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This study presents an online tuning proportional-integral-derivative (PID) controller

using a multilayer fuzzy neural network design for quadcopter attitude control. PID

controllers are simple but effective control methods. However, finding the suitable gain

of a model-based controller is relatively complicated and time-consuming because it

depends on external disturbances and the dynamic modeling of plants. Therefore, the

development of a method for online tuning of quadcopter PID parameters may save

time and effort, and better control performance can be achieved. In our controller

design, a multilayer structure was provided to improve the learning ability and flexibility

of a fuzzy neural network. Adaptation laws to update network parameters online were

derived using the gradient descent method. Also, a Lyapunov analysis was provided to

guarantee system stability. Finally, simulations concerning quadcopter attitude control

were performed using a Gazebo robotics simulator in addition to a robot operating

system (ROS), and their results were demonstrated.

Keywords: quadcopter attitude, fuzzy neural network, proportional-integral-derivative, attitude tracking control,

fuzzy PID

INTRODUCTION

In the 4th industrial revolution era, the application of multi-copters has significantly expanded,
and it has thus attracted the interest of many researchers specialized in multi-copter control
engineering. Multi-copters need to maintain accurate attitudes to ensure stable flight, so the
development of accurate and stable controllers for multi-copters is essential. The most popular
controller used for multi-copters is the cascaded proportional-proportional integral derivative
controller (PPID) (Hernandez and Frias, 2016; Salas et al., 2019; Santos et al., 2019; Xuan-Mung
and Hong, 2019a,b). Since PID is a linear controller, it is generally hard to use to achieve the highest
control performance for non-linear control systems (Sarabakha et al., 2017). Furthermore, in the
design of a PID controller, it is necessary to obtain the exact mathematical model of the control
system and to optimize the gain value to achieve the desired performance. However, this work
requires complexity calculations and an accurate modeling plant.

Gain tuning for PID controllers is time-consuming, as it depends on the knowledge of dynamic
plants and the experience of expert operators (Kim et al., 2007). Mathematical models are different,
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as they depend on the size and appearance of multi-copters.
Even if it is the same aircraft, the center of gravity can be
different (Kurak and Hodzic, 2018). Therefore, the gain values
are always flexible, and it may take longer to find suitable values.
However, such tasks must be completed correctly, as an incorrect
calculation can lead to terrible problems, such as falling or
bumping into a people or objects. In past decades, many studies
have been conducted to solve such problems (time-consuming,
costly, etc.; Fatan et al., 2013; Kuantama et al., 2017; Noordin
et al., 2017; Rouhani et al., 2017; Sumardi and Riyadi, 2017;
Prayitno et al., 2018; Thanh and Hong, 2018; Chen et al., 2019;
Rabah et al., 2019; Soriano et al., 2020). The Ziegler Nichols
method is a well-known for tuning PID parameters (Azman
et al., 2017). However, it produces oscillatory responses and yields
overshoot problems (Zahir et al., 2018). Moreover, it cannot
be applied in the online-tuning of parameters, and the control
performance can be further improved.

In recognizing the above-mentioned limitation of traditional
PID controllers, many researchers have provided methods for
auto-tuning PID parameters (Amoura et al., 2016; De Keyser
et al., 2016; Concha et al., 2017; Live et al., 2017; Mendes
et al., 2017; Wang, 2017; Bernardes et al., 2019). In which, using
the fuzzy neural network to tune PID parameter controllers
has attracted the attention of many researchers. In 2018,
Davanipour et al. proposed a self-tuning PID controller based
on a fuzzy wavelet neural network (Davanipour et al., 2018).
In 2019, Tripathy et al. introduced a fuzzy PID controller
for load frequency control using spider monkey optimization
(Tripathy et al., 2019). In 2017, Wang et al. provided an
improved fuzzy PID controller design using predictive functional
control structure (Wang et al., 2017). These studies could
reduce the effort required for tuning the required parameters
for PID controllers. However, most of their methods were

TABLE 1 | The major differences and improvements among this study and related works.

PID-MFNN

(our proposed method)

FWNN-PID

(Davanipour et al., 2018)

SMO-PID

(Tripathy et al., 2019)

PFPID

(Wang et al., 2017)

Method Using multilayer

membership function neural

network to online adjust the

PID controller’s parameters

Using fuzzy wavelet neural

network to model the

system for approximation

the non-linear function.

Then, the PID controller’s

parameters are designed

based on the obtained

model

Using the spider monkey

optimization algorithm to

optimize the PID controller’s

parameters

Using fuzzy system

combined with PID to

predictive functional model

and control the process.

The PID controller’s

parameters are tuned online

by fuzzy inference

Membership function Provided the adaptation

laws for online updating the

membership functions

Using fixed membership

functions

Using fixed membership

functions

Using predefined triangular

membership functions and

predefined sigmoid

membership functions

Fuzzy weights Provided the adaptation

laws for online adjusting the

fuzzy weights

Provided the adaptation

laws for online adjusting the

fuzzy weights

Using fixed fuzzy weights Using predefined fuzzy rules

based on technical

knowledge and engineering

design

Adaptation laws Using the steepest descent

gradient approach and a

backpropagation algorithm

Using the steepest descent

gradient approach and a

backpropagation algorithm

Not use Not use

complicated, but the control performance could be further
improved.

In recent years, many studies have investigated the fuzzy
neural network (FNN), which is a combination of fuzzy systems
and neural networks. Therefore, combined FNN systems have the
advantages of both fuzzy systems and neural networks, such as
human-like reasoning and learning capabilities. Using the neural
network structure, FNN parameters can be trained online to
achieve suitable values. According to the above discussions, this
study presents a method for auto-tuning PID parameters using
multilayer fuzzy neural network (PID-MFNN) to control the
attitude the quadcopters. Compared with the previous studies
(Wang et al., 2017; Davanipour et al., 2018; Tripathy et al., 2019),
our proposed PID-MFNN has some advantages, such as no need
for offline training. The major differences and improvements
among this study and related works are shown in Table 1.
Also, the fuzzy weights and fuzzy membership functions can
be updated online, and the multilayer structure is applied to
improve the control performance. The main contributions of this
study are summarized as follows: (1) the successful design of a
multilayer structure was provided to improve the learning ability
and flexibility of a FNN; (2) the adaptation laws for updating
the parameters of a controller online were derived by using the
gradient descent method; (3) the simulation results of controlling
the attitude of a quadcopter were provided to illustrate the
effectiveness of the control design method.

The rest of this paper is organized as follows. The quadcopter
dynamics model and quadcopter controller are given in section
Problem Formulation. The PID-MFNN structure and its learning
parameter are described in section PID-MFNN Structure and
Parameter Learning. The simulation results of controlling the
quadcopter attitude are presented in section Simulation Results.
Finally, the conclusions are given in section Conclusion.
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FIGURE 1 | Quadcopter schematic and its reference frames.

PROBLEM FORMULATION

Quadcopter Dynamics Model
The quadcopter schematic and its reference frames are shown
in Figure 1. In which, the earth-frame and quadcopter body
frame are denoted by E

(

xE, yE, zE
)

and B
(

x, y, z
)

. The dynamic
equations of the quadcopter are given as:











































ẍ = 1
M (cosφ sin θ cosψ + sinφ sinψ)U1

ÿ = 1
M (cosφ sin θ sinψ + sinφ cosψ)U1

z̈ = g − 1
M (cosφ cos θ)U1

φ̈ =

(

Jy−Jz
Jx

)

θ̇ ψ̇ + l
Jx
U2

θ̈ =

(

Jz−Jx
Jy

)

φ̇ψ̇ + l
Jy
U3

ψ̈ =

(

Jx−Jy
Jz

)

φ̇θ̇ + 1
Jz
U4

(1)

where θ , φ, andψ stand for the three Euler angles: roll, pitch, and
yaw, respectively; Jx, Jy and Jz stand for the moment of inertia
for the x, y, and z axes, respectively; l denotes the length of the
quadcopter’s arm; U1 denotes the total thrust on the body in the
z-axis; U2, U3, and U4 denote the roll, pitch, and yaw torques,
respectively, which are given as















U1 = F1 + F3 + F2 + F4
U2 = F4 − F2
U3 = F3 − F1
U4 = Cd (F1 + F3 − F2 − F4)

(2)

where Fi = Ct�
2
i denotes the thrust of the i-th motor;�i denotes

the speed of the i-th motor; Ct and Cd stand for the thrust and
drag coefficients, respectively.

Quadcopter Controller
The quadcopter controller scheme is given in Figure 2. There are
two kinds of controllers that need to be considered in quadcopter
control: position controller and attitude controller. The PPID

attitude controller is given in Figure 3. The output of the outer-
loop controller is given by

θ̇ref = Gθ eθ
φ̇ref = Gφeφ
ψ̇ref = Gψ eψ

(3)

where Gθ , Gφ , and Gψ denote the proportional gain for the roll,
pitch, and yaw outer-loop controller, respectively; eθ , eφ , and eψ
are the angle errors of the roll, pitch, and yaw, respectively.

eθ = θref − θ

eφ = φref − φ

eψ = ψref − ψ

(4)

where θref , φref , andψref are the angle references of the roll, pitch,
and yaw, respectively.

The output of the PID inner-loop controller is given by

uθ = Kθp eθ̇ + Kθi
∫ t
0 eθ̇ + Kθ

d
ėθ̇

uφ = K
φ
p eφ̇ + K

φ
i

∫ t
0 eφ̇ + K

φ

d
ėφ̇

uψ = K
ψ
p eψ̇ + K

ψ
i

∫ t
0 eψ̇ + K

ψ

d
ėψ̇

(5)

where Kθp , K
θ
i , K

θ
d
, K

φ
p , K

φ
i , K

φ

d
, K

ψ
p , K

ψ
i , and K

ψ

d
, are the PID

gains for the roll, pitch, and yaw inner-loop controller; eθ̇ , eφ̇ ,
and eψ̇ denote the angular velocity errors of the roll, pitch, and
yaw, respectively.

eθ̇ = θ̇ref − θ̇

eφ̇ = φ̇ref − φ̇

eψ̇ = ψ̇ref − ψ̇

(6)

To obtain suitable values for the PID gains in the outer-
loop and inner-loop controller, the PID-MFNN was designed
in the following section to adjust the gains for the PPID
controller online.

PID-MFNN STRUCTURE AND PARAMETER
LEARNING

PID-MFNN Structure
The fuzzy rule forms for the proposed PID-MFNN controller are:

lth rule : IF i1 isµ1jk and i2 isµ2jk , ..., and ini isµnijk

Then out = wklo

i = 1, 2, ..., ni; j = 1, 2, ..., nj;
k = 1, 2, ..., nk; l = 1, 2, ..., nl; o = 1, 2, ..., no

(7)

where ii is the fuzzy input; µijk is the membership function (MF)
for the input i-th, block j-th, and layer k-th; wklo is the fuzzy
weight for the layer k-th, rule l-th, and output o-th.

The auto-tuning algorithm structure of the PID-MFNN
controller is shown in Figure 4 in which, the MFNN structure
is applied to adjust the PPID controller gains online. As shown in
Figure 5, the MFNN structure includes five spaces as follows:
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FIGURE 2 | Quadcopter controller scheme.

FIGURE 3 | Control scheme of the quadcopter attitude controller (2 is replaced forφ, θ , or ψ ).

FIGURE 4 | Auto-tuning algorithm structure of the PID-MFNN controller.

1) The input space: the fuzzy input vector, I =
[

i1, i2, ..., ini
]

, is
prepared in this space. Each node corresponds to one input
and is directly transferred to the next space.

2) The membership function space: the membership grades
are calculated in this space using the fuzzy inputs

and the Gaussian membership functions (GMFs). As
shown in Figure 6, the multilayer fuzzy membership
function is provided to improve the learning ability and
flexibility of the FNN. The outputs of this space are
computed as:
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FIGURE 5 | Multilayer fuzzy neural network structure.

µ ijk = exp

{

−
(

ii −mijk

)2

v2
ijk

}

(8)

wheremijk and vijk are the mean and variance of the GMFs.

3) The fuzzy firing space: the fuzzy firing strength is calculated in
this space using the membership grades as follows:

fkl =

ni
∏

i=1

µijk (9)

where fkl is the fuzzy firing strength for the l-th rule in the
k-th layer.

Then, the fuzzy firing vector is presented as











f1l
f2l
...

fnkl











=











f11, f12, ..., f1nl
f21, f22, ..., f2nl

...
...

...
fnk1, fnk2, ..., fnknl











(10)

4) The fuzzy weight space: in this space, the fuzzy weightswklo are
provided to connect the fuzzy firing space and output space.
The fuzzy weight vector for the o-th output is presented as











w1lo

w2lo

...
wnklo











=











w11o,w12o, ...,w1nlo

w21o,w22o, ...,w2nlo

...
...

...
wnk1o,wnk2o, ...,wnknlo











(11)

5) The output space: the final outputs of this space are the
PID gains for the outer-loop and inner-loop controllers.
Defuzzification is performed using the product operation
as follows:

uo =

nk
∑

k=1











nl
∑

l=1

(

fklwklo

)

nl
∑

l=1

fkl











(12)

Using the proposed MFNN to adjust the PID gains online, the
desired performance of the control network can be achieved.
The adaptation laws for updating the parameters of the
proposed PID-MFNN controller online are explained in the
following section.

Parameter Learning
First, considering the outer-loop controller, Equation (3) can be
rewritten, where the gains Gθ , Gφ , and Gψ are obtained using the
output of the proposed MFNN in Equation (10).

2̇ref = G2e2 (13)

G2 =

nk
∑

k=1











nl
∑

l=1

(

fklw
g

kl2

)

nl
∑

l=1

fkl











(14)

where2 is replaced by (θ , φ, ψ).
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FIGURE 6 | Fuzzy membership function and rule base: (A) the conventional fuzzy system and (B) the proposed multilayer fuzzy neural network with two layers.

By rewriting the Equation (6),

e2̇ = 2̇ref − 2̇ (15)

A Lyapunov function is defined as E1(t) = 1
2

(

e2̇ (t)
)2
, using

the gradient descent approach and chain rule, and the parameter
update laws for PID-MFNN can be obtained as follows:

ŵ
g

kl2 (t + 1) = ŵ
g

kl2 (t)− η
g
w
∂E1

∂ŵ
g

kl2

= ŵ
g

kl2 (t)− η
g
w
∂E1

∂e2̇

∂e2̇
∂2̇ref

∂2̇ref

∂G2

∂G2

∂ŵ
g

kl2

= ŵ
g

kl2 (t)− η
g
we2̇e2

fkl
nl
∑

l=1

fkl

(16)

m̂
g

ijk (t + 1) = m̂
g

ijk (t)− η
g
m
∂E1

∂m̂
g

ijk

= m̂
g

ijk (t)− η
g
m
∂E1

∂e2̇

∂e2̇
∂2̇ref

∂2̇ref

∂G2

∂G2

∂fkl

∂fkl

∂µijk

∂µijk

∂m̂
g

ijk

= m̂
g

ijk (t)− η
g
me2̇e2

(

ŵ
g

kl2
− G2

)

nl
∑

l=1

fkl

fkl

(

ii − m̂
g

ijk

)

(

v̂
g

ijk

)2

(17)

v̂
g

ijk (t + 1) = v̂
g

ijk (t)− η
g
v
∂E1

∂ v̂
g

ijk

= v̂
g

ijk (t)− η
g
v
∂E1

∂e2̇

∂e2̇
∂2̇ref

∂2̇ref

∂G2

∂G2

∂fkl

∂fkl

∂µijk

∂µijk

∂ v̂
g

ijk

= v̂
g

ijk (t)− η
g
ve2̇e2

(

ŵ
g

kl2
− G2

)

nl
∑

l=1

fkl

fkl

(

ii − m̂
g

ijk

)2

(

v̂
g

ijk

)3

(18)
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where ŵ
g

kl2
, m̂

g

ijk
, and v̂

g

ijk
are the connecting weight, mean, and

variance of the outer-loop MFNN controller; η
g
w, η

g
m, and η

g
v are

the positive learning rates.
Then, considering the inner-loop controller, Equation (5) can

be rewritten, where the gains Kθp , K
θ
i , K

θ
d
, K

φ
p , K

φ
i , K

φ

d
, K

ψ
p , K

ψ
i ,

and K
ψ

d
are obtained using the outputs of the proposed MFNN.

u2 = u2p + u2i + u2d = K2p G2p + K2i G2i + K2d G2d (19)

where G2p = e2̇; G
2
i =

∫ t
0 e2̇; G

2
d
= ė2̇

K2p =

nk
∑

k=1











nl
∑

l=1

(

fklw
p

kl2

)

nl
∑

l=1

fkl











;K2i =

nk
∑

k=1











nl
∑

l=1

(

fklw
i
kl2

)

nl
∑

l=1

fkl











;

K2d =

nk
∑

k=1











nl
∑

l=1

(

fklw
d
kl2

)

nl
∑

l=1

fkl











(20)

Then

K2α =

nk
∑

k=1











nl
∑

l=1

(

fklw
α
kl2

)

nl
∑

l=1

fkl











; u2α = K2α G
2
α (21)

where α is replaced by
(

p, i, d
)

.
By rewriting the Equation (4),

e2 = 2ref −2 (22)

A Lyapunov function can be defined as E2(t) =
1
2 (e2 (t))

2, using
the gradient descent approach and chain rule, and the parameter
update laws for PID-MFNN can be obtained as:

ŵαkl2 (t + 1) = ŵαkl2 (t)− η
α
w

∂E2

∂ŵα
kl2

= ŵαkl2 (t)− η
α
w

∂E2

∂e2

∂e2

∂2

∂2

∂u2α

∂u2α
∂K2α

∂K2α
∂ŵα

kl2

= ŵαkl2 (t)+ η
α
we2T2G

2
α

fkl
nl
∑

l=1

fkl

(23)

m̂αijk (t + 1) = m̂αijk (t)− η
α
m

∂E2

∂m̂α
ijk

= m̂αijk (t)− η
α
m

∂E2

∂e2

∂e2

∂2

∂2

∂u2α

∂u2α
∂K2α

∂K2α
∂fkl

∂fkl

∂µijk

∂µijk

∂m̂α
ijk

= m̂αijk (t)+ η
α
me2T2G

2
α

(

ŵα
kl2

− K2α
)

nl
∑

l=1

fkl

fkl

(

ii − m̂α
ijk

)

(

v̂α
ijk

)2

(24)

v̂αijk (t + 1) = v̂αijk (t)− η
α
v

∂E2

∂ v̂α
ijk

= v̂αijk (t)− η
α
v

∂E2

∂e2

∂e2

∂2

∂2

∂u2α

∂u2α
∂K2α

∂K2α
∂fkl

∂fkl

∂µijk

∂µijk

∂ v̂α
ijk

= v̂αijk (t)+ η
α
v e2T2G

2
α

(

ŵα
kl2

− K2α
)

nl
∑

l=1

fkl

fkl

(

ii − m̂α
ijk

)2

(

v̂α
ijk

)3

(25)

where ŵα
kl2

, m̂α
ijk
, and v̂α

ijk
are the connecting weight, mean,

and variance of the inner-loop MFNN controller; T2 can be
Tφ , Tθ , or T9 , which are the quadcopter transfer functions for
the yaw, pitch and roll angles; ηαw, η

α
m, and η

α
v are the positive

learning rates.
Using the proposed adaptation laws in (16–18) and (23–25),

the parameters of the proposed PID-MFNN can be obtained.
Then, the suitable gains for the outer-loop and inner-loop PPID
controller can be achieved.

The Convergence Analysis
The Lyapunov cost function is defined as

V(t) = E1 =
1

2

(

e2̇ (t)
)2

(26)

Then,

1 V(t) = V(t + 1)− V(t) =
1

2

[

(

e2̇ (t + 1)
)2

−
(

e2̇ (t)
)2

]

(27)

By applying the Taylor expansion,

e2̇ (t + 1) = e2̇ (t)+1e2̇ (t)
∼= e2̇ (t)+

[

∂e2̇ (t)

∂ŵ
g

kl2

]

1ŵ
g

kl2

(28)

From (16),

∂e2̇(t)

∂ŵ
g

kl2

= e2
fkl

nl
∑

l=1

fkl

= ζ (29)

By rewriting (28) using (29) and (16),

e2̇(t + 1) = e2̇(t)− ζ
(

η
g
we2̇(t)ζ

)

= e2̇(t)
[

1− η
g
wζ

2
]

(30)

By rewriting (27) using (30),

1 V(t) =
1

2

(

e2̇(t)
)2

[

(

1− η
g
wζ

2
)2

− 1
]

=
1

2

(

e2̇(t)
)2

[

(

η
g
wζ

2
)2

− 2η
g
wζ

2
]

=
1

2
η
g
w

(

e2̇(t)
)2
ζ 2

(

η
g
wζ

2 − 2
)

(31)
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From (31), if η
g
w is chosen to satisfy 0 < η

g
w < 2

ζ 2
, then

1 V(t) < 0. Consequently, the convergence of the adaptation
law is guaranteed by the Lyapunov theorem. Similarly, the
convergence of the adaptation laws for ηαw, η

α
m, and ηαv can

be obtained.
The computational complexity of our approaches using big O

notation is given as:
+ Big O notation for PID-CFNN:

Big − O = O (T ∗ [max (n1, n2)+ n1 ∗ n2]) (32)

+ Big O notation for PID-MFNN:

Big − O = O
(

T ∗ nk
[

max
(

nj1 , nj2
)

+
(

nj1 ∗ nj2
)])

(33)

where:

T: is the simulation time.
nj1 : the number of membership functions in input 1.
nj2 : the number of membership functions in input 2.
nk: the number of layers.

In our proposed network, we choose nj1 = nj2 = 3 and nk = 2.

SIMULATION RESULTS

This section presents the results of the quadcopter attitude
control using the proposed PID-MFNN controller, which is
performed using the Gazebo robotics simulator and ROS.
The Gazebo simulation is a multi-robot simulator for outdoor
environments. It supports the interface of the quadcopter’s
firmware, Pixhawk 4 (PX4). Therefore, it is easy to implement
our algorithm on the quadcopter and to receive or transmit
necessary data. The basic commands using MAVlink are
also supported. Inside PX4, many terrains, sensors, and
quadcopter types are provided using JavaScript. In this study,
the 3D Robotics IRIS quadcopter was used without additional
sensors, which were simulated on the basic terrain as a
real world environment for verifying our designed control
system. The wind disturbances of 1.0 m/s are considered as
external disturbances.

The quadcopter parameters used in this model were chosen as
shown in Table 2.

The goal of the control system is to control the attitude of the
quadcopter following the reference set-point trajectory:

θref = 5 ∗ square (0.2π t)

φref = 5 ∗ square (0.2π t)

ψref = 90+ 5 ∗ square (0.2π t) (34)

θref = 5 ∗ sin (0.2π t)

φref = 5 ∗ sin (0.2π t)

ψref = 90+ 5 ∗ sin (0.2π t) (35)

The Gazebo simulation interface is shown in Figure 7. The
tracking performances of the quadcopter attitude under square
wave and sine wave commands are given in Figures 8, 11,
respectively. The black line presents the reference set-point

TABLE 2 | The 3DR’s IRIS parameters inside the Gazebo simulation used in the

experiment.

Parameter Value Unit

m 1.5 kg

l 0.275 m

h 0.11 m

g 9.81 m/s2

Jx 0.0347563 kg ·m2

Jy 0.0458929 kg ·m2

Jz 0.0977 kg ·m2

Ct 8.54858e-06 N · s2

Cd 0.000806428 N ·m · s2

FIGURE 7 | Gazebo simulation interface.

trajectory. The red and blue lines present the quadcopter
attitude output using the PID-MFNN controller and the PID
conventional fuzzy controller (PID-CFNN), respectively. The
control signals under the square wave and sine wave commands
are shown in Figures 9, 12, respectively. The tracking errors
under the square wave and sine wave commands are given in
Figures 10, 13, respectively. The comparison results concerning
the root mean square error (RMSE) between the proposed
PID-MFNN controller and PID-CFNN controller are given in
Tables 3, 4. From Figures 8–13, it can be seen that the proposed
PID-MFNN controller has better control performance with a
faster convergence speed and smaller tracking errors compared
with the conventional fuzzy controller, which demonstrates the
effectiveness of our proposed control method. The RMSE was
used to evaluate the effectiveness of the control performance
as follows:

RMSE =

√

√

√

√

1

ns

ns
∑

s=1

(

(

es2
)2

)

, (36)

where ns is the number of samples.
The parameter settings of the proposed PID-MFNN controller

were chosen as ni = 2, nj = 3, and nk = 2; the initial GMF
for the fuzzy rules are given as mij1 = [−0.6, 0, 0.6], vij1 =

[0.3, 03, 0.3], mij2 = [−0.4, 0, 0.4], and vij2 = [0.2, 02, 0.2]; the
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FIGURE 8 | The tracking performance for the quadcopter attitude control for the square wave commands.

FIGURE 9 | The control signals for the quadcopter attitude control for the square wave commands.
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FIGURE 10 | The tracking errors for the quadcopter attitude control for the square wave commands.

TABLE 3 | RMSE comparison for the quadcopter attitude control for the square

wave commands.

Controller Computation time (ms) Roll Pitch Yaw

PID-MFNN 0.11444 0.01896 0.01902 0.07713

PID-CFNN 0.11093 0.02698 0.02177 0.07967

TABLE 4 | RMSE comparison for the quadcopter attitude control for the sine

wave commands.

Controller Computation time (ms) Roll Pitch Yaw

PID-MFNN 0.11444 0.0106 0.0106 0.1170

PID-CFNN 0.11093 0.0168 0.0154 0.1820

initial fuzzy weight is wklo = 0.2; the learning rates were chosen
as η

g
w = ηαw = ηαm = ηαv = 0.005; the sampling time was 0.01 s.

The same parameters were chosen for PID-CFNN, but only the
number of layers was nk = 1, and all GMFs were put in one layer.

The simulation results in Figures 8, 10 show that the proposed
PID-MFNN controller has better performance than the PID-
CFNN controller in terms of the rising time, settling time, and
overshoot. The multilayer structure in our proposed controller,
which contains a multilayer MF, provides it with a better scope
regarding errors and disturbances compared with the single
MF structure in PID-CFNN. The proposed PID-MFNN had a
little longer computation time than the PID-CFNN due to the

processing time of the multilayer structure. However, this did not
affect the control performance, and the proposed PID-MFNN
controller could achieve a smaller RMSE in both simulation
cases. Apply some methods such as latent analysis in Wu et al.
(2019) and Wu et al. (2020) to reduce the computational cost
for the proposed multilayer fuzzy neural network will be our
future work.

Remark 1. The conventional PID usually hard to achieve
high control performance for controlling non-linear systems due
to its parameters are usually tuned for local points based on a
linearization method (Mohan and Sinha, 2008; Cetin and Iplikci,
2015). Therefore, it is not suitable for controlling highly complex
and non-linear systems, such as quadcopters. However, in our
proposed PID-MFNN method, we designed adaptation laws for
updating the MFNN network parameters online, so the output of
the MFNN network can auto-tune the PID gains. Therefore, our
proposed PID-MFNN is suitable for quadcopters as well as other
non-linear control systems.

Remark 2. By separating the member functions into a
multilayer structure, the proposed method can better cover
the changes in inputs. Moreover, with the proposed multilayer
structure, the learning ability and flexibility of the network can
be further improved.

Remark 3. The difficulties and limits in this study are
described as follows. When applying our method in an
experiment with real quadcopters, suitable initial parameters
needed to be chosen. Otherwise, control could be lost. In our
study, the simulation results were obtained using a Gazebo robot
simulator, and it was easy to choose these parameters using the
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FIGURE 11 | The quadcopter attitude control tracking performance for the sine wave commands.

FIGURE 12 | The quadcopter attitude controller input for the sine wave commands.

trial-and-error method. In our future work, we plan to apply
some optimal algorithms to realize suitable initial parameters.

CONCLUSION

In this study, auto-tuning PID parameters using MFNN
were successfully designed for controlling the attitude of

quadcopters. The proposed method provided an effective
method for obtaining suitable gains for PID controllers

without the need for a mathematical system model or
complicated calculations. In addition, a new multilayer

structure was provided to improve the learning ability
and flexibility of the used FNN. The parameters of the
proposed network could be updated online using adaptation
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FIGURE 13 | The quadcopter attitude control tracking performance error for the sine wave commands.

laws. Finally, the effectiveness of the proposed method was
illustrated through the results of the conducted numerical
simulations of quadcopter attitude control using a Gazebo
robotics simulator and ROS. Our designed controller can
also apply to a real quadcopter, and in our future work, we
plan to apply some optimal algorithms to achieve suitable
initial parameters.
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