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In this paper, we design a robust model predictive control (MPC) controller for vehicle

subjected to bounded model uncertainties, norm-bounded external disturbances and

bounded time-varying delay. A Lyapunov-Razumikhin function (LRF) is adopted to ensure

that the vehicle system state enters in a robust positively invariant (RPI) set under the

control law. A quadratic cost function is selected as the stage cost function, which yields

the upper bound of the infinite horizon cost function. A Lyapunov-Krasovskii function

(LKF) candidate related to time-varying delay is designed to obtain the upper bound of

the infinite horizon cost function and minimize it at each step by using matrix inequalities

technology. Then the robust MPC state feedback control law is obtained at each step.

Simulation results show that the proposed vehicle dynamic controller can steer vehicle

states into a very small region near the reference tracking signal even in the presence of

external disturbances, model uncertainties and time-varying delay. The source code can

be downloaded on https://github.com/wenjunliu999.

Keywords: robust model predictive control, vehicle dynamic control, matrix inequities, robust positively invariant,

model uncertainties, external disturbances, time-varying delay

1. INTRODUCTION

Dynamic control is one of the most crucial tasks for autonomous driving vehicle (Chen et al.,
2020). H-infinity output feedback controller (Hu et al., 2016), sliding mode controller (Jiang and
Wu, 2018), model predictive control (MPC) (Sun et al., 2019), etc. have been designed for vehicle
control. Because MPC has the ability to incorporate soft and hard constraints into the online
optimizations in a multivariable control framework, it is widely applied in vehicle control field
(Hu et al., 2019).

Vehicle dynamic control performance may be seriously affected by external disturbances
resulting from unpredictable environment (Yu et al., 2019). Besides, it is impossible to establish
a precise vehicle model when the vehicle is moving (Liu et al., 2019). Therefore, robust model
predictive control for vehicle is researched by scholars. Robust feedback MPC (Shamaghdari et al.,
2015), tube-based robust MPC (Sakhdari and Azad, 2018), min-max robust MPC (Wang X. et al.,
2016), feedback min-max MPC (Liu et al., 2014) and linear matrix inequities (LMIs) or bilinear
matrix inequities (BMIs) based robust MPC (Cheng et al., 2020) have been proposed to deal with
vehicle control where the vehicle has model uncertainties or external disturbances or both model
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uncertainties and external disturbances. The optimization
problems involving LMIs or BMIs are convex and hence have
solvable global optimal solutions and can be solved numerically
efficiently and reliably (Duan and Yu, 2013). So, LMIs or BMIs
based robust MPC control is widely applied to vehicle control.
However, most of existing LMIs or BMIs based robust MPC
vehicle control papers only consider the model uncertainties.
Few matrix inequalities based robust MPC papers consider both
model uncertainties and external disturbances of vehicle.

Moreover, time delay can be frequently seen in vehicle system
(Ren et al., 2019) and affects the vehicle dynamic control
performance and even threatens the stability and safety of the
vehicle system. Some literatures concerned MPC controller for
time-delay vehicle system have been addressed (Liu and Li,
2019; Wang et al., 2019). However, most existing papers often
assume that the delay is known and fixed (Yu et al., 2018), or
do not consider the model uncertainties (Xu et al., 2020) or the
external disturbances (Bououden et al., 2016; Nahidi et al., 2019).
Therefore, the research on robust MPC controller for vehicle
with time-varying delay has not been completely investigated and
hence several problems still remain unsolved.

Due to the fact that the influence of the delayed states can
cause a violation of the monotonic decrease condition that a
standard Lyapunov function obeys, systems affected by delays can
not apply the classical Lyapunov theory directly (Gielen et al.,
2012a). Generally, there are two types of approaches to deal
with time-delay systems, Lyapunov-Razumikhin function (LRF)
and Lyapunov-Krasovskii function (LKF) (Teng, 2018). In our
paper, we focus on discrete vehicle dynamic control. For discrete-
time systems, LKF makes use of an augmentation of the state
vector with all delayed states, which yields the applications of
classical Lyapunov methods to an augmented system without
delay (Teng et al., 2017). LRF is constructed for time-delay system
based on a type of small-gain condition (Teel, 1998) and can be
considered as a special case of LKF. Compared to LKF, LRF is
conservative but its computational complexity is lower than LKF
(Gielen et al., 2012b).

In this paper, the aim of dynamic control is to guarantee
the vehicle dynamic state tracking performance, where the
vehicle dynamic state tracking reference signal is determined
by the upper kinematic control and assumed to be known in
this paper. To suppress the influence of model uncertainties,
external disturbances, and time-varying delay on vehicle dynamic
state tracking performance, we design a matrix inequalities
based robust MPC controller. It is known that robust positively
invariant (RPI) set plays an crucial role in robust MPC, the
control law involved in RPI can ensure that when the system state
enters the RPI set, it never goes out (Yang and Feng, 2013). A LRF
candidate is adopted to guarantee this. Since the infinite horizon
cost function can not be optimized online, a cost function with
finite terms is usually considered instead. To compute the bound
of the infinite horizon cost function, a LKF candidate related to
time-varying delay is designed in this paper. Then, the robust
MPC state feedback control law is obtained by minimizing the
upper bound at each step using matrix inequalities technology.

Different from existing researches, there are two main
contributions of this paper. Firstly, the vehicle dynamic

model simultaneously considers model uncertainties, external
disturbances and the time-varying delay of the vehicle state,
which is more in line with actual vehicle operating conditions.
Then a robust MPC controller is designed to steer vehicle states
into a very small region near the reference tracking signal even
in the presence of external disturbances, model uncertainties and
time-varying delay. Secondly, compared to the robust controller
considering fixed time delay, a delay-range-dependent LKF is
designed by using the information of the upper and lower bounds
of the time-varying delay and relaxed technique, which also
simultaneously takes model uncertainties, external disturbances
and the time-varying delay into account.

The rest of this paper is structured as follows. In section
2, two auxiliary lemmas and vehicle model are introduced.
In section 3, the proposed robust MPC controller for vehicle
subjected to bounded model uncertainties, norm-bounded
external disturbances and bounded time-varying delay is
designed. In section 4, simulation examples are illustrated to
verify the effectiveness of the proposed method. Finally, we
conclude in section 5.

Notations: I is an identity matrix with appropriate dimension.
diag{· · · } denotes a block-diagonal matrix, ‖ · ‖ denotes 2-norm.
X > 0 and X ≥ 0 denotes the matrix is a positive definite matrix
and positive semi-definite matrix, respectively. The symbol ∗
induces a symmetric structure or a transpose item, e.g., when H

and R are symmetric matirces, then

[
H ∗

S R

]
=

[
H ST

S R

]

when the expression has the format Q+ S+ ST, we simplify it to
Q+ S+ ∗.

2. PRELIMINARIES

In this section, we first introduce two necessary lemmas and
then derive the dynamic model of the vehicle with model
uncertainties, external disturbances, and time-varying delay.

2.1. Auxiliary Lemmas
Lemma 1: (Duan and Yu, 2013) Let X ∈ Rm×n, Y ∈ Rn×m,
Q ∈ Rm×m. Then

Q+ XFY + YTFTXT < 0 (1)

holds for all FTF ≤ I if and only if there exits a positive scalar δ,
such that

Q+ δXXT + δ−1YTY < 0 (2)

Lemma 2: (Jiang and Wang, 2001) If an input-to-state (ISS)
Lyapunov function can be found for system x(k + 1) =

f (x(k), p(k)), then the system is ISS.
The definition of ISS-Lyapunov function is as follows.
If a continuous function V :Rn → R≥0 satisfy the following

inequalities, then it is an ISS-Lyapunov function for system x(k+
1) = f (x(k), p(k)) (Yang and Feng, 2013).

β1(‖x(k)‖) ≤ V(x(k)) ≤ β2(‖x(k)‖) (3)
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FIGURE 1 | Two-degree-of-freedom bicycle model of vehicle.

V(x(k+ 1))− V(x(k)) ≤ −β3(‖x(k)‖)+ φ(‖p(k)‖) (4)

where β1, β2, and β3 are K∞-function, φ is K-function, x denote
system state vector and p denote external disturbances.

2.2. Vehicle Dynamic Model
An extensively used two-degree-of-freedom bicycle model of
vehicle dynamics is adopted in this paper and is shown in
Figure 1. This model is based on the assumption of small slip
angles, no road gradient or bank angles, no load transfer and no
rolling or pitching moment. Only the front wheel is steerable in
this case (Elbanhawi et al., 2018). The two front wheels and the
two rear wheels are respectively represented by one front wheel
A and one rear wheel B. The center of gravity (c.g.) of the vehicle
is at point C. The distances of A and B from the c.g. of the vehicle
are lf and lr respectively. v is the velocity at the c.g. of the vehicle,
β is the sideslip angle, δ is the steering angle and r is the yaw
rate. The dynamic model with regard of yaw rate and sideslip
angle is adopted in this paper, as presented in (1). The detailed
derivation process can be found in Rajamani (2011). m is the
mass of the vehicle, Cαf and Cαr are the cornering stiffness of the
front and rear tires respectively, Iz is yaw moment of inertia. vx
is vehicle longitudinal velocity. Similar to Cho and Huh (2019), a
fixed forward velocity assumption is adopted in this paper.

{
β̇ = −r +

Cαf

mvx
(δ − β −

lf r

vx
)+ Cαr

mvx
(−β +

lf r

vx
)

ṙ =
lf Cαf

Iz
(δ − β −

lf r

vx
)− lrCαr

Iz
(−β +

lf r

vx
)

(5)

Let x = [ β r ]T, then the state space form of lateral dynamics
model can be denoted as follows:

ẋ = Acmx+ Bcmδ (6)

Acm =


 −

Cαf+Cαr

mvx
−1+

−lf Cαf+lrCαr

mv2x
−lf Cαf+lrCαr

Iz
−

l2
f
Cαf+l2rCαr

Izvx


 (7)

Bcm =

(
Cαf

mvx

lf Cαf

Iz

)T
(8)

We discretize the continuous model (6) and consider norm-
bounded external disturbances p. p satisfies ‖p‖ ≤ ρ. Then the
system model can be written as follows:

x(k+ 1) = Amx(k)+ Bδ(k)+ Ep(k) (9)

where E is a constant coefficient matrix, Am and B can be
calculated by the Euler method as:

Am = eAcmT ,B =

∫ (k+1)T

kT
eAcm[(k+1)T−η]Bcmdη (10)

where T is the sampling interval for the discrete state
space model.

Then we consider time-varying delay, the system model can
be written as follows:

x(k+ 1) = Ax(k)+ Adxd(k)+ Bδ(k)+ Ep(k) (11)

whereA = αAm,Ad = (1−α)Am, xd(k) = x(k−dk), dk is a time-
varying delay bounded in [dm, dM], dm, dM are known positive
integers, the constant α is the retarded coefficient ranging α ∈

[0, 1], the limits 1 and 0 correspond to no delay term and to a
completed delay term, respectively (Jeong and Park, 2005).

It is almost impossible for us to establish a precise model of a
vehicle especially when it is moving. So model uncertainties must
be considered during the vehicle controller design process.

x(k+ 1) = Ãx(k)+ Ãdxd(k)+ B̃δ(k)+ Ep(k) (12)

where Ã = A+MHNA, Ãd = Ad+MHNAd, B̃ = B+MHNB,M,
NA,NAd andNB are constant matrices,H is Lebesguemeasurable
and satisfiesHTH ≤ I.

3. ROBUST MPC CONTROLLER DESIGN
USING MATRIX INEQUALITIES

In this section, we derive the matrix inequalities involved in the
robust MPC controller. MPC is actually an online optimization
algorithm. At each iteration time, MPC controller optimizes a
cost function and satisfies the corresponding constraints. We first
introduce the design of online MPC controller, then we discuss
the RPI conditions and develop the computation of a RPI set.
Finally, we construct the whole control algorithm.

3.1. Online Robust MPC Design
In this paper, the quadratic cost function with infinite length is
defined as

J∞(k) =

∞∑

i=0

ℓ(k+ i | k) (13)

where ℓ(k + i | k) = xT(k + i | k)Qx(k + i | k) + δT(k + i |
k)Rδ(k + i | k) − τpT(k + i | k)p(k + i | k), Q and R are
positive definite matrices, τ is a positive constant. x(k + i | k)
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and δ(k + i | k) represent the i-th predictive state and control
input at time k respectively. The choice of l(·) is inspired by H∞

MPC (Mayne et al., 2000) and has already been applied to existing
robust MPC research (Yang et al., 2013).

The goal is to find a stabilizing state feedback control δ(k) =
Kx(k) for system (12) by using the robust MPC strategy, the
online robust MPC optimization can be summarized as:

min
δ(k+i|k)

max
p(k+i|k)

J∞(k)

s.t. (12)
−δmax ≤ δ(k+ i | k) ≤ δmax

‖p‖ ≤ γ

(14)

where δmax is the input constraint.
Considering J∞(k) can not be minimized directly in reality, an

upper bound of the infinite horizon cost function is minimized
instead. To find an upper bound of J∞(k), a LKF candidate related
to time-varying delay is designed as follows:

V(x(k)) = V1(x(k))+ V2(x(k))+ V3(x(k)) (15)

V1(x(k)) = xT(k)Px(k) (16)

V2(x(k)) =

k−1∑

i=k−dk

xT(i)Pdx(i) (17)

V3(x(k)) =

−dm∑

j=−dM+1

k−1∑

i=k+j

xT(i)Pdx(i) (18)

where P = PT > 0, Pd = PT
d

> 0. And suppose the following
inequality is satisfied.

V(x(k+ i+ 1 | k))− V(x(k+ i | k)) ≤ −l(k+ i | k) (19)

As shown in Kothare et al. (1996), for the robust performance
objective function to be finite, we must have x(∞ | k) = 0 and
hence V(x(∞ | k)) = 0. Summing (19) from i = 0 to i = ∞,
we get

J∞(k) ≤ V(x(k | k)) ≤ ξ (k) (20)

where ξ (k) > 0 is the upper bound of J∞(k).
Theorem 1: If there exit matrices with appropriate dimension

X = XT > 0, Xd = XT
d

> 0, a general matrix Y and a scalar
η > 0, then the following LMIs can be derived to guarantee
(19) i.e., to guarantee V(x(k | k)) is the upper bound of J∞(k).




−X ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 −Xd ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 −τξ I ∗ ∗ ∗ ∗ ∗ ∗

AX + BY AdXd ξE −X ∗ ∗ ∗ ∗ ∗

X 0 0 0 −
(
ds + 1

)−1
Xd ∗ ∗ ∗ ∗

QX 0 0 0 0 −ξQ ∗ ∗ ∗

RY 0 0 0 0 0 −ξR ∗ ∗

NAX + NBY NAdXd 0 0 0 0 0 −ηI ∗

0 0 0 ηMT 0 0 0 0 −ηI




< 0 (21)

where ds = dM − dm.
Proof: See Appendix A.
Equation (21) can guarantee ξ (k) is the upper bound of J∞(k),

then we minimize it.
Theorem 2: ξ (k) can be minimized using the following LMIs.

[
1 ∗

ζ 3(k) 33

]
≥ 0 (22)

where ζ 3(k) =
[
xT(k), xT(k− 1), · · · , xT

(
k− dm

)
, xT

(
k− dm − 1

)
, · · · , xT

(
k− dM

)]T
,33 = diag

(
P,

Pd
ds+1

,
Pd
ds
,

· · · ,Pd).
Proof:

V2(x(k)) =

k−1∑

i=k−dk

xT(i)Pdx(i) ≤

k−1∑

i=k−dM

xT(i)Pdx(i)

= ζT
1 (k− 1)31ζ 1(k− 1) (23)

where ζ 1(k − 1) =
[
xT(k− 1), · · · , xT

(
k− dM

)]T
,31 =

diag (Pd, · · · ,Pd).

V3(x(k)) =

−dm∑

j=−dM+1

k−1∑

i=k+j

xT(i)Pdx(i) = ζT
2 (k− 1)32ζ 2(k− 1)

(24)
where ζ 2(k−1) =

[
xT(k− 1), · · · , xT

(
k− dm

)
, xT

(
k− dm − 1

)
,

· · · , xT
(
k− dM + 1

)]T
, 32 = diag

(
dsPd,

(
ds − 1

)
Pd, · · · ,Pd

)
.

Summing (16), (23), (24), we can conclude that

V(x(k)) = ζT
3 (k)33ζ 3(k) (25)

Substituting X = ξ (k)P−1,Xd = ξ (k)P−1
d

, then by using Schur
complement, (22) can be obtained.

3.2. Robust Positively Invariant Set
Computation
In this section, we design a LRF to compute RPI set. The RPI set
is defined as follows:

� =

{
{x, xd} | max

{
xTPx, xTdPdxd

}
≤ ξ

}
(26)

Lemma 3: Consider system (12), the set � is a RPI if there exists
a positive scalar γ ∈ (0, 1) such that:

1

ξ
xT(k+ 1)Px(k+ 1)−

1− λ

ξ
max

{
xTPx, xTdPxd

}
−

λ

ρ2
pTp ≤ 0

(27)
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Proof:
According to (27), max

{
xTPx, xT

d
Pdxd

}
≤ ξ and PTP ≤ ρ2,

we have:

1

ξ
xT(k+ 1)Px(k+ 1) ≤

1− λ

ξ
max

{
xTPx, xTdPxd

}
+

λ

ρ2
pTp

≤ (1− λ)+ λ = 1
(28)

So we can get xT(k+ 1)Px(k+ 1) ≤ ξ , that means x(k+ 1) is still
in the RPI set.
Theorem 3: If there exists a positive definite matrix X, a general
matrix Y and positive scalars σ and λ, such that the following
BMIs and LMIs hold.




γ (λ − 1)X ∗ ∗ ∗ ∗ ∗

0 γd(λ − 1)X ∗ ∗ ∗ ∗

0 0 − λ
ρ2 I ∗ ∗ ∗

AX + BY AdX E −X ∗ ∗

NAX + NBY NAdX 0 0 −σ I ∗

σMT 0 0 0 0 −σ I




≤ 0 (29)

[
Z ∗

YT X

]
≥ 0 (30)

where γ + γd = 1, Ztt ≤ δ2t,max, Ztt is the t-th diagonal element
of matrix Z.

Proof: See Appendix B.

3.3. Online Robust MPC Algorithm
We summarize the robust MPC algorithm based on the above-
mentioned results. The implementation of the robust controller
is summarized as follows.

min
ξ ,X,Xd ,Y ,λ,η,σ

ξ

s.t.(21), (22), (29), (30)
(31)

Then the control input at time k can be computed δ(k) = Kx(k).
Note that (29) is BMIs, in our paper, to reduce the computation
burden, we only calculate the optimal λ∗ of λ at the initial time,
and replace λ with λ∗ in subsequent iterations.

Theorem 4: If the optimization problem (31) is solvable for
vehicle system (12) at the initial time, then the vehicle system (12)
is ISS with regard to the external disturbances.

Proof: See Appendix C.
Remark: In this paper, two Lyapunov functions (LKF and LRF)

are used at the same time. But LRF is only used to ensure that
the system enters RPI, which provides a tighter constraint. As
shown inGielen et al. (2012a), the existence of a LRF is a sufficient
condition for the existence of a LKF.

4. SIMULATION AND ANALYSIS

In this section, we conduct three simulation scenarios to validate
the effectiveness of the designed robust MPC controller. The
vehicle model parameters m, Iz , lf , lr , Cαf , Cαr , Iz and vx of

the simulation vehicle are 1, 000kg, 1, 650kg/m2, 1.0m, 1.6m,
3, 000N/rad, 3, 000N/rad and 10m/s, respectively.

In the first simulation, we assume there is no time-varying
delay, 2% model uncertainties are added, i.e., NA = 0.02A,

NB = 0.02B. M is an identity matrix, E =
[
0.01 0.1

]T
, Q is

diag{5, 5}, R is 1, τ is 1. The external disturbances p and are given
by p(k) = 1 × 10−7 sin(k),H(k) = sin(k) respectively (At each
time step, the magnitude of the increment of β and r are 1×10−7

and 1 × 10−6 respectively). The input constraint is ‖δ‖ ≤ 0.5
rad. The sampling time is 0.01 s. Under the same conditions, we
compared the performance of the proposed robust MPC with
the traditional MPC algorithm (Elbanhawi et al., 2018) on the
reference signal tracking problem. Figure 2A is the sideslip angle
tracking performance comparison between the proposed robust
MPC and traditional MPC. Figure 2B is the yaw rate tracking
performance comparison between the proposed robust MPC and
traditional MPC. It can be easily seen that the proposed robust
MPC has a good tracking performance even there exist model
uncertainties and external disturbances. However, traditional
MPC controller becomes unstable and can not execute the
control. Please note that the performance of MPC control is
seriously degraded in the presence of external disturbances and
model uncertainties. To observe the performance comparison of
the MPC controller and the proposed robust MPC controller in
the same figure more clearly, we only show the MPC controller
tracking trajectory for 1s in the figure. Otherwise, the tracking
trajectory generated by the robust MPC controller and the
desired tracking trajectory will look like a straight line because
of the scale.

In the second simulation, we assume the vehicle system has
time-varying delay, the retarded coefficient α is 0.8, dm is 1,
dM is 3, γ is 0.8, γd is 0.2. 5% model uncertainties are added,
i.e., NA = 0.05A, NB = 0.05B, NAd = 0.05Ad. M is an

identity matrix, E =
[
0.01 0.1

]T
, Q is diag{5, 5}, R is 1, τ

is 1. The external disturbances p and H are given by p(k) =

1× 10−3 sin(k),H(k) = sin(k) respectively. The input constraint
is ‖δ‖ ≤ 0.5 rad. The sampling time is 0.01 s. Figure 3 shows the
proposed controller can track the reference well when there exist

model uncertainties, external disturbances, and time-varying

delay. The root mean square error (RMSE) of the sideslip angle
tracking error is 7.8719×10−6, the RMSE of the yaw rate tracking
error is 7.996× 10−5.

In order to more convincingly verify the effectiveness of the

proposed controller, we chose square wave reference signals as

the tracking signal in the third simulation. The upper bound of
delay is set as dM = 10, the external disturbances p is set as p(k) =
5 × 10−3 sin(k). Other parameters are the same as in simulation

2. As shown in Figure 4, despite the time-varying delay, model
uncertainties and external disturbances, the proposed controller
can still track the challenging reference signal well. The system
states come into a very small region near the neighborhood
of the reference tracking trajectory in the presence of a bigger
external disturbances. The RMSE of the sideslip angle tracking
error is 6.3077× 10−5, the RMSE of the yaw rate tracking error is
4.8308 × 10−4.

To further verify the robustness of the proposed controller, we
consider 10% model uncertainties and the external disturbances
p are set as p = 5 × 10−3 sin(0.1πk), where the frequency of the
disturbance refers to Wang N. et al. (2016). Other parameters are
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FIGURE 2 | Control performance comparison of the first simulation. (A) Sideslip angle. (B) Yaw rate.

FIGURE 3 | Control performance of the second simulation. (A) Sideslip angle. (B) Yaw rate.

FIGURE 4 | Control performance of the third simulation. (A) Sideslip angle. (B) Yaw rate.

FIGURE 5 | Control performance of the fourth simulation. (A) Sideslip angle. (B) Yaw rate.
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the same as in simulation 3. The square wave reference signals
are also selected as the tracking signal in the this simulation. The
performance of the proposed robust MPC controller is shown in
Figure 5. The yaw rate tracking performance is a bit worse but
it is still stable in the neighborhood of the reference tracking
trajectory in the presence of bigger model uncertainties and
bigger disturbance frequency.

5. CONCLUSION

In this paper, we design a robust MPC controller for vehicle
system with model uncertainties, external disturbances, and
time-varying delay. A LKF candidate related to time-varying
delay is constructed to derive an upper bound of the cost
function. A LRF is designed to compute the RPI. The
computation of RPI and upper bound of the cost function,
input constraint and the minimization problem are expressed as
LMIs or BMIs by using matrix technology. Then the MPC state
feedback law is calculated in terms of LMIs/BMIs. Simulation
results show that the proposed controller is effective.
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