and 2π and c�j ,
j = 1, 2, ...K is equally distributed between 0 and π .

The sum of square tracking errors shows that the proposed
approach can significantly improve the kinematic tracking. We
can see also that, by performing one sweep through the frequency
space already significantly improves the tracking error. As seen
in the third plot and bottom plots in Figure 8, at T = 400s
the weights are already at the 80% of the final value. Note that
in the second sweep through the frequency space the weights
changes for less than 20%with respect to the weights value at T =

600s. Furthermore, the validation part shows that tracking error
remains low, even after the learning process, as expected. Since
the proposed P-CMPs approach remains parametric in terms of
P-DMPs and P-TPs weights, all previously developed statistical
methods can also be applied, allowing for further expansion of
the task-specific learning of dynamics.

5. CONCLUSION

We presented a new P-CMPs framework consisting of a
novel P-AFO frequency and phase synchronization systems,
periodic DMPs, and a novel P-TPs system encoding task-specific
primitives. The proposed P-CMPs system uses feedforward
torque signals which are associated with corresponding
kinematic motions. We showed, that the novel approach is able
to unambiguously extract not only the frequency but also the
phase from an arbitrary signal which allows anchoring the P-TPs
to the P-DMPs trajectories. Furthermore, the novel extension
of the P-TPs system also makes P-TPs frequency-dependent,
which enables smooth frequency modulation of the P-CMPs.
Integrating the feedback error learning concept in P-CMPs also
improves the usability of the system. Our results indicate that
the system was able to synchronize the kinematic and dynamics
signals enabling compliant behavior while maintaining high
tracking accuracy, without the need for developing mathematical
dynamical models of the robot or the task.

The proposed P-CMPs framework is an improvement
compared to the previews CMPs framework, enabling better
learning performance and smooth frequencymodulation abilities
of periodic tasks.
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Petrič Phase-Synchronized Learning of P-CMPs

AUTHOR CONTRIBUTIONS

TP contributed to the design, execution, and drafting of
this work.

FUNDING

This work was supported by Slovenian Research Agency
grant N2-0130.

REFERENCES

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey
of robot learning from demonstration. Robot. Auton. Syst. 57, 469–483.
doi: 10.1016/j.robot.2008.10.024

Billard, A., Calinon, S., Dillmann, R., and Schaal, S. (2008). Robot

Programming by Demonstration. Berlin; Heidelberg: Springer.
doi: 10.1007/978-3-540-30301-5_60

Buchli, J., Stulp, F., Theodorou, E., and Schaal, S. (2011). Learning
variable impedance control. Int. J. Robot. Res. 30, 820–833.
doi: 10.1177/0278364911402527

Calandra, R., Ivaldi, S., and Deisenroth, M. P. (2015). “Learning torque control
in presence of contacts using tactile sensing from robot skin,” in 2015 IEEE-

RAS 15th International Conference on Humanoid Robots (Humanoids) (Seoul:
IEEE), 690–695. doi: 10.1109/HUMANOIDS.2015.7363429

Calinon, S. (2016). A tutorial on task-parameterized movement learning and
retrieval. Intell. Service Robot. 9, 1–29. doi: 10.1007/s11370-015-0187-9

Calinon, S., Alizadeh, T., and Caldwell, D. G. (2013). “On improving the
extrapolation capability of task-parameterized movement models,” in 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems (Tokyo:
IEEE), 610–616. doi: 10.1109/IROS.2013.6696414

Calinon, S., Bruno, D., Malekzadeh, M. S., Nanayakkara, T., and Caldwell, D.
G. (2014). Human-robot skills transfer interfaces for a flexible surgical robot.
Comput. Methods Prog. Biomed. 116, 81–96. doi: 10.1016/j.cmpb.2013.12.015

Del Prete, A., and Mansard, N. (2016). Robustness to joint-torque-tracking
errors in task-space inverse dynamics. IEEE Trans. Robot. 32, 1091–1105.
doi: 10.1109/TRO.2016.2593027

Deniša, M., Gams, A., Ude, A., and Petrič, T. (2016). Learning
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Petrič, T., Curk, B., Cafuta, P., and Žlajpah, L. (2010). Modelling of
the robotic powerball R©: a nonholonomic, underactuated and variable
structure-type system. Math. Comput. Modell. Dynamic. Syst. 16, 327–346.
doi: 10.1080/13873954.2010.484237
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Petrič Phase-Synchronized Learning of P-CMPs

Racca, M., Pajarinen, J., Montebelli, A., and Kyrki, V. (2016). “Learning in-
contact control strategies from demonstration,” in 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (Daejeon), 688–695.
doi: 10.1109/IROS.2016.7759127

Rozo, L., Calinon, S., Caldwell, D. G., Jimenez, P., and Torras, C. (2016). Learning
physical collaborative robot behaviors from human demonstrations. IEEE
Trans. Robot. 32, 513–527. doi: 10.1109/TRO.2016.2540623

Schwarz, M., and Behnke, S. (2013). “Compliant robot behavior using servo
actuator models identified by iterative learning control,” in Robot Soccer

World Cup, Lecture Notes in Computer Science, Vol. 8371, eds S. Behnke,
M. Veloso, A. Visser, and R. Xiong (Berlin; Heidelberg: Springer), 207–218.
doi: 10.1007/978-3-662-44468-9_19

Sciavicco, L., and Siciliano, B. (2012). Modelling and Control of Robot

Manipulators. London: Springer Science & Business Media.
Steinmetz, F., Montebelli, A., and Kyrki, V. (2015). “Simultaneous kinesthetic

teaching of positional and force requirements for sequential in-contact
tasks,” in 2015 IEEE-RAS 15th International Conference on Humanoid Robots

(Humanoids) (Seoul: IEEE), 202–209. doi: 10.1109/HUMANOIDS.2015.7
363552

Stulp, F., Raiola, G., Hoarau, A., Ivaldi, S., and Sigaud, O. (2013). “Learning
compact parameterized skills with a single regression,” in 2013 13th IEEE-

RAS International Conference on Humanoid Robots (Humanoids) (Atlanta, GA:
IEEE), 417–422. doi: 10.1109/HUMANOIDS.2013.7030008

Ude, A., Gams, A., Asfour, T., andMorimoto, J. (2010). Task-specific generalization
of discrete and periodic dynamic movement primitives. IEEE Trans. Robot. 26,
800–815. doi: 10.1109/TRO.2010.2065430

Wang, Y., Gao, F., and Doyle, F. J. III. (2009). Survey on iterative learning control,
repetitive control, and run-to-run control. J. Process Control 19, 1589–1600.
doi: 10.1016/j.jprocont.2009.09.006

Welschehold, T., Dornhege, C., and Burgard, W. (2016). “Learning manipulation
actions from human demonstrations,” in 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (Daejeon), 3772–3777.
doi: 10.1109/IROS.2016.7759555
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