
ORIGINAL RESEARCH
published: 08 January 2021

doi: 10.3389/fnbot.2020.600984

Frontiers in Neurorobotics | www.frontiersin.org 1 January 2021 | Volume 14 | Article 600984

Edited by:

Jorg Conradt,

Royal Institute of Technology, Sweden

Reviewed by:

Terrence C. Stewart,

University of Waterloo, Canada

Bernd Porr,

University of Glasgow,

United Kingdom

Emre O. Neftci,

University of California, Irvine,

United States

Tadahiro Taniguchi,

Ritsumeikan University, Japan

*Correspondence:

Tomas Kulvicius

tomas.kulvicius@uni-goettingen.de

Received: 31 August 2020

Accepted: 10 December 2020

Published: 08 January 2021

Citation:

Kulvicius T, Herzog S, Lüddecke T,

Tamosiunaite M and Wörgötter F

(2021) One-Shot Multi-Path Planning

Using Fully Convolutional Networks in

a Comparison to Other Algorithms.

Front. Neurorobot. 14:600984.

doi: 10.3389/fnbot.2020.600984

One-Shot Multi-Path Planning Using
Fully Convolutional Networks in a
Comparison to Other Algorithms

Tomas Kulvicius 1*, Sebastian Herzog 1, Timo Lüddecke 1, Minija Tamosiunaite 1,2 and

Florentin Wörgötter 1

1 Third Institute of Physics - Biophysics, Department for Computational Neuroscience, University of Göttingen, Göttingen,

Germany, 2 Faculty of Computer Science, Vytautas Mangnus University, Kaunas, Lithuania

Path planning plays a crucial role in many applications in robotics for example for planning

an armmovement or for navigation. Most of the existing approaches to solve this problem

are iterative, where a path is generated by prediction of the next state from the current

state. Moreover, in case of multi-agent systems, paths are usually planned for each

agent separately (decentralized approach). In case of centralized approaches, paths are

computed for each agent simultaneously by solving a complex optimization problem,

which does not scale well when the number of agents increases. In contrast to this, we

propose a novel method, using a homogeneous, convolutional neural network, which

allows generation of complete paths, even for more than one agent, in one-shot, i.e.,

with a single prediction step. First we consider single path planning in 2D and 3D mazes.

Here, we show that our method is able to successfully generate optimal or close to

optimal (in most of the cases <10% longer) paths in more than 99.5% of the cases.

Next we analyze multi-paths either from a single source to multiple end-points or vice

versa. Although the model has never been trained on multiple paths, it is also able to

generate optimal or near-optimal (<22% longer) paths in 96.4 and 83.9% of the cases

when generating two and three paths, respectively. Performance is then also compared

to several state of the art algorithms.

Keywords: multi-source single-target path planning, multi-agent systems, robotics, neural path planning, mazes

1. INTRODUCTION

Path planning is defined as the problem of finding a temporal sequence of valid states from an
initial to a final state given some constraints (Latombe, 2012). For autonomous vehicles, this
corresponds to a path finding problem from the vehicles’ current location to a destination, while
avoiding obstacles or other agents. For robotic manipulation, one needs to plan a motion trajectory
to perform collision free motion. Thus, trajectory- or path-planning is a fundamental issue in a
wide variety of applications. In this work, we specifically address the issue of multi-path planning
for single agents as well as single path planning for multi-agent systems.

Most common classical approaches for path planning are theDijkstra algorithm (Dijkstra, 1959),
the A∗ search (Hart et al., 1968), and its variants (e.g., see Korf, 1985; Koenig et al., 2004; Sun
et al., 2008; Harabor and Grastien, 2011). Dijkstra and A∗ algorithms perform well on grid-based
representations and provide the optimal solution (i.e., shortest path). However, they do not scale
well with increased dimensions and path lengths.

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.600984
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.600984&domain=pdf&date_stamp=2021-01-08
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tomas.kulvicius@uni-goettingen.de
https://doi.org/10.3389/fnbot.2020.600984
https://www.frontiersin.org/articles/10.3389/fnbot.2020.600984/full

Kulvicius et al. Convolutional Networks for Path Planning

Another class of common approaches, are sampling based
methods such as the rapidly-exploring random tree algorithm
(RRT, LaValle, 1998) and it is variants (e.g., see Karaman and
Frazzoli, 2011; Islam et al., 2012; Gammell et al., 2015, 2020).
While RRTs are more suitable for sparse continuous spaces, they
do not perform so well on grids or in complex environments like
mazes as compared to Dijkstra or A∗ (Knispel and Matousek,
2013; Bency et al., 2019), i.e., paths are not necessarily optimal.
Also these methods are computationally more expensive in
maze-like environments and require parameter tuning to obtain
optimal performance, whereas Dijsktra and A∗ are parameter-
free methods. Some approaches also exist that employ deep
learning methods to learn heuristic search or to select an
algorithm for a heuristic search in order to minimize search effort
(Bhardwaj et al., 2017; Sigurdson and Bulitko, 2017).

Some other path planning approaches are based on bio-
inspired neural networks (Glasius et al., 1995, 1996; Yang and
Meng, 2001; Bin et al., 2004; Li et al., 2009; Qu et al., 2009; Chen
and Chiu, 2015; Rueckert et al., 2016; Ni et al., 2017). Neurons in
these networks represent specific locations in the environment
similar to place cells found in hippocampus (O’Keefe and
Dostrovsky, 1971). The optimal path is found by activating the
target neuron and propagating activity to the neighboring cells
until the source neuron is reached. The path is reconstructed by
following the activity gradient of the network from the source
to the target. Conceptually, these methods are similar to the
Dijkstra algorithm and will find the optimal solution, however,
they require several iterations until convergence.

In case of path planning for multi-agent systems, usually,
decentralized approaches are used (e.g., see Wang and Botea,
2011; Desaraju and How, 2012; Chen et al., 2017; Long et al.,
2017; Everett et al., 2018), where path search is performed for
each agent separately. Thus, computation time scales with the
number of the searched paths (i.e., the number of agents).

Recently, several path planning methods have been proposed
using shallow (DeMomi et al., 2016) or deep network approaches
such as deep multi-layer perceptrons (DMLP; Qureshi et al.,
2019), long short-term memory (LSTM) networks (Bency et al.,
2019), and deep reinforcement learning (deep-RL; Tai et al.,
2017; Panov et al., 2018), or mixed approaches that can be used
for robot movement generation (Seker et al., 2019). All these
methods plan paths iteratively by predicting the next state or next
action (in case of RL) based on the current state, environment
configuration, and the target position until the goal is reached.
Therefore, the network has to be exploited many times until a
complete path can be constructed.

Humans, however, can directly see a path in simple,
quite empty mazes without having to perform serial search.
Everyone knows this from own experience and, commonly,
such phenomena are subsumed under the term perceptual pop-
out. Serial search sets in as soon as mazes get more complex
(Crowe et al., 2000; Chafee et al., 2002) and this is evidenced, for
example, by saccades that do not exist during pop-out but occur
during serial search (Chafee et al., 2002). Thus, in the current
study we asked, weather it would be possible to implement path
pop-out also in an artificial, network-based system. From the
above discussed history of the path-finding literature, it appears

unorthodox to think so, but: Can one use pure filtering processes
to achieve something similar to a path pop-out?

To show this, here we present a method based on a fully
convolutional network, coined CNPP—Convolutional Network
for Path Planing, which allows multi-path planning in one-shot,
i.e., multiple path search1 can be realized with a single prediction
iteration of the network which allows performing path search
faster compared to other approaches. Note that, although the
model was not trained on multiple paths (only single paths were
used for training), CNPP is able to generate optimal or near-
optimal paths in 96.4 and 83.9% of the cases when generating two
and three paths, respectively.

The structure of this manuscript is as follows. In the following
section we explain our approach (section 2), then we provide
an evaluation of our method where we first analyze the general
performance of the proposed network and afterwards we analyze
path planning of multiple paths in simulated environments. This
is done by comparing it to four other powerful algorithms for
path planning. Finally, we provide an application of our approach
for navigation in real cities (section 3). In section 4, we relate
our approach to the comparison methods and especially discuss
also under which conditions the different, here-investigated
algorithms might be beneficial and under which conditions they
ill-perform. This way we hope to provide useful insights to
scientists who wish to apply the different methods2.

2. PROPOSED METHOD

Our approach works in 2D and in 3D. In the following, the
formalism is defined for the 2D case, but it applies in a similar
way to 3D, too.

2.1. Overview
The task is to predict an optimal path (or several paths) in a so far
unseen, new environment given any start- and goal-point. The
new environment can be of different size and/or can consist of
different configurations and/or shapes of obstacles as compared
to the ones used in the training set. In this study, we have
considered both 2D and 3D environments.

Each environment is described by an occupancy grid (binary
image) of size n×m in 2D, where we mostly use m = n (similar
in 3D), where free spaces are marked in white and not traversable
spaces (obstacles) are marked in black. The start- and end-points
are represented by separate binary images where the start- (or
end-point) is marked black and all other grid cells are marked
white (see input in Figure 1).

After training, the network is able to predict a collision-free
path from the start- to the end-point, which is represented as a
binary 2D or 3D image where the path is marked again in black
(see output in Figure 1 for the 2D example). The actual trajectory,
i.e., the sequence of locations that the agent needs to traverse, is
then constructed by tracking the black cells using forward- (from

1Note that path planning consists of two steps, i.e., path search and path

reconstruction.
2A preliminary version of this paper has been presented at ICRA 2020 (Kulvicius

et al., 2020).

Frontiers in Neurorobotics | www.frontiersin.org 2 January 2021 | Volume 14 | Article 600984

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kulvicius et al. Convolutional Networks for Path Planning

FIGURE 1 | Proposed network architecture based on a fully convolutional neural network. If not otherwise mentioned, we used 21 convolutional layers with 3 × 3

filters (64 filters in layers 1–20 and one filter in the last layer). We used ReLU activation units in all but the last layer where sigmoid activation units were used.

the start-point) and backward- (from the end-point) search until
the path-segments meet or cross each other.

In general, it would possible to employ a fully convolutional
network in a fully end-to-end manner on raw images but the
network would need many more layers and a direct comparison
to other state-of-the-art planning algorithms such as A∗, RRT,
BIT, which do not work on raw images, would not be possible. To
create a network that operates on raw images would essentially
amount to a mixed approach that performs image processing and
path finding, which is not the purpose of this study. Instead, here
we target path planning for multi-agent systems where the map
is known but positions of sources and targets change over time.

Typical 2D path planning applications offer map information
directly. These are, for example, taxi-scenarios, such as that
shown in Figure 8, navigation in indoor environments, e.g.,
shopping malls, path planning for multi-players in games. Here,
usually maps are available (e.g. city maps, floor maps, etc.) and
can be binarized just by using simple color thresholding, where—
by contrast—using any network-based approach to do this seems
too effortful.

In case of 3D, we aim at trajectory planning for robotic
manipulators. In these cases, depth sensors are usually used,
which generate 3D point cloud data, from which the generation
of binary 3D images is also straightforward, i.e., 3D points in the
point cloud data would correspond to obstacles and empty spaces
would correspond to free spaces.

2.2. Data
2.2.1. Input Definition
We define the grid map as a binary image Ie, where we set Iei,j = 0,

if the grid cell (i, j) is free (no obstacles), otherwise we set Iei,j = 1,

if it contains obstacles. Similarly, we also define maps for start-

and end-points: we set I
s/g
i,j = 1 at the start-/end-point and we

set I
s/g
i,j = 0 anywhere else. Here Is and Ig denote the start map

and the goal map, respectively. Thus, we obtain an input of size
3× n×m.

We have also analyzed the network’s capability to plan
multiple-paths at once from several start-positions to the same
goal position. In these cases several grid cells of Isi,j were set to 1

to mark start-positions of the agents.

2.2.2. Output Definition
As in case of the input maps, we used a binary map to define the
output map O, where we set Oi,j = 1, if the found path was
traversing this grid cell (i, j), and we set Oi,j = 0 everywhere
else. In our study, we used the A∗ grid search algorithm to find
the optimal solutions (ground truth paths for training), where
eight movement directions (vertical, horizontal, and diagonal)
were allowed. To calculate the cost of the path from the start to
the current grid cell, for vertical and horizontal moves we used
a cost of 1 and for diagonal moves we had cost of

√
2. We used

the Euclidean distance from the current grid cell to the goal cell to
calculate the cost of the path from the current grid cell to the goal.

2.2.3. Data Generation
The input maps for training and testing were generated randomly
in the following way. In case of 2D grids, each grid cell was set to
1 (an obstacle) with a probability po = 0.6 or was set to 0 (a free
space) with a probability pf = 1 − po. Note that two diagonal
configurations of obstacles were not permitted: {Iei,j = 0, Iei,j+1 =
1, Iei+1,j = 1, Iei+1,j+1 = 0} and {Iei,j = 1, Iei,j+1 = 0, Iei+1,j =
0, Iei+1,j+1 = 1}, as this would have allowed the A∗ algorithm to

generate paths going between two diagonally arranged obstacles
that touch each other only by a corner, which in real scenarios,
however, cannot be traversed. As a consequence, environments
mostly consist of vertical or horizontal bar-like structures. In case
of 3D grids, we assumed that objects (obstacles) do not float in
the air. Thus, obstacles were columns of random height h (from
a uniform distribution), i.e., Ie

i,j,1...h
= 1.

We generated three data sets: two data sets (2D grids and 3D
grids) for learning and testing predictions of single paths and one
data set for testing predictions ofmultiple paths (up to three start-
positions). The procedure for generating training data and test
data was the same as explained above, however, we performed a
sanity check to make sure that none of the maps from test set are
identical with the maps in the training set. Also, note that we did
not train our network on multiple paths.

For the first two cases, we generated environments of three
different sizes: 10× 10, 15× 15, 20× 20, and 30× 30 (the latter
only for the 2D case). Some examples of 15 × 15 environments
are shown in Figure 2. We generated 30,000 environments for
each 2D case and 97,000 for each 3D case with different obstacle
configurations and different random start- and end-points. Note

Frontiers in Neurorobotics | www.frontiersin.org 3 January 2021 | Volume 14 | Article 600984

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kulvicius et al. Convolutional Networks for Path Planning

FIGURE 2 | Examples of single path predictions on unseen environments for different square grids trained and tested on the same grid size. (A) n = 10, (B) n = 15,

and (C) n = 20. The first two columns show optimal (shortest) paths, the middle two columns sub-optimal paths and the last two columns not found paths. Crosses

denote the A* solution, where blue dots denote the predicted path using our CNPP. Size of the dots corresponds to small (close to zero) and large values (close to

one) of the network outputs. Green and red dots correspond to the start- and end-point, respectively.

that the minimum Euclidean distance between start- and end-
points was 5 to avoid very short paths and to exclude trivial cases.

For the prediction of multiple paths, we generated
1,000 environments of size 15 × 15 with different obstacle
configurations but fixed start- and end-positions. Start-points
were located at positions (1, 1), (1, n), and (n, 1) (in the corners)
where the goal was at the position (8, 8) (in the middle). We
have chosen such configuration on purpose in order to keep all
sources as much apart as possible and as far from the target as
possible. Some examples of environments are shown in Figure 6.

2.3. Network
2.3.1. Network Architectures
For the 2D case, we used a fully convolutional network as shown
in Figure 1. The input layer consists of three 2D binary images
and the output is a single 2D binary image as described above.
We used 20 identical 2D convolutional layers with 64 filters of
size 3 × 3 and with stride 1 and one convolutional layer at the
end with one filter of size 3 × 3. The first layer maps input of
size 3 × n × n to 64 feature maps of size n × n where the same
2D filters of size 3 × 3 are used for all three input layers. After
each convolutional layer we used a batch normalization layer (not
shown), and after the last convolutional layer we added a dropout
(10%) layer. Note that dropout was only used in training. In all
but the last convolutional layer we used ReLU activation units,

whereas in the last convolutional layer sigmoid activation was
used. We define the network output as Ô, where Ôi,j can obtain
values between 0 and 1. In all layers, we used zero padding to
keep the same dimension and prevent information loss. Note that
we also tried a network architecture with non-zero padding, but
performance was worse (results not shown).

For the 3D case, we used a similar network architecture with
3D convolutional layers (filters of size 3 × 3 × 3), except that
we used more filters in the first four layers (1,024, 512, 256,
and 128) to cover larger variability of possible filters due to the
additional dimension.

2.3.2. Training Procedure
We used the mean squared error (MSE) between the network
output Ô and the ground truth solution O as loss. The ADAM
optimizer with default learning parameters was used for training
both 2D and 3D networks. For the 2D case we used a batch
size of 64 samples and for the 3D case (due to our hardware
limitations) we used a batch size of 16 samples. Early validation
stopping was used if the accuracy on the validation set did
not increase within the last 10 epochs to prevent over-fitting.
We used 28,000 environments (26,000 for training and 2,000
for validation) and 95,000 environments (90,000 for training
and 5,000 for validation) for training the 2D network and 3D
network, respectively. We used 2,000 unseen environments for

Frontiers in Neurorobotics | www.frontiersin.org 4 January 2021 | Volume 14 | Article 600984

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kulvicius et al. Convolutional Networks for Path Planning

testing the performance of both networks. We trained the 2D
network ten times and then selected the best model with the
highest accuracy on the validation set. Since we did not observe
high variation of MSE when training the 2D network, we trained
the 3D network only once.

2.4. Path Reconstruction
As explained above, the output of the network is a value map
(grid), which contains values between zero and one. These values
can be treated as certainty of the grid-cell to be part of the
path. The output map as such does not yet provide the temporal
sequence of points that would lead from the start-point to the
end-point (goal). Thus, path(s) has/have to be reconstructed from
this prediction-map. In our case, we simply did this by using
bidirectional search: Let us denote the forward and the backward
part of each path k (k = 1 . . .K) as a temporal sequence of

points on the 2D grid with (x
f ,k
t , y

f ,k
t) and (xb,kt , yb,kt), respectively.

We also annotate the start-point of each path as (xks , y
k
s) and

the end-point (goal) as (xg , yg). Initially we set (x
f ,k
1 , y

f ,k
1) =

(xks , y
k
s) and (xb,k1 , yb,k1) = (xg , yg). Given the current position

(xkt , y
k
t) of the forward/backward path k, the next position of the

forward/backward path k is obtained by choosing the grid cell
(i, j) in the nearest neighborhood of the current position (we used
eight nearest neighbors) with maximum value of the network
output Ô:

(xkt+1, y
k
t+1) = argmax

i,j
Ôi,j, (1)

where {i 6= xkt , j 6= ykt , i ∈ {xkt − 1, xkt + 1}, j ∈ {ykt − 1, ykt + 1}}.
After this step, we set Ôi,j = 0.We continue constructing forward
and backward paths until one of the three conditions is met:

1. End-point is reached, (x
f ,k
t , y

f ,k
t) = (xg , yg);

2. Start-point is reached, (xb,kt , yb,kt) = (xks , y
k
s);

3. The paths cross each other, (x
f ,k
t , y

f ,k
t) = (xb,k

h
, yb,k

h
) or

(xb,kt , yb,kt) = (x
f ,k

h
, y

f ,k

h
}, where 1 ≤ h ≤ t.

Thus, depending on the condition met, the final path Pk is
constructed as follows:

Pk = [(x
f ,k
1 , y

f ,k
1), . . . , (x

f ,k
Nf
, y

f ,k
Nf
)], if condition 1. is met; (2)

Pk = [(xb,kNb
, yb,kNb

), . . . , (xb,k1 , yb,k1)], if condition 2. is met; (3)

Pk = [(x
f ,k
1 , y

f ,k
1), . . . , (x

f ,k
t , y

f ,k
t), (xb,k

h−1
, yb,k

h−1
), . . . , (xb,k1 , yb,k1)] or (4)

[(x
f ,k
1 , y

f ,k
1), . . . , (x

f ,k

h−1
, y

f ,k

h−1
), (xb,kt , yb,kt), . . . , (xb,k1 , yb,k1)],

if condition 3. is met.

Here,Nf andNb are the lengths of the forward and the backward
path, respectively. In real applications, for example in robotics,
the points of the path P could then be used as via points to
generate trajectories using conventional methods such as splines
(Egerstedt and Martin, 2001; Siciliano et al., 2009) or more
advanced state-of-the-art methods such as dynamic movement
primitives (DMPs, Ijspeert et al., 2013). Note that in some cases
paths could not be reconstructed, i.e., none of the stopping

conditions were met. In this case we treated network’s prediction
as “path not found.”

3. EXPERIMENTS

We compared our approach against four algorithms: the A∗

algorithm (Hart et al., 1968), the RRT algorithm (LaValle,
1998), and Deep Multi Layer Perceptron (DMLP; Qureshi et al.,
2019) and the BIT∗ (Batch Informed Trees; Gammell et al.,
2020). For our network implementation we used Tensorflow and
Keras API3, where for DMLP we used PyTorch implementation
provided by the authors. A∗ and RRT algorithms were
implemented in Python. For evaluation we used a PC with Intel
Xeon Silver 4114 (2.2 GHz) CPU and NVIDIA GTX 1080 (11
GB) GPU.

3.1. Evaluation Measures
For comparison we used the following criteria: (1) success rate,
(2) path optimality, and (3) run-time of the algorithm. All
measures have been applied to our method (CNPP) but also to
all other algorithms used for comparison.

3.1.1. Success Rate
We counted an algorithm’s prediction as successful (path found)
if the path P could be reconstructed from its output, otherwise
we counted the prediction as failed (path not found). The success
rate SR was computed as percentage of successfully found paths
out of all tested environments:

SR = 100% · NS

NT
, (5)

whereNS is the number of successfully found paths and theNT is
the total number of path planning queries.

3.1.2. Path Optimality
We also checked whether successfully predicted paths were
optimal (i.e., shortest path) or not. For that, we compared path
lengths of the paths obtained by using the different algorithms,
where A∗ renders always an optimal path on the octile grid
and is used as the ground truth. The path length was computed
as follows:

L =
q−1∑

t=1

‖Pt+1 − Pt)‖, (6)

where Pt = (xt , yt) are the points of the reconstructed path
from network’s output Ô, and q is the number of points in the
path sequence. Here, ‖ · ‖ is the Euclidean norm. The path
predicted by the any algorithm (sub-script: . . . alg) was counted
as optimal if Lalg ≤ LA∗. Note that RRT based algorithms can
produce shorter paths than A∗ since they operate in continuous
space. Consequently, the percentage of optimal paths OP was
computed as:

OP = 100% · NO

NT
, (7)

3The source code will be available online after publication of this manuscript.

Frontiers in Neurorobotics | www.frontiersin.org 5 January 2021 | Volume 14 | Article 600984

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kulvicius et al. Convolutional Networks for Path Planning

whereNO is the number of optimal paths. The paths predicted by
an algorithm are not always optimal, thus, we also computed the
path length ratio LR of non-optimal paths to analyze how much
longer non-optimal paths are, compared to the A∗ solutions:

LR =
Lalg

LA∗
. (8)

3.1.3. Algorithm Run-Time
For run-time comparison we analyzed how much time it takes to
find a single path for different path lengths. In this evaluation, the
path length was measured in steps, i.e., how many steps it takes
to move from the start-point to the end-point.

3.2. Evaluation Procedures
We performed two types of experiments: (1) prediction of single
paths (one source and one target) in 2D and 3D environments
and (2) prediction of multiple paths (up to three sources and
one target). In the first case, we were interested in the general
performance of the system with respect to the above introduced
measures and we wanted to check how well the network can
generalize to different grid sizes. For this, we trained the network
to predict single paths on three different grids (10× 10, 15× 15,
and 20× 20) and then tested each model on all three grids.

In the second type of experiments, we tested whether the
network can predict multiple paths although the network has
only been trained on single paths. In this study we checked the
network’s ability to predict up to three paths. Here we tested path
predictions on a grid size 15×15, thus, the networkmodel trained
on 15× 15 grid for single paths was used for testing.

3.3. Application to City Maps
Finally, we also applied and tested our proposed approach on real
city maps. We assumed a “taxi scenario” where the task is to find
a taxicab that is closest to a customer in terms of route distance
in a given city scenario. For that we have chosen some parts of
several city maps from the Moving AI Lab path finding database
(Sturtevant, 2012). In this case, we predicted paths from four
sources to one target, and then we found the closest source to the
target based on the path length. As in the multi-path simulation
experiments we placed sources in the corners and target in the
middle. Such a configuration excluded an easy way of finding the
closest source based on the direct Euclidean distances between
sources and the target. The manually selected parts were down-
sampled five times to 25× 25 grids and tested on the 2D network
that was trained on 20× 20 grids.

4. RESULTS

4.1. Parameter Analysis
Our approach uses only three hyper-parameters and, first, we
provide an analysis of the network performance with respect to all
of them: number of layers, kernel size, and number of kernels. In
the first set of experiments we trained and tested three networks
with different number of layers, i.e., 11, 21, and 31, on three grids
of size 10×10, 20×20, and 30×30. Results are shown in Table 1

where we show average SR and OP obtained from 10 sample sets
(200 samples per set).

TABLE 1 | Analysis of network performance with respect to number of layers and

kernel size, and number of kernels obtained from 10 sample sets (200 samples

per set) on unseen 2D environments.

Number of layers

11 21 31

Success rate (%)

10×10 100 100 99.95

20×20 97.30 99.60* 99.80

30×30 94.10 96.20* 99.65*

Optimal paths (%)

10×10 95.85 99.85* 97.05

20×20 59.04 86.55* 83.87

30×30 29.29 63.36* 79.43*

Kernel size

(20 × 20 grid, 21 layers)

2×2 3×3 4×4 5×5

Success rate (%)

70.10 99.60* 99.50 97.20

Optimal paths (%)

8.13 86.55* 85.62 87.03

Number of kernels

(20 × 20 grid, 21 layers)

16 32 64 96

Success rate (%)

99.40 97.70 99.60* 97.85

Optimal paths (%)

74.50 83.17* 86.55* 88.55

The asterisks mark statistically significant increase of the values compared to the values

shown in the previous column (i.e., on the left side; t-test, p < 0.05). All other changes

are not reaching significance. Bold numbers denote the highest significant improvement

compared to the numbers shown in previous columns.

When looking at the success rate (top part of the table), bold
numbers show for which number of layers the success rate for
the first time reached more than 99%. They follow the diagonal.
This demonstrates that for larger grids deeper architectures
are needed, where the number of layers should minimally
correspond to the linear grid size. Architectures deeper than
that (to the right from the diagonal) can sometimes improve
performance (e.g., see grid 20×20, 31 layers), but only statistically
insignificantly, and they will slow down calculations.

The suggestion to configure the network by following the
diagonal essentially (except grid 10 × 10) also holds for the
number of optimal paths.

In the second and the third set of experiments we trained and
tested four networks (21 layers each) on a grid of size of 20 × 20
with different kernel sizes 2×2, 3×3, 4×4, and 5×5, and different
number of kernels 16, 32, 64 and 96. Results demonstrate that
the best performance is obtained with 64 kernels of size 3 × 3
when taking both success rate and percentage of optimal paths
into account. Thus, in all further experiments networks with 64
(3× 3) kernels were used.

Of course, it would also be possible to use architectures
with different kernel sizes and different number of kernels
for different layers. This creates a wide variety of different

Frontiers in Neurorobotics | www.frontiersin.org 6 January 2021 | Volume 14 | Article 600984

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kulvicius et al. Convolutional Networks for Path Planning

possible architectures, but given the high success rate found with
the much simpler uniform architecture, we did not investigate
such combinations.

4.2. Analysis of the Network’s Internal
Activity
To understand how the network finds a shortest path, we
performed an additional analysis where we looked at the activity
within feature maps for three different environments of size
20 × 20, i.e., without obstacle, with a rectangular obstacle and
with an inverted u-shape obstacle. In all cases, a network with
21 layers trained on environments of size 20 × 20 was used as
explained above.

Results are shown in Figure 3 where we plot the summed
activity of all 64 feature maps (i.e., contribution of all filters)
for layers 1–19 and 21. One can observe that overall activity
is propagating outwards from the start and goal positions
simultaneously in a wave-like manner (see case A), whereas other
feature maps also respond to obstacles (compare first rows in
cases A and B/C), which presumably blocks activity propagation
at the obstacles and forces the activity to go around them (see
second and third rows in cases B and C). Interestingly, such
activity propagation is to some extent similar to the one observed
in the wave-front expansion algorithm (Choset et al., 2005).

4.3. General Performance of the Proposed
Network
Examples of single path predictions on different 2D grids are
shown in Figure 2, where the network prediction is marked by
blue dots4.

In most of the cases the network is able to predict optimal
paths. Examples of optimal paths that corresponds to the A∗

solution are shown in the first column, whereas in the second
column we show examples of optimal paths that differ from the
A∗ path (usually going around an obstacle from the other side). In
the third and fourth column we show feasible paths that are sub-
optimal, i.e., longer (in most of the cases<10%) than those found
by A∗. The last two columns show cases of failed predictions, i.e.,
paths that could not be reconstructed from the network’s output.
This case only happened once for the 10× 10 grid.

A statistical evaluation of single path predictions on simulated
2D and 3D environments is presented in Figure 4, where we
show the networks’ performances when trained and tested on
different grid sizes. In general, we obtained a relatively high
success rate (Figures 4A,D), above 99.5% for both, 2D and 3D,
cases when trained and tested on the same grid size. Results
demonstrate that the network can also predict paths quite reliably
on a grid size that was not used for training. Except for cases
trained on the grid sizes of 10 and tested on the grid size of 20,
the success rate is above 98% for 2D and 88% for 3D. As expected,
we observe worse performance of the models trained on smaller

4More examples of 2D and 3D path predictions can be found at https://alexandria.

physik3.uni-goettingen.de/cns-group/datasets/path_planning/.

grids and tested on larger grids since smaller grids do not include
examples of longer paths that are possible in larger grids.

Although the network in most of the cases is able to predict
a feasible path (which leads from the start- to the end-point),
paths are not always optimal. In Figures 4B,E, we observe that
we obtain fewer optimal paths when testing on larger grids of size
n = 20. The red bars in Figures 4B,E show this as compared
to smaller grids of size n = 10 (blue bars), which produce better
results. This is due to the fact that paths in larger environments on
average are longer than in smaller environments, and thus more
prone to prediction errors. For the same reason, we can also see
that the number of optimal paths increases if larger environments
are used for training. Thus, results suggest that training on larger
maps is more beneficial.

Next we checked how much longer non-optimal paths are
with respect to the shortest, optimal path. As in the previous
cases, better performance is obtained if trained on the same or
larger grids than the test case (Figures 4C,F). Nevertheless, in
most of the cases non-optimal paths are on average <10% longer
compared to the shortest path (in a range between 5 and 7% for
2D, Figure 4C; and between 7 and 9% for 3D, Figure 4F).

4.4. Comparison to Other Algorithms
Some comparisons of our method (CNPP) to other approaches
for single-path planning are presented in Figure 5. For
comparison we used four different algorithms: A∗ (Hart et al.,
1968), Rapidly Expanding Random Trees (RRT, LaValle, 1998),
DMLP (Qureshi et al., 2019) and Batch Informed Trees (BIT∗,
Gammell et al., 2020). All these algorithms have been successfully
applied to path finding problems. Note that RRT∗ (that finds
optimal paths but is slow) has not been included in this analysis,
because BIT∗ has been shown to be faster and equally optimal
(Gammell et al., 2020). The results presented belowwill show that
they perform quite differently (note that we tuned parameters of
each algorithm to obtain the best performance). In section 5, we
will expand on this, also discussing under which conditions one
or the other algorithm might be beneficial.

For the 2D case, we used 30 × 30 grids and, for the 3D case,
grids of size 20× 20× 20. The CNPP had 31 layers for 2D and 21
layers for 3D.

For the RRT, we limited the search to a maximum of 1,000
samples and a trial was counted as unsuccessful if the goal was not
reached within this limit. The other parameters were as follows.
Themaximumdistance between a new node and the nearest node
was 2, and the goal bias probability was 0.1.

For BIT∗, we used 500 and 1,500 samples for the initial batch
for 2D and 3D, respectively. The batch size was increased by
500 samples for the next batch for both cases until the path
was found. We also performed path search with a single batch
(first batch, noted as BIT∗-1). In this case a trial was counted
as unsuccessful if the path was not found using this batch. In
all cases, the maximum distance for the node neighborhood was
set to 3.

In case of DMLP, we skipped the encoder network (Qureshi
et al., 2019) and only used the planning network since we did
not use point clouds for obstacle representation. In our case,
we used the same obstacle representation (only flattened) as in

Frontiers in Neurorobotics | www.frontiersin.org 7 January 2021 | Volume 14 | Article 600984

https://alexandria.physik3.uni-goettingen.de/cns-group/datasets/path_planning/
https://alexandria.physik3.uni-goettingen.de/cns-group/datasets/path_planning/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kulvicius et al. Convolutional Networks for Path Planning

FIGURE 3 | Analysis of the network’s internal activity on three different environments of size 20× 20. A network architecture with 21 layers was used in all three

cases. (A) Environment without obstacle, (B) environment with a rectangular obstacle in the center, and (C) environment with an inverted u-shape obstacle in the

center. Green and red dots correspond to start- and end-points, respectively. Each activity map shows the contribution of all 64 feature maps (sum over the feature

maps) for layers 1–19, and 21. Blue and dark colors correspond to high and low activity, respectively.

Frontiers in Neurorobotics | www.frontiersin.org 8 January 2021 | Volume 14 | Article 600984

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kulvicius et al. Convolutional Networks for Path Planning

FIGURE 4 | Results for the prediction of single paths in (A–C) 2D and (D–F) 3D environments obtained from 2,000 unseen environments for each case. Error bars in

(C,F) denote confidence intervals of the mean (95%).

CNPP with additional current- and end-point coordinates, thus,
the total length of the input vector was 904). The DMLP consisted
of 14 hidden layers with 1,792, 1,536, 1,408, 1,280, 1,024, 896, 768,
512, 384, 256, 256, 128, 64, and 32 neurons per layer, respectively.
For the path planning step, we limited the search to 100 iterations
where one iteration consists of predicting the next states from
both the start and goal locations and a collision check (see
Qureshi et al., 2019 for more details). Also, we counted a trial
as unsuccessful if the path length ratio LR was more than 1.75.
All other parameters were kept as in the original implementation
provided by the authors.

Figure 5 shows that the performance of CNPP and BIT∗ is
comparable to A∗ with respect to the success rate. Note that
RRT and BIT∗ are not parameter-free. For RRT there is no
parameter set with which a performance similar to our CNPP
can be obtained on such mazes. After some tuning, the best
performance, as measured by SR, OP, and LR, is shown in the
figure, where paths are not optimal in most of the cases.

BIT∗ and BIT∗-1 perform in general better than RRT. BIT∗

allows reaching 100% success rate, however, the percentage of
optimal paths is much lower as compared to CNPP, where BIT∗

is slower than CNPP in 2D (t − test, p < 10−6) and faster than
CNPP in 3D (p < 0.01). For BIT∗-1 we tuned the parameters
so that similar (2D, p > 0.1) or faster (3D, p < 10−6) run-time
performance as compared to CNPPwas obtained. Then, however,
the percentage of optimal paths for BIT∗-1 is also much lower
than for CNPP. The percentage of optimal paths for BIT∗-1 and

BIT∗ could be improved by increasing the number of samples in
the batches, however, this would increase search time.

With respect to the path length ratio (see Figure 5C),
A∗ always returns optimal paths and outperforms all other
algorithms in both 2D and 3D, however, it is slower than all other,
except DMLP, algorithms in 3D (t − test, p < 10−6 for all cases).
In the 2D case, CNPP returns on average shorter paths than RRT,
BIT∗-1, BIT∗, and DMLP (p < 10−6 for all cases), whereas in
3D, paths of CNPP on average are longer than BIT∗-1 and BIT∗

paths (p < 10−6 for both cases), but shorter than RRT paths
(p < 10−6).

The performance of DMLP remains far inferior to all other
algorithms. Due to this reason, we considered DMLP only for the
2D case.

Note, however, that measuring computational time has to be
taken with a grain of salt, as this might strongly depend on the
efficiency of the implementation. To make a fair comparison,
all algorithms were implemented in Python and we have always
used the same hardware to test run-time of all algorithms.
Hence, while absolute values will change with implementation
and hardware, relations between the different algorithms should
remain similar if not using fundamentally different hardware
(like parallel processing, etc.).

When averaging over 2,000 different single paths, we find that
under these conditions the A∗ algorithm is the fastest in 2D
(t − test, p < 10−6 when compared to all other algorithms).
CNPP and BIT∗-1 are slower than A∗ but faster than RRT and

Frontiers in Neurorobotics | www.frontiersin.org 9 January 2021 | Volume 14 | Article 600984

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kulvicius et al. Convolutional Networks for Path Planning

FIGURE 5 | Comparison of different approaches obtained from 2,000 unseen 2D and 3D environments. (A) Success rate SR, (B) percentage of optimal paths OP, (C)

average path length ration of non-optimal paths LR (not applicable for the A* since all paths are optimal), and (D) average run-time. Error bars denote confidence

intervals of the mean (95%). A*, A-star algorithm (Hart et al., 1968); RRT, rapidly-exploring random tree algorithm (LaValle, 1998); BIT*-1, batch informed trees with a

single batch (Gammell et al., 2020); BIT*, batch informed trees with multiple batches (Gammell et al., 2020); DMLP, deep multi-Layer perceptron (Qureshi et al., 2019);

and CNPP, convolutional network for path planning (our method).

DMLP (Figure 5D, p < 10−6). In 3D, A∗ is slower than RRT,
BIT∗-1, BIT∗, and CNPP (p < 10−6 for all cases) but always
optimal. RRT, BIT∗-1, and BIT∗ are faster than CNPP (p < 10−6

for RRT and BIT∗-1, and p < 10−6 for BIT∗) but percentage
of optimal paths is much smaller as compared to CNPP (see
Figure 5B). For example, in 3D RRT returns many paths that
climb up and then the path runs along the “open-air space” on
top of the maze (remember that these environments look like city
maps with buildings standing on the ground). CNPP, on the other
hand, renders in 2D and in 3D quite a good trade off between
speed, which is a bit slower, and optimality, which remains quite
high. Note that, as we will show below, although CNPP is not the
fastest on single path predictions, it outperforms A∗ and BIT∗ on
multi path predictions (see Figure 7).

Specifically note that on average the run-time of DMLP in 2D
is five times slower as compared to the RRT. This is due to the
fact that, in case of DMLP, the network has to be exploited many
times to plan the complete path.

In summary, A∗ algorithm gives optimal solutions, but does
not scale well when dimensions increase, e.g., 2D vs. 3D case (see
Figure 5). For this reason, algorithms such as RRT and BIT∗ were
developed for robotic applications, in particular for trajectory
planning for manipulation tasks in 3D environments, which do
not provide optimal solutions but are faster than A∗. Here we
showed (see Figure 5) that in some cases we outperform these

algorithms with respect to success rate and/or path optimality
and/or time.

All these observations also show that for most algorithms
there is a speed vs. path length trade-off. Furthermore, parameter
tuning can—according to our experience—take quite some
time and will have to be re-done whenever the structure
of the environment changes. This will be discussed more in
the Discussion section arguing that CNPP is less affected by
this problem.

4.5. Prediction of Multiple Paths
One core contribution of this study is that our approach can be
used for multi-path prediction without training on this.

Accordingly, examples for the predictions of two and three
paths are shown in Figure 6. Note that the first row is a
control case. As above, also here we show cases of optimal,
sub-optimal and not-found paths. The following four cases can
be observed.

1. Paths are not disturbed by adding a second or third source,
which usually leads to optimal solutions (see optimal paths in
Figures 6A1–C1).

2. Network predictions can change leading to sub-optimal paths,
when adding more sources. For example, CNPP may find

Frontiers in Neurorobotics | www.frontiersin.org 10 January 2021 | Volume 14 | Article 600984

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kulvicius et al. Convolutional Networks for Path Planning

FIGURE 6 | Examples of multi-path predictions on six unseen environments of size 15× 15. For each environment we show: (A) single path predictions (control case),

(B) predictions of two paths, and (C) prediction of three paths. Crosses denote A* solutions where blue dots denote predicted paths using the CNPP. Size of the dots

correspond to small (close to zero) and large (close to one) values of the network output. Green and red dots correspond to start-points and end-point, respectively.

TABLE 2 | Results for the prediction of multiple paths obtained from 1,000

unseen 2D environments.

Number of searched paths

1 2 3

Success rate (%)

1 path found 99.50 99.80 100

2 paths found N/A 96.40 99.20

3 paths found N/A N/A 83.90

Optimal paths (%)

93.77 85.88 83.33

Path length ratio (Mean ± CI [95%])

1.07±0.009 1.15±0.023 1.22±0.029

Error margins denote confidence intervals of the mean. Bold numbers correspond to the

cases when searched for one, two and three paths, respectively.

a single optimal path (Figure 6A2), but then return a sub-
optimal path when additional start locations are included in
the input (Figure 6B2).

3. A path can “disappear” when adding a second or third source
(see Figures 6A4,B4) or, the other way around,

4. a path can “appear” when adding more sources (see
Figures 6A6,C6).

A statistical evaluation for the multi-path prediction is given in
Table 2, where we show the performance for prediction of one

(control case), two and three paths tested on the 15 × 15 grid.
Results show that the success rate of finding two paths out of
two searched paths and three paths out of three searched paths
is 96.4 and 83.9%. Thus, performance is slightly decreasing with
increasing number of searched paths. On the other hand, in the
case of three-path-search the network was always able to predict
at least one path, and success rate for the prediction of two paths
was relatively high, i.e., 99.2%. Note that we get an improvement
compared to two-path-search since there is a higher chance to
predict two paths out of three than two out of two.

Regarding path optimality, we observe that we get fewer
optimal paths (85.88 and 83.33% for two-path and three-path
search, respectively) and that paths become longer with increased
number of searched paths (15 and 22% for two-path and three-
path search, respectively). This is due to the fact that in the
case of multiple sources, the paths are more prone to intersect
and this way become less optimal. However, given the fact
that the network has never been trained on multiple paths, it
shows a surprisingly good performance. Naturally, results should
improve by training the network on multiple paths, but the goal
of this study was to show how far one can even get by not
doing this.

4.6. Run-Time Estimates
We compared our algorithm to A∗ (the fastest algorithm in the
2D case) and BIT∗ (fastest in 3D). We have chosen BIT∗ against
BIT∗-1, since it has a 100% success rate and was still faster than

Frontiers in Neurorobotics | www.frontiersin.org 11 January 2021 | Volume 14 | Article 600984

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kulvicius et al. Convolutional Networks for Path Planning

FIGURE 7 | Results for the run-time comparison between (A,B) A* and CNPP (2D case), and (C,D) BIT* and CNPP (3D case). Data obtained from 2,000 unseen 2D

environments of size 30× 30 and 3D environments of size 20× 20× 20. (A–D) Show run-time for the search of three paths and one path, respectively. We used a

first order and second order polynomial to fit A*/BIT* and CNPP data, respectively.

CNPP according to the single path-results in Figure 5. For CNPP,
we used 21 layers on a 30 × 30 grid in 3D and 31 layers on a
20× 20× 20 grid in 2D.

In Figure 7, we show a run-time comparison between A∗

and CNPP for planning three paths (Figure 7A) and one path
(control case, B) in 2D, whereas a comparison between BIT∗

and CNPP in 3D is shown in Figures 7C,D. We show the run-
time of each realization (in total 2,000) for all cases. Note that
the total run-time consists of search/prediction time (tsearch/tpred)
plus path reconstruction time (trec). For A

∗ and BIT∗, the search
time is quadratic and the path reconstruction time is linear
with respect to the searched path length, whereas for the CNPP,
prediction time is constant and path reconstruction time is linear.
As expected, we see that on average the total run-time of A∗

and BIT∗ increases quadratic if paths are getting longer. The
total run-time of CNPP in 2D on average increases linearly
due to increase of the reconstruction time. In 3D, this linear
increase can be neglected, because it is very small relative to
the prediction time. Results for 4-path prediction (Figures 7A,C)
show that in 2D on average CNPP is faster than A∗ if paths
are longer than 26 steps (see Figure 7A), and, in 3D, CNPP is
faster than BIT∗ already for short paths (longer than 9 steps,
see Figure 7C).

Note that for k paths, the total time for A∗/BIT∗ is k×(tsearch+
trec), whereas for the CNPP it is tpred + k × trec. Reconstruction

time is much shorter than search/prediction time and, thus, this
makes CNPP faster compared to A∗/BIT∗ when the dimension of
the grid or the number of the searched paths increases.

As already shown in Table 1, networks with more layers are
needed to process larger grids. Results suggest, that the number
of required layers approximately corresponds to the linear grid
size, e.g., for a 10 × 10 environment we need approx. 10 layers,
etc. Thus, assuming a grid with n × n nodes, numbers of layers
n, number of filters f , and also assuming that all neurons in
one layer can be processed in parallel on the GPU in time
n2/p with p processing units, this leads to an expected runtime

O(n, p, f) = n2

p f n.

4.7. Application to City Maps
Results of our approach used on real city maps are shown in
Figure 8. We would like to stress that in this case the network
was only trained on our synthetic environments of size 20 × 20
that look structurally quite different as compared to these city
maps. We can see that only two feasible paths were found in the
New York and Shanghai city map, three feasible paths were found
for Berlin, and all four paths were found for Paris and Sydney.
However, in all cases, the found paths were also shortest paths.
These results demonstrate that transfer and generalization from
synthetic to city map data is also possible.

Frontiers in Neurorobotics | www.frontiersin.org 12 January 2021 | Volume 14 | Article 600984

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kulvicius et al. Convolutional Networks for Path Planning

FIGURE 8 | Results for the prediction of four paths in five cities. (Top) Original binary city maps, 256× 256 pixels (Sturtevant, 2012). Selected areas, marked with red

rectangles, were down-sampled to 25× 25 pixels and used for testing on the 2D network trained on 20× 20 grids. (Middle) Network outputs. Blue dots denote

predicted paths where green and red dots correspond to start-points and end-point, respectively. (Bottom) Decoded paths from the network output (blue trajectories)

and A* solutions (red trajectories). Yellow dots denote start-points with shortest paths to the goal.

5. DISCUSSION

In this work, we have presented a novel approach for the
generation of single as well as multiple paths. To the best
of our knowledge, this is the first approach that allows
planning complete multiple paths, while running the network’s
prediction only once, which is reminiscent to perceptual pop-
out phenomena in humans. Note that most of the afore discussed
deep-learning approaches generate paths iteratively and only deal
with planning of single paths (Tai et al., 2017; Panov et al., 2018;
Bency et al., 2019; Qureshi et al., 2019) or they generate multiple-
paths for each agent separately (Chen et al., 2017; Long et al.,
2017; Everett et al., 2018) but only deal with collision avoidance
path planning and not with path planning for navigation in
maze-like environments.

Recently, Pérez-Higueras et al. (2018) proposed an approach,
which is also able to plan paths in one-shot using a fully
convolutional network, however, they only deal with single path
planning for human-aware collision-free navigation in simple
environments. Also, they use a two-step approach where first the
network is used to predict the path and then RRT∗ (Karaman
and Frazzoli, 2011) is used on top of it to refine the predicted
path, which is computationally more expensive than the here
used simple path reconstruction algorithm (bidirectional search).

Possibly the most interesting finding of our study is that
the CNPP method is able to find multiple paths without being

trained on them. This could be also used to solve single-source-
multi-target (or vice versa) problems. However, we believe that
performance could be further improved by indeed including
examples of multiple paths in the training set. The other option
would be to repeat the network’s prediction one or several more
times by giving locations, at which the path reconstruction was
lost, as new start- and end-points. Moreover, we have also shown
that our proposed network can be trained on one size and then
used on a different size if the grid sizes do not differ too much
and that transfer to city maps is also possible in spite of having
used only synthetic training data.

When comparing to other methods, we have observed that
CNPP can compete against A∗ and supersede it in 2D for
multi-path prediction as soon as paths get longer. RRT and
DMLP perform well in less-cluttered environments (Knispel
and Matousek, 2013; Bency et al., 2019; Qureshi et al., 2019),
but given mazes, like the ones used here, the CNPP approach
clearly outperforms RRT and DMLP. BIT∗ performs in general
better. As mentioned above, BIT∗ outperforms RRT∗, which—
on these grounds—had not been included in our comparisons
(Gammell et al., 2020).

In general, however, such comparisons have to be considered
rather carefully, because—as stated above—any given algorithm
may be advantageous in certain situations (environments), while
performing badly in others. The same is true for speed-estimates,
which much depend on the hardware used anyhow.

Frontiers in Neurorobotics | www.frontiersin.org 13 January 2021 | Volume 14 | Article 600984

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kulvicius et al. Convolutional Networks for Path Planning

Another aspect, which has to be considered, is the number
of parameters. A∗ is a parameter free method and, thus,
no parameter tuning is required. RRT has three parameters
(maximum number of samples, node neighborhood distance
and probability of sampling the goal used to make it goal-
directed and, thus, faster), and BIT∗ has also three parameters
(number of samples in the initial batch, increment of the samples
in the next batches, and node neighborhood distance), which
need to be tuned and will influence the performance of the
algorithm. Note that BIT∗ shows asymptotic convergence to the
optimal solution. Thus, it converges to the optimal solution as
the number of sample increases at the cost of an increasing
run-time. RRT, on the other hand, converges almost always
to a non-optimal solution. DMLP has three parameters, i.e,
number of layers and number of neurons per layer, and dropout
probability in the hidden layers during on-line path prediction
to introduce stochasticity. Moreover all parametric methods,
discussed above, have additional parameters related to the check
for a collision-free path between path nodes. In general, this
procedure, can be (and usually is) very costly. In comparison,
CNPP has three parameters, i.e., number of layers (of which we
found that it should correspond to the grid size), and kernel
size and number of kernels (suggested to be the same for
different grid sizes). Therefore, CNPP is not strongly affected by
tuning problems.

The current conclusion, partly arising from results found in
the literature, is that tree-based methods may be beneficial in
environments with little clutter, for example when doing path
planning for robot manipulation. This is in particular valid,
whenever path-optimality is not an issue. Different from this
CNPP, A∗ (and similar algorithms) appear the better choice
when addressing mazes and as soon as (near) optimal paths are
required and little or no parameter tuning is desired.

In our study we have only dealt with static environments
and assumed that the complete map of the environment is
available beforehand. However, our approach can also be used for
on-line planning/replanning in dynamic environments and/or
environments where only part of the complete environment is
available (perceivable) at any one point in time. In this case, the

current position of the robot can be used as the start-point and
the next sub-goal (or the final goal, if visible) as the end-point.
Thus, path planning toward the goal would be made only for the
next few steps, i.e., as far as environment can be perceived or as
long as it has not changed.

We believe that useful features of our proposed method such
as single-shot multi-path planning, relatively high success and
optimality rates, constant run-time, and the ability to generalize
to environments of different sizes and types, makes this method
an attractive and valuable approach for many applications in
robotics as well as other fields.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found at: https://alexandria.physik3.
uni-goettingen.de/cns-group/datasets/path_planning/.

AUTHOR CONTRIBUTIONS

TK contributed to the conception and design of the work,
development and implementation of the algorithm, data
acquisition, analysis and interpretation of the data, and writing
of the paper. SH contributed to the conception of the
work, the implementation of the algorithm, data acquisition,
analysis and interpretation of the data. TL contributed to
the implementation of the algorithm. MT contributed to the
analysis and interpretation of the data, and writing of the
paper. FW contributed to the conception and design of the
work, analysis and interpretation of the data, and writing of the
paper. All authors contributed to the article and approved the
submitted version.

FUNDING

The research leading to these results has received funding from
the European Community’s Horizon 2020 Program under grant
agreement no. 732266, Plan4Act.

REFERENCES

Bency, M. J., Qureshi, A. H., and Yip, M. C. (2019). Neural path planning: Fixed

time, near-optimal path generation via oracle imitation. CoRR abs/1904.11102,

3965–3972. doi: 10.1109/IROS40897.2019.8968089

Bhardwaj, M., Choudhury, S., and Scherer, S. (2017). “Learning heuristic search via

imitation,” in Proceedings of the 1st Conference on Robot Learning (CoRL 2017)

(Mountain View, CA), 1–10.

Bin N., Xiong C., Liming Z., Wendong X. (2004). “Recurrent neural network for

robot path planning,” in Parallel and Distributed Computing: Applications and

Technologies. PDCAT 2004. Lecture Notes in Computer Science, Vol. 3320, eds K.

M. Liew, H. Shen, S. See, W. Cai, P. Fan, and S. Horiguchi (Heidelberg; Berlin:

Springer). doi: 10.1007/978-3-540-30501-9_43

Chafee, M. V., Averbeck, B. B., Crowe, D. A., and Georgopoulos, A. P. (2002).

Impact of path parameters onmaze solution time.Arch. Ital. Biol. 140, 247–251.

doi: 10.4449/AIB.V140I3.473

Chen, Y.-W., and Chiu, W.-Y. (2015). “Optimal robot path planning system

by using a neural network-based approach,” in 2015 International Automatic

Control Conference (CACS) (Yilan), 85–90. doi: 10.1109/CACS.2015.7378370

Chen, Y. F., Liu, M., Everett, M., and How, J. P. (2017). “Decentralized

non-communicating multiagent collision avoidance with deep reinforcement

learning,” in 2017 IEEE Int. Conf. on Robotics and Automation (ICRA)

(Singapore), 285–292. doi: 10.1109/ICRA.2017.7989037

Choset, H. M., Hutchinson, S., Lynch, K. M., Kantor, G., Burgard, W., Kavraki,

L. E., et al. (2005). Principles of Robot Motion: Theory, Algorithms, and

Implementation. MIT Press.

Crowe, D. A., Averbeck, B. B., Chafee, M. V., Anderson, J. H., and Georgopoulos,

A. P. (2000). Mental maze solving. J. Cogn. Neurosci. 12, 813–827.

doi: 10.1162/089892900562426

De Momi, E., Kranendonk, L., Valenti, M., Enayati, N., and Ferrigno, G. (2016).

A neural network-based approach for trajectory planning in robot-human

handover tasks. Front. Robot. AI 3:34. doi: 10.3389/frobt.2016.00034

Frontiers in Neurorobotics | www.frontiersin.org 14 January 2021 | Volume 14 | Article 600984

https://alexandria.physik3.uni-goettingen.de/cns-group/datasets/path_planning/
https://alexandria.physik3.uni-goettingen.de/cns-group/datasets/path_planning/
https://doi.org/10.1109/IROS40897.2019.8968089
https://doi.org/10.1007/978-3-540-30501-9_43
https://doi.org/10.4449/AIB.V140I3.473
https://doi.org/10.1109/CACS.2015.7378370
https://doi.org/10.1109/ICRA.2017.7989037
https://doi.org/10.1162/089892900562426
https://doi.org/10.3389/frobt.2016.00034
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kulvicius et al. Convolutional Networks for Path Planning

Desaraju, V. R., and How, J. P. (2012). Decentralized path planning for

multi-agent teams with complex constraints. Auton. Robots 32, 385–403.

doi: 10.1007/s10514-012-9275-2

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numer.

Math. 1, 269–271. doi: 10.1007/BF01386390

Egerstedt, M., and Martin, C. F. (2001). Optimal trajectory

planning and smoothing splines. Automatica 37, 1057–1064.

doi: 10.1016/S0005-1098(01)00055-3

Everett, M., Chen, Y. F., and How, J. P. (2018). Motion planning among

dynamic, decision-making agents with deep reinforcement learning. CoRR

abs/1805.01956. 3052–3059. doi: 10.1109/IROS.2018.8593871

Gammell, J. D., Barfoot, T. D., and Srinivasa, S. S. (2020). Batch informed trees

(bit∗): informed asymptotically optimal anytime search. Int. J. Robot. Res. 39,

543–567. doi: 10.1177/0278364919890396

Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. (2015). “Batch informed

trees (BIT∗): Sampling-based optimal planning via the heuristically guided

search of implicit random geometric graphs,” in 2015 IEEE International

Conference on Robotics and Automation (ICRA), 3067–3074. Seattle,WA: IEEE.

doi: 10.1109/ICRA.2015.7139620

Glasius, R., Komoda, A., and Gielen, S. (1995). Neural network dynamics

for path planning and obstacle avoidance. Neural Netw. 8, 125–133.

doi: 10.1016/0893-6080(94)E0045-M

Glasius, R., Komoda, A., and Gielen, S. (1996). A biologically inspired neural net

for trajectory formation and obstacle avoidance. Biol. Cybern. 74, 511–520.

doi: 10.1007/BF00209422

Harabor, D. D., and Grastien, A. (2011). “Online graph pruning for pathfinding on

grid maps,” in AAAI, 1114–1119.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the

heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern.

4, 100–107. doi: 10.1109/TSSC.1968.300136

Ijspeert, J. A., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013).

Dynamical movement primitives: learning attractor models for motor

behaviors. Neural Comput. 25, 328–373. doi: 10.1162/NECO_a_00393

Islam, F., Nasir, J., Malik, U., Ayaz, Y., and Hasan, O. (2012). “RRT∗-Smart: Rapid

convergence implementation of RRT∗ towards optimal solution,” in 2012 IEEE

Int. Conf. on Mechatronics and Automation (Chengdu), 1651–1656.

Karaman, S., and Frazzoli, E. (2011). Sampling-based algorithms

for optimal motion planning. Int. J. Robot. Res. 30, 846–894.

doi: 10.1177/0278364911406761

Knispel, L., and Matousek, R. (2013). A Performance Comparison of Rapidly-

Exploring Random Tree and Dijkstra’s Algorithm for Holonomic Robot

Path Planning. Institute of Automation and Computer Science, Faculty of

Mechanical Engineerig, Brno University of Technology.

Koenig, S., Likhachev, M., and Furcy, D. (2004). Lifelong planning A∗. Artif. Intell.
155, 93–146. doi: 10.1016/j.artint.2003.12.001

Korf, R. E. (1985). Depth-first iterative-deepening: an optimal admissible tree

search. Artif. Intell. 27, 97–109. doi: 10.1016/0004-3702(85)90084-0

Kulvicius, T., Herzog, S., Lüddecke, T. Tamosiunaite, M., and Wörgötter,

F. (2020). “One-shot multi-path planning for robotic applications

using fully convolutional networks,” in IEEE 2020 International

Conference on Robotics and Automation (ICRA) (Paris), 1460–1466.

doi: 10.1109/ICRA40945.2020.9196719

Latombe, J.-C. (2012). Robot Motion Planning, Vol. 124. Springer Science &

Business Media.

LaValle, S. M. (1998). Rapidly-Exploring Random Trees: A New Tool for Path

Planning. Computer Science Department, Iowa State University, Technical

Report.

Li, H., Yang, S. X., and Seto, M. L. (2009). Neural-network-based path planning for

a multirobot system with moving obstacles. IEEE Trans. Syst. Man Cybern. Part

C 39, 410–419. doi: 10.1109/TSMCC.2009.2020789

Long, P., Liu, W., and Pan, J. (2017). Deep-learned collision avoidance policy

for distributed multiagent navigation. IEEE Robot. Autom. Lett. 2, 656–663.

doi: 10.1109/LRA.2017.2651371

Ni, J., Wu, L., Shi, P., and Yang, S. X. (2017). A dynamic bioinspired neural

network based real-time path planning method for autonomous underwater

vehicles. Comput. Intell. Neurosci. 2017:9269742. doi: 10.1155/2017/

9269742

O’Keefe, J., and Dostrovsky, J. (1971). The hippocampus as a spatial

map: preliminary evidence from unit activity in the freely-

moving rat. Brain Res 34:171–175. doi: 10.1016/0006-8993(71)

90358-1

Panov, A. I., Yakovlev, K. S., and Suvorov, R. (2018). Grid path planning with deep

reinforcement learning: preliminary results. Proc. Comput. Sci. 123, 347–353.

doi: 10.1016/j.procs.2018.01.054

Pérez-Higueras, N., Caballero, F., and Merino, L. (2018).

“Learning human-aware path planning with fully convolutional

networks,” in 2018 IEEE Int. Conf. on Robotics and Automation

(ICRA) (Brisbane, QLD), 5897–5902. doi: 10.1109/ICRA.2018.

8460851

Qu, H., Yang, S. X., Willms, A. R., and Yi, Z. (2009). Real-time robot

path planning based on a modified pulse-coupled neural network model.

IEEE Trans. Neural Netw. 20, 1724–1739. doi: 10.1109/TNN.2009.20

29858

Qureshi, A. H., Bency, M. J., and Yip, M. C. (2019). “Motion planning networks,” in

2019 International Conference on Robotics and Automation (ICRA) (Montreal,

QC), 2118–2124. doi: 10.1109/ICRA.2019.8793889

Rueckert, E., Kappel, D., Tanneberg, D., Pecevski, D., and Peters, J. (2016).

Recurrent spiking networks solve planning tasks. Sci. Rep. 6:21142.

doi: 10.1038/srep21142

Seker, M. Y., Imre, M., Piater, J., and Ugur, E. (2019). “Conditional

neural movement primitives,” in Robotics: Science and Systems.

doi: 10.15607/RSS.2019.XV.071

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2009). Robotics:

Modelling, Planning and Control. Springer Publishing Company, Incorporated.

doi: 10.1007/978-1-84628-642-1

Sigurdson, D., and Bulitko, V. (2017). “Deep learning for real-time heuristic search

algorithm selection,” in Thirteenth Artificial Intelligence and Interactive Digital

Entertainment Conference.

Sturtevant, N. (2012). Benchmarks for grid-based pathfinding. Trans. Comput.

Intell. AI Games 4, 144–148. doi: 10.1109/TCIAIG.2012.2197681

Sun, X., Koenig, S., and Yeoh, W. (2008). “Generalized adaptive A∗,” in Proc. of

the 7th International Journal Conference on Autonomous Agents andMultiagent

Systems - Volume 1, AAMAS ’08, 469–476.

Tai, L., Paolo, G., and Liu, M. (2017). “Virtual-to-real deep reinforcement

learning: continuous control of mobile robots for mapless navigation,”

in 2017 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (Vancouver, BC), 31–36. doi: 10.1109/IROS.2017.82

02134

Wang, K.-H. C., and Botea, A. (2011). MAPP: A scalable multi-agent path planning

algorithm with tractability and completeness guarantees. J. Artif. Intell. Res. 42,

55–90. doi: 10.1613/jair.3370

Yang, S. X., andMeng,M. (2001). Neural network approaches to dynamic collision-

free trajectory generation. IEEE Trans. Syst. Man Cybern. Part B 31, 302–318.

doi: 10.1109/3477.931512

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Kulvicius, Herzog, Lüddecke, Tamosiunaite and Wörgötter. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 15 January 2021 | Volume 14 | Article 600984

https://doi.org/10.1007/s10514-012-9275-2
https://doi.org/10.1007/BF01386390
https://doi.org/10.1016/S0005-1098(01)00055-3
https://doi.org/10.1109/IROS.2018.8593871
https://doi.org/10.1177/0278364919890396
https://doi.org/10.1109/ICRA.2015.7139620
https://doi.org/10.1016/0893-6080(94)E0045-M
https://doi.org/10.1007/BF00209422
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1162/NECO_a_00393
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1016/j.artint.2003.12.001
https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1109/ICRA40945.2020.9196719
https://doi.org/10.1109/TSMCC.2009.2020789
https://doi.org/10.1109/LRA.2017.2651371
https://doi.org/10.1155/2017/9269742
https://doi.org/10.1016/0006-8993(71)90358-1
https://doi.org/10.1016/j.procs.2018.01.054
https://doi.org/10.1109/ICRA.2018.8460851
https://doi.org/10.1109/TNN.2009.2029858
https://doi.org/10.1109/ICRA.2019.8793889
https://doi.org/10.1038/srep21142
https://doi.org/10.15607/RSS.2019.XV.071
https://doi.org/10.1007/978-1-84628-642-1
https://doi.org/10.1109/TCIAIG.2012.2197681
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1613/jair.3370
https://doi.org/10.1109/3477.931512
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	One-Shot Multi-Path Planning Using Fully Convolutional Networks in a Comparison to Other Algorithms
	1. Introduction
	2. Proposed Method
	2.1. Overview
	2.2. Data
	2.2.1. Input Definition
	2.2.2. Output Definition
	2.2.3. Data Generation

	2.3. Network
	2.3.1. Network Architectures
	2.3.2. Training Procedure

	2.4. Path Reconstruction

	3. Experiments
	3.1. Evaluation Measures
	3.1.1. Success Rate
	3.1.2. Path Optimality
	3.1.3. Algorithm Run-Time

	3.2. Evaluation Procedures
	3.3. Application to City Maps

	4. Results
	4.1. Parameter Analysis
	4.2. Analysis of the Network's Internal Activity
	4.3. General Performance of the Proposed Network
	4.4. Comparison to Other Algorithms
	4.5. Prediction of Multiple Paths
	4.6. Run-Time Estimates
	4.7. Application to City Maps

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

