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Electroencephalography (EEG)-based driving fatigue detection has gained increasing

attention recently due to the non-invasive, low-cost, and potable nature of the EEG

technology, but it is still challenging to extract informative features from noisy EEG

signals for driving fatigue detection. Radial basis function (RBF) neural network has

drawn lots of attention as a promising classifier due to its linear-in-the-parameters

network structure, strong non-linear approximation ability, and desired generalization

property. The RBF network performance heavily relies on network parameters such

as the number of the hidden nodes, number of the center vectors, width, and output

weights. However, global optimization methods that directly optimize all the network

parameters often result in high evaluation cost and slow convergence. To enhance

the accuracy and efficiency of EEG-based driving fatigue detection model, this study

aims to develop a two-level learning hierarchy RBF network (RBF-TLLH) which allows

for global optimization of the key network parameters. Experimental EEG data were

collected, at both fatigue and alert states, from six healthy participants in a simulated

driving environment. Principal component analysis was first utilized to extract features

from EEG signals, and the proposed RBF-TLLH was then employed for driving status

(fatigue vs. alert) classification. The results demonstrated that the proposed RBF-TLLH

approach achieved a better classification performance (mean accuracy: 92.71%; area

under the receiver operating curve: 0.9199) compared to other widely used artificial

neural networks. Moreover, only three core parameters need to be determined using

the training datasets in the proposed RBF-TLLH classifier, which increases its reliability

and applicability. The findings demonstrate that the proposed RBF-TLLH approach can

be used as a promising framework for reliable EEG-based driving fatigue detection.

Keywords: driving fatigue detection, electroencephalography, principal component analysis, radial basis function,

neural network, classification
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INTRODUCTION

Driving fatigue is a typical mental and physical concern that
weakens the driver’s ability to control the vehicle (Li Z. et al.,
2017). It not only poses a significant injury and fatality risk
to the drivers but also causes injury to other road users such
as passengers, motorbike users, other drivers, and pedestrians.
According to the statistical data reported by the World Health
Organization, more than 1.3 million people are killed in traffic
accidents every year mainly due to fatigued driving (Sahayadhas
et al., 2012; Li Z. et al., 2017). Therefore, it is of great importance
to investigate the characteristics of driving fatigue and develop an
automatic driving fatigue detection systemwith reliable detection
performance (Li Z. et al., 2017; Sikander and Anwar, 2019).

The currently available methods for driving fatigue detection
can be characterized into three categories (Sikander and Anwar,
2019): (1) psychology-based approach that generally relies on
psychometric questionnaires to evaluate an individual’s fatigue
level (Michielsen et al., 2004), (2) video-based approach that
usually monitors the behavioral and physical status of the
driver, such as facial features, head position, reaction time,
steering errors, lane deviation, etc. (Akerstedt et al., 2005;
Hsieh and Tai, 2013), and (3) physiological approach that
makes use of bio-signals associated with driving fatigue, such
as electrooculography (EOG) to measure the movement of the
eye (Hu and Zheng, 2009; Picot et al., 2012), electrocardiography
(ECG) to detect heart rate variability (Jung et al., 2014),
electroencephalography (EEG) to assess brain state (Huang
et al., 2016; Ma et al., 2019, 2020), and electromyography
(EMG) to measure muscle activity (Sikander and Anwar, 2019).
Among them, psychological self-reported measurement is time-
consuming and subjective because it relies on the driver’s
subjective feedbacks via questionnaires, which makes it infeasible
and unreliable for real-time detection. Video-based approaches
are vulnerable to environmental factors, such as brightness,
weather, road conditions, and other factors, which could result in
poor detection performance (Jimenez-Pinto and Torres-Torriti,
2012). EOG, ECG, surface EMG, and EEG have all been explored
as physiological measures for driving fatigue detection, with
specific advantages and disadvantages to each other (Sikander
and Anwar, 2019). Electrodes have to be placed over the
body surface, which makes the system intrusive in nature. For
example, EOG signals are retrieved through electrodes placed
near the eye, which can hinder driving. ECG can be measured
in a less intrusive way, but ECG signals showed a high inter-
subject variance which may lead to challenges in developing
a generic driving fatigue detection system. The applicability of
surface EMG in real-time driving fatigue detection is limited
(Sikander and Anwar, 2019). EEG has been considered as a
promising modality for driving fatigue detection, owing to its
high temporal resolution, high portability, and good sensitivity
to brain state (O’Hanlon and Kelley, 1977; Nguyen et al., 2019;
Gao et al., 2020). In particular, EEG can be used to non-invasively
measure the neuronal electrical activity from the scalp surface
to provide a direct assessment of brain fatigue status (Zhao
et al., 2017; Sikander and Anwar, 2019). However, EEG signal
retrieval throughmultiple electrodes is highly susceptible to noise

from external factors, and it is critical to extract informative
features from noisy EEG signals for a successful driving fatigue
detection application.

Neural networks have been used as promising tools in
extracting informative features from EEG signals because of
their massive computational parallelism which resembles the way
the brain processes information (Masic and Pfurtscheller, 1993).
Recently, many studies have implemented EEG-based driving
fatigue detection systems using neural network techniques.
Vuckovic et al. proposed a model for classifying alertness and
drowsiness from EEG recordings on arbitrary healthy subjects,
in which the artificial neural network (ANN) was used as an
automatic classifier (Vuckovic et al., 2002). Yang et al. presented a
driving fatigue classification model based on information fusion
technique and dynamic neural network. The experimental results
indicated that the EEG-derived features were able to detect the
fatigue state of a driver (Yang et al., 2010). Moreover, Aruna
et al. proposed a recurrent self-evolving fuzzy neural network
method for driving fatigue detection, in which the correlation
coefficient of driver attention was classified to detect driving
fatigue (Aruna and Kalaivani, 2016). Chai et al. presented a
three-layer feed-forward Bayesian neural network structure for
the binary classification of driving fatigue, where autoregressive
(AR)modeling was used as the feature extraction algorithm (Chai
et al., 2017b). Besides that, Chai et al. also proposed an improved
EEG-based driving fatigue classification model, where the AR
model was employed for feature extraction, and the sparse-deep
belief network (sparse-DBN) was employed for classification
(Chai et al., 2017a). Recent studies also demonstrated the radial
basis function (RBF) neural network as a promising classifier due
to its linear-in-the-parameters network structure, strong non-
linear approximation ability, and desired generalization property.
Li et al. demonstrated that the radial basis function-based
classification method has advantages in terms of classification
accuracy for epileptic seizure classification by comparing with
five other classifiers (Li Y. et al., 2017; Li et al., 2019). The
RBF kernel-based support vector regression also achieved better
performance in fatigue prediction compared to the other kernel
functions in the study of Bose et al. (2019). The performance
of the RBF network heavily relies on network parameters,
which should be optimized globally for best performance. The
RBF network parameters can be estimated using the existing
global optimization methods (Petković et al., 2016; Aljarah
et al., 2018). Unfortunately, due to a relatively large number of
network parameters that need to be optimized, the existing global
optimization methods show high computational cost and slow
convergence and further lead to low classification accuracy and
efficiency of the RBF network.

In this study, a two-level learning hierarchy RBF network
(RBF-TLLH) is developed to enhance the performance of the
RBF classification. In the proposed RBF-TLLH, only three key
RBF network parameters need to be optimized and, as such,
can be easily optimized globally and efficiently. Specifically,
the RBF-TLLH is constructed by employing the ROLS+D-opt
algorithm, which combines the regularized orthogonal least
squares (ROLS) and the D-optimality experimental design (D-
opt) at the lower level and the particle swarm optimization (PSO)
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at the upper level. The PSO algorithm is used to globally optimize
the three core parameters of the ROLS+D-opt algorithm to
enhance the classification performance. As EEG signals are
usually measured with multiple channels at a high sampling
rate, principal component analysis (PCA) (Hotelling, 1933) is
employed to reduce the dimensionality of the original data space
(Lever et al., 2017; Artoni et al., 2018) before the application
of the RBF-TLLH. The performance of the proposed approach
is evaluated on driving fatigue detection and compared against
several widely used artificial neural networks, including the
artificial neural network based on back-propagation (BP), the
artificial neural network based on PSO, and the RBF network
based on the ROLS+D-opt learning algorithm.

MATERIALS AND METHODS

Study Design
The overall structure for the proposed EEG-based fatigue
classification framework is shown in Figure 1, which consists of
five steps: (1) EEG data collection during a simulated driving
environment, (2) raw data pre-processing and segmentation,
(3) dimensionality reduction and feature extraction using
PCA; (4) classification using the RBF network, and (5)
performance evaluation.

Participants and EEG Data Acquisition
The EEG data used in this study were collected from six
healthy, male volunteers (right-handed, aged 23 to 27 years).
All volunteers had valid driver’s licenses, and no participant had
any history of physical or psychological disorders. The study was
approved by the local ethics committee (Guangdong Provincial
Work Injury Rehabilitation Center, China) and performed in
accordance with the Declaration of Helsinki. Each subject was
fully informed about the purpose of the research and provided
written informed consent before the start of the experiment.

A driving simulation system (Shanghai Infrared Automobile
Simulator Driving Equipment Co., Ltd., China) was employed
to imitate a real driving environment during the experiment.
As shown in Figure 2, the driving simulation system includes
clutches, brakes, throttles, and scene simulations that consist of
three large screens and high-performance simulation software.
This system can imitate the real-driving experience, such as the
changing surrounding traffic. EEG signals were recorded using
a 32-channel EEG acquisition system (Brain Products GmbH,
Germany), with a sampling rate of 500Hz. EEG electrodes
were placed on the scalp based on the international 10–20
standard system.

Prior to the start of the experiment, all participants were
allowed to practice and get familiar with the driving simulation
system. EEG data were then collected for two states, alert (non-
fatigue) and fatigue. To collect the alert data, all subjects were
required to maintain an adequate and natural sleep for about
8 h during the night before the experiment. The EEG data were
collected at 9 a.m. on the next day for about 30–60min while
the subjects were executing the driving simulation task. For the
recording of alert data, the path was set relatively complicated
to avoid the drowsiness of the subjects. On the other hand, to

collect the fatigue data, all subjects were requested to sleep for
only 4 h during the night before the experiment. The EEG data
were also recorded at 9 a.m. for 30 to 60min when the subjects
were driving in the simulation environment. The experiment was
performed in a quiet and undisturbed laboratory with ambient
temperatures of around 22◦C. In order to reach the fatigue state
rapidly in fatigue data collection, a long and straight road with
very few pedestrians was used in the simulated environment.
During the data recording, an observer was seated 2m beside
the subject and monitored the subject’s behavior without causing
any disturbance to the subject. The observer decided whether the
subject was in a fatigue state or an alert state by observing the
subject’s drowsy signs (more than 2 s of eye closure and head
nodding, large deviation off the road). The EEG data recording
was terminated at a time of 30min after the subject began to show
fatigue symptoms. For the participants who stayed in alert state
for 60min, the experiments were terminated, and the participants
were excluded from further analysis.

Data Pre-processing and Segmentation
In this study, 20-min EEG signals in each state (alert or
fatigue) were collected on each subject, and all the data
analyses were implemented in a MATLAB environment (2014a,
MathWorks, Natick, Massachusetts). The recorded EEG data
were firstly down-sampled from 500 to 200Hz, and a fourth-
order Butterworth band-pass filtering (1–45Hz) was then applied
to remove artifacts such as slow drift, high-frequency noise, and
power line interference. The 20-min (1,200 s) pre-processed EEG
data for each state were then segmented by applying a 10-s time
window, which resulted in 120 samples for each state (fatigue
or alert). It is worthy of note that, in this study, each sample is
a two-dimensional matrix form (32 channels × 2,000 points).
As such, with the six participants, a total of 1,440 samples (720
samples for alert and 720 samples for fatigue) were formed for
feature extraction and classification. For each participant, the
total of 240 samples was divided into the training data set with
200 samples and the validation data set with the remaining 40
samples, where the fatigue and alert state EEG samples were
evenly split. In addition, a 6-fold cross-validation was employed
for performance evaluation.

Feature Extraction
To extract the representative features from the large amounts
of EEG data, dimensionality reduction is firstly performed to
reduce computational expense and classification error. PCA is
an efficient and flexible unsupervised method for dimensionality
reduction of data (Hotelling, 1933). For a given EEG sample
(m32-channels× 2,000 points), PCA transforms the sample data
into a lower-dimension space through an orthogonal projection
or transformation of the correlated points into uncorrelated
variables of data, known as principal components (PCs) (Lever
et al., 2017; Artoni et al., 2018). Based on the predetermined
cumulative contribution rate, the first r components with the
largest variances are preserved. The preserved number of PCs,
r, is an important parameter in PCA. In this study, different r-
values were tested through multiple trials, and the results showed
that the first 10 PCs accounted for over 80% (the minimum
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FIGURE 1 | Schematic illustration of the two-level learning hierarchy radial basis function network.

FIGURE 2 | The driving simulation system and EEG acquisition device.

cumulative contribution rate is up to 82.13%) of the total variance
of the original signals for all EEG samples. Hence, the first 10 PCs
were preserved, and the original EEG sample with a size of 32
by 2,000 was transformed into a lower-dimension matrix with a
size of 32 by 10. These lower-dimensionality samples were used
to construct the driving fatigue classification model.

Classification Model
An RBF network is a single hidden layer feedforward neural
network that is generally controlled by several key parameters,
including center vectors, the width of the basis function, and the
connecting weights from the hidden nodes to the network output.
An RBF network with n hidden nodes and a single output is
shown in Figure 3, where the input features are first transformed
to hidden nodes via n Gaussian basis functions with a uniform
width and different center vectors. The hidden nodes are further
aggregated to predict the network output via connecting weights.
Denoting the input vector as x and the output as ỹ(x), the RBF
network could be represented as:

ỹ(x) =

n
∑

i=1

θi exp(−‖x− ci‖
2/ρ) (1)

where ci (i = 1, · · · , n) are the center vectors, ρ is the width of the
Gaussian basis functions, θi (i = 1, · · · , n) are the weights, and
‖·‖ is the Euclidean norm.

FIGURE 3 | Radial basis function network for the EEG-based driving fatigue

classification model.

ROLS+D-opt Integrated Learning Algorithm
In order to construct a model with good performance, in this
study, we adopt an integrated learning algorithm (ROLS+D-
opt) to train the model by combining regularized orthogonal
least squares and D-optimality experimental design. The ROLS
regularization techniques improve the generalization properties,
and the D-optimality experimental design further enhances
the efficiency and robustness of the model (Hong and Harris,
2002; Chen et al., 2003). Denoting the input and output
of kth sample as x(k) and y(k), respectively, a training set

of N samples could be represented as
{

y(k), x(k)
}N

k=1
. To

formulate the network as a linear-in-the-parameters problem,
each sample input is considered as a candidate center in RBF,
i.e., ci = x (i) , i = 1, . . . ,N. Therefore, the ith hidden node
on the kth sample, denoted as φi

(

k
)

, could be represented as

φi

(

k
)

= exp(−
‖x(k)−x(i)‖2

ρ
). The desired output y(k) can be

expressed as

y(k) = ỹ(k)+ e(k) =

N
∑

i=1

θiφi(k)+ e(k) 1 ≤ k ≤ N (2)

where e(k) is the error between y(k) and the actual network
output ỹ(k), θi are the output weights, and N is the number
of samples in the training dataset. The integrated ROLS+D-
opt learning algorithm first transforms the model (2) into a
matrix form and performs orthogonal decomposition on the
regression matrix, which decomposes the regression matrix to
a matrix with orthogonal columns and an upper triangular
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matrix. Specifically, the regression model in (2) can be
depicted as:

y = 8θ + e = WAθ + e = Wg+ e (3)

where y is output vector, 8 is regression matrix, θ is weighting
vector, and e is the error vector. The regression matrix 8

could be decomposed to two matrices, W and A, where W =

[w1, · · · ,wN] has orthogonal columns that satisfy wT
i wj =

0
(

i, j = 1, · · · ,N
)

for i 6= j, and A is an upper triangular matrix
with unit diagonal elements. The upper triangular matrix further
multiplies the weight vector to construct an orthogonal weight
vector, i.e., g = [g1, · · · , gN]

T = Aθ . Then, the integrated
ROLS+D-opt learning algorithm performs a forward subset
selection procedure from the full regression model, which is
based on the followingminimization criterion (Chen et al., 2003):

JCR(g, λ,β) = JR(g, λ)+ β

N
∑

i=1

− log(wT
i wi) = eTe+ λgTg+

β

N
∑

i=1

− log(wT
i wi) (4)

where JR(g, λ) = eTe + λgTg is the regularized error criterion,
λ ≥ 0 is a regularization parameter, and β is a fixed small positive
weighting for the D-optimality cost. The error reduction ratio is
defined as:

[crerr]i =
(

(wT
i wi + λ)g2i + β log(wT

i wi)
)

/yTy (5)

Based on the ratio in (5), significant regressors are selected in
a forward-regression procedure, and the selection procedure is
terminated when (Chen et al., 2003):

[crerr]l ≤ 0, for ns + 1 ≤ l ≤ N (6)

Two-Level Learning Hierarchy RBF Network Learning

Algorithm
In the integrated ROLS+D-opt learning algorithm, all candidate
centers of the network are chosen from the input vectors of
training samples, and the output weights θi in (1) can be obtained
by linear learning algorithm (Chen et al., 2003). Therefore, only
the uniform width ρ , regularization parameter λ , and D-
optimality weighting parameter β need to be determined in the
ROLS+D-opt algorithm. The selection of these three parameters
has a great influence on the performance of the RBF network
(Hong et al., 2003; Chen et al., 2009). A global optimization
method is needed to determine the optimal combination of these
three parameters.

A two-level learning hierarchy (TLLH) scheme is proposed
by combining the PSO and ROLS+D-opt algorithms to train
the RBF network, as shown in Figure 4. With the fitness
function values given at the lower level, PSO (Kennedy and
Eberhart, 1995; Shi and Eberhart, 1995) is used to learn the

FIGURE 4 | The architecture of two-level learning hierarchy in radial basis

function networks.

width ρ, regularization parameter λ, and D-optimality weighting
parameter β of the integrated algorithm (ROLS+D-opt) at the
upper level, while the lower level consists of p parallel integrated
ROLS+D-opt learning algorithm for each set of parameters,
[λ, ρ,β], provided by the PSO. p is the swarm size of the PSO,
i.e., there are p particles in the PSO algorithm. PSO, like a swarm
intelligent optimization method, has the characteristic of the
parallel computation. In this study, all EEG samples are divided
into a training set and a validation set. The i-th ROLS+D-opt
algorithm constructs an RBF network using the training data set
with a given particle [λi, ρi,βi], and the mean square error (MSE)
over the validation set of the resulting RBF model is defined as
the fitness function of the PSO algorithm:

min f (K) =
1

nc

nc
∑

k=1

(y(x(k))− ỹ(x(k)))2 (7)

where K = [λi, ρi,βi] represents the particle, y(x(k) is the desired
output of the validation sample, ỹ(x(k)) is the actual network
output, and nc is the size of the validation set. The smaller the
fitness value, the better the generalization performance of the
network (Chen et al., 1999, 2008).

The computational complexity of this TLLH scheme is
determined by the total number of function evaluations at the
upper level. Assuming that the swarm size of the PSO is p, the
evolutionary generation is T, and the complexity of the ROLS+
D-opt algorithm is CROLS+D−opt. Then, the complexity of the
TLLH scheme is

CTLLH = p× T × CROLS+D−opt (8)

since the PSO is only used to optimize three parameters of the
integrated ROLS+D-opt learning algorithm, and the lower level
presents a linear learning problem. The overall computational
requirement of this scheme is much smaller than that of the
scheme where a PSO is directly used to determine the RBF
network structure as well as to learn all the network parameters
(Billings and Zheng, 1995).
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Performance Evaluation
To assess the performance of the proposed approach, the
proposed RBF-TLLH was applied to the driving fatigue
classification dataset and compared with the state-of-the-art
neuron network models, including the RBF based on the
ROLS+D-opt algorithm (RBF-ROLS+D-opt) (Chen et al., 2003),
three-layer forward ANN with back-propagation (ANN-BP)
(Zaw et al., 2019; Zhang and Pu, 2020), and three-layer forward
ANN with PSO optimization (ANN-PSO) (Li and Liu, 2016).
The RBF based on the ROLS+D-opt algorithm (RBF-ROLS+D-
opt) has been widely used because of its robustness, sparsity of
the parameters, and easy implementation (Chen et al., 2003).
ANN-BP has the ability to approximate the non-linear function
with arbitrary accuracy; therefore, it has been widely applied
to various classification problems (Zaw et al., 2019; Zhang and
Pu, 2020). The three-layer forward ANN with PSO optimization
(ANN-PSO) is also widely used due to its advantages such
as easy implementation, fewer adjustment parameters, and
fast convergence (Li and Liu, 2016). The initial weights and
thresholds are generated randomly within the interval [−1,
1] in the ANN-BP, the maximum epoch is set to 1,000, and
the learning rate is 0.01. The MSE of the training data set
is minimized as the objective function in the ANN-PSO. The
variable parameters range is set to [−1, 1], the swarm size
is set to 30, and the evolutionary iterations are set to 60.
According to the empirical formula, the hidden nodes of these
two ANN classifiers are both set to 30. In addition, in order
to prevent over-fitting or over-training in the ANN network,
a validation-based early stop strategy is used to select the
best training parameters. Figure 5 shows the MSE curve of
the training set and the validation set for classification. It
can be seen that the best iteration number of the ANN-BP
is 79, and the best iteration number of the ANN-PSO is 43,
for this training result, according to the MSE curve of the
validation set.

The regularization technique is employed in criterion function
(4) in the proposed TLLH-RBF to prevent the over-fitting
problem and improve the classification accuracy of the RBF
network. The D-optimality cost is introduced to further enhance
the efficiency and robustness of the selected subset model. The
parameters, including the RBF width, regularization parameter,
and D-optimality weighting parameter, are, respectively, set
within range,ρ ∈ [1, 220], λ ∈ [10−7, 1], and β ∈ [10−7, 1],
and optimized using the PSO. The swarm size p of PSO is set
to 15, and the number of evolutionary iterations is set to 30. For
further comparison, another RBF network classifier based on the
ROLS+D-opt algorithm is also designed, where the width and
D-optimality parameters are determined asρ = 110 andβ =

10−4, respectively, by the trial-and-error method, whereas the
regularization parameter λ is estimated by the Bayesian approach
(MacKayi, 1992; Chen et al., 1996).

The classification results achieved by the four aforementioned
neural network models were compared against each other. In all
these classificationmodels, when the actual output of the network
is >0.5, the model classifies it as 1 (fatigue state); otherwise, the
model classifies it as 0 (alert state). All samples are normalized
firstly before the ANN is trained to prevent the ANN weights
from being too large.

RESULTS

Table 1 summarizes the classification accuracy in driving fatigue
detection as achieved by the four classification models using 6-
fold cross-validation for each subject. The results show that the
RBF-TLLH classifier achieves the highest accuracy for all the
subjects in classifying the fatigue vs. alert states, with the mean
value of 92.71± 6.26%. Overall, the ANN classifiers achieve lower
classification accuracy than the RBF-based classifiers. Paired t-
test was used for statistical comparison, as shown in Figure 6,
showing that the proposed RBF-TLLH classifier significantly
outperforms the other two ANN classifiers (p < 0.05) while
the ROLS+D-opt-based RBF does not. Although no significant
difference is observed between these two different RBF-based
classifiers, the RBF-TLLH achieves higher accuracy and yields
lower variance than the ROLS+D-opt RBF network, which
that suggests the proposed RBF-TLLH is a more accurate and
robust classifier in EEG driving fatigue detection in these two
RBF-based classifiers.

To further evaluate the classification performance of the
proposed RBF-TLLH, six metrics including the true positive
(TP), true negative (TN), false positive (FP), false negative
(FN), specificity/true negative rate [TNR = TN/(TN + FP)],
and sensitivity/true positive rate [TPR = TP/(TP + FN)] (Chai
et al., 2017a,b), are computed from all subjects and summarized
in Table 2. Compared to the ANN-BP and ANN-PSO models,
the RBF-TLLH network model exhibits the best performance
regardless of the specificity, sensitivity, and accuracy. In
addition, the RBF-TLLH model significantly outperforms the
ROLS+D-opt-based RBFmodel in sensitivity, demonstrating the
superiority of the proposed approach to detect driving fatigue.
Compared to the ROLS+D-opt-based RBF, the proposed RBF-
TLLH model achieves a slightly lower specificity, but a much
higher accuracy and sensitivity.

The receiver operating characteristic (ROC) curve analysis
is also conducted, and the results are summarized in Figure 7.
The ROC curve is a plot of TPR vs. false-positive rate (FPR/1-
specificity) by varying different threshold ratios as a sweeping
variable. A random classification model is expected to show a
straight line connecting (0, 0) to (1, 1) (diagonal dash–dot line
in Figure 7). Any ROC curve located in the lower-right triangle
indicates that the classifier is worse than random guessing, while
the ROC curve that lies in the upper-left triangle indicates that
the model performs better than random guessing (Fawcett, 2006;
Chai et al., 2017b). The area under the curve (AUC) of the ROC
curve is then calculated to evaluate the model performance. As
shown in Figure 7, the proposed RBF-TLLH achieves the best
upper-left ROC curve and yields the highest AUC value (0.9199)
among all classifiers, demonstrating the best performance in the
detection of driving fatigue.

DISCUSSION

EEG has the advantages of non-invasiveness and high temporal
resolution for brain activity measurement and has been widely
considered as a good indicator of the transition between the alert
and fatigue states. Power spectral density (PSD), which converts
the time domain of EEG data into the frequency domain, has
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FIGURE 5 | Mean square error (MSE) of the training and validation set for the early stopping of the classifier. (A) Training and validation MSE of artificial neural network

(ANN)-back-propagation. (B) Training and validation MSE of ANN-particle swarm optimization.

been widely employed in traditional EEG-based fatigue detection
studies. EEG signals can then be generally divided into five
bands, i.e., Delta (0.5–4Hz), Theta (4–8Hz), Alpha (8–13Hz),
Beta (13–30Hz), and Gamma (30–42Hz) waves, according to
frequency and amplitude characteristics (Sikander and Anwar,
2019). It has been found that the increase of EEG alpha band
spindles is associated with the fatigue state when participants
drive in the actual monotonous driving environment (Simon
et al., 2011). It has also been demonstrated that EEG is sensitive
to fluctuations in vigilance and has been shown to predict
performance degradation due to sustained mental workload.
During the monotonous driving task, the EEG alpha bursts will
be dominant in the central and posterior EEG channels, which is
a signal of drowsiness and reduced vigilance (Simon et al., 2011).

Taking subject 1 and subject 3 as examples, Figure 8 shows the
PSD distributions of the alpha (8–13Hz) and whole (1–45Hz)
wave bands of the two states (alert and fatigue), respectively. It
can be observed that the PSD distributions between the alert and
fatigue states show an apparent characteristic difference. The PSD
difference between the alert and fatigue states of subject 3 is also
more significant compared with the PSD distributions of subject
1. This is consistent with the results in Table 1 when using the
RBF-TLLH classifier, that is, the average classification accuracy
achieved in subject 3 (100%) is higher than that achieved in
subject 1 (89.58%). In addition, regarding the PSD distributions
of the subjects during the fatigue state, the alpha band of EEG
signals carries the majority of the information among the whole
PSD distributions. These findings validate that the EEG has a
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TABLE 1 | Average accuracy (%) of 6-fold cross-validation for each subject using different classifiers.

Subjects classifier Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Mean (SD)

ANN-BP 75.00 59.58 90.42 95.42 78.33 62.08 76.81 (14.50)

ANN-PSO 57.50 54.58 86.67 84.17 60.00 60.83 67.29 (14.23)

RBF-(ROLS+D-opt) 82.08 77.92 97.08 98.75 91.67 79.17 87.78 (9.23)

RBF- TLLH 89.58 87.08 100.00 100.00 93.75 85.83 92.71 (6.26)

SD, standard deviation.

FIGURE 6 | Bar chart of the mean accuracies when using different classifiers. *significantly different from control (p < 0.05); **significantly different from control

(p < 0.005).

TABLE 2 | Classification results of fatigue state vs. alert state for the validation set.

Classification

metrics

Classification model

ANN-BP ANN-PSO RBF-(ROLS+D-opt) RBF-TLLH

TP 552 517 576 665

TN 554 452 688 670

FN 168 203 144 55

FP 166 268 32 50

Sensitivity/TPR (%) 76.67% 71.81% 80.00% 92.36%

Specificity/TNR (%) 76.94% 62.78% 95.56% 93.06%

Accuracy (%) 76.81% 67.29% 87.78% 92.71%

True represents the fatigue state; false represents the alert state.

TP, true positive; TN, true negative; FN, false negative; FP, false positive.

distinct difference in characteristics between the alert and fatigue
states, demonstrating the feasibility of using EEG as an effective
approach to detect driving fatigue.

Although EEG signals provide distinct characteristics
associated with between the alert and fatigue brain states, it is still
necessary and critical to develop a high-performance classifier
in order to monitor the brain state alteration during driving.
Studies have demonstrated that the RBF neural network is a
promising classifier due to its linear-in-the-parameters network

structure, strong non-linear approximation ability, and desired
generalization property (Li Y. et al., 2017; Bose et al., 2019; Li
et al., 2019). The performance of the RBF network heavily relies
on the number of hidden nodes, center vectors, and output
weights. These parameters can be learned using some global
optimization methods; however, direct optimizing of all the
parameters using the global optimization algorithm is hampered
by the high evaluation cost and slow convergence. This study
aims to enhance the performance of the EEG-based driving
fatigue classification model using a two-level learning hierarchy
RBF network (RBF-TLLH). The RBF-TLLH is constructed
by integrating the ROLS+D-opt algorithm, which combines
the regularized orthogonal least squares and D-optimality
experimental design at the lower level and the PSO at the
upper level.

At the lower level of the RBF-TLLH, the ROLS+D-opt
learning algorithm is employed. With the ROLS+D-opt learning
algorithm, all the candidate centers of the RBF network are
chosen from the input vectors of the training samples, and
the output weights in (1) can be obtained by linear learning
algorithm (Chen et al., 2003). Moreover, the entire RBF network
model construction procedure is terminated automatically when
condition (6) is reached. Therefore, there are only three
parameters left in the ROLS+D-opt algorithm, i.e., the uniform
width, the regularization parameter, and the D-optimality
weighting parameter, to be determined. At the upper level of the
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FIGURE 7 | Receiver operating characteristic plot with area under the curve values for different classification models: (1) artificial neural network (ANN) using

back-propagation algorithm, (2) ANN using particle swarm optimization, (3) radial basis function (RBF) network using ROLS+D-opt algorithm, and (4) RBF network

using two-level learning hierarchy method.

RBF-TLLH, PSO is employed. PSO is typically characterized as
an algorithm with a simple concept, easy implementation, and
good computational efficiency (Kennedy and Eberhart, 1995; Shi
and Eberhart, 1995). As a swarm intelligent optimizationmethod,
PSO has the characteristic of parallel computation. Therefore,
PSO is employed to optimize the three core parameters of the
ROLS+D-opt algorithm at the upper level, while the ROLS+D-
opt algorithm automatically constructs RBF networks at the
lower level to enhance the classification performance. As shown
in Tables 1, 2, the RBF network obtained from the proposed
learning hierarchy has demonstrated its superior performance
with a mean classification accuracy of 92.71% and an AUC-ROC
value of 0.9199 against other methods, making it a promising
candidate for driving fatigue detection in the future.

Experiment EEG data were collected in six healthy subjects
in a simulated driving environment and were utilized to
evaluate the performance of the proposed RBF-TLLH algorithm
by comparing it against three other classifiers. The results
show that the proposed RBF-TLLH achieves a substantial
increase in classification accuracy compared to other approaches.
Particularly, the sensitivity of the proposed RBF-TLLH model is
much higher than the other three methods. The high sensitivity
performance suggests that the RBF-TLLH-based driving fatigue
detection system is more sensitive in detecting fatigue states,
which is critical to ensure safe driving.

It is noteworthy that, prior to the classification using the RBF-
TLLH method, PCA is necessarily adopted to alleviate the high
dimension problem of multi-channel EEG signals. In this study,
the PCA method was applied for dimensionality reduction of the
EEG signals, and the first 10 PCs of each channel were selected
to obtain better driving fatigue detection power. Apparently, the
number of preserved PCs would affect the performance of the
feature extraction, which would further affect the performance of
the driving fatigue detection model. This number of preserved
PCs is determined based on multiple trial calculations to ensure

that the preserved PCs account for over 80% of the total variance
of the original signals.

The classification performance of the neural network is
directly related to its network structure and weights. For the
ANN classifier, the three-layer forward ANN is formed with 320
input nodes, 30 hidden nodes, and one output node, yielding
9,661 weight and threshold parameters to be optimized. It is
generally very difficult to deal with such a high-dimension
optimization problem for the back-propagation (BP) algorithm
mainly because the gradient-based BP algorithm is sensitive to
the initial parameters and easily trapped in the problem of local
minima (McLoone et al., 1998). The premature and stagnation
phenomenon will also occur during the later stage of evolution
when the PSO solves this complex problem. These shortcomings
eventually result in the poor performance of the ANN-based
classifier for classifying driving fatigue.

Computation efficiency is also evaluated in this study to test
the application feasibility of the proposed RBF-TLLH classifier in
real-time driving fatigue detection. During the operation process
of the real-time classification, based on the obtained features and
the parameters of the RBF network for the detection system,
the classifier can rapidly determine the driving fatigue detection
result through Equation (1). The testing results show that the
execution time is only about 0.011 s in a MATLAB environment
[an Intel(R) Core(TM) i7-4500U CPU@ 1.8 GHz, 8 GB RAM].
This is because there is no necessity to train the classifier again
for the operation of real-time classification. Specifically, with the
saved parameters and particular features, the classifier only needs
to compute the feedforward neural network function based on (1)
for classification system, which can take <0.1 s when developed
in C language.

Despite the improvements achieved in this study, there
are limitations that can be addressed in future studies. Only
six subjects participated in the simulated driving fatigue
experiment, so the sample size of this study is small. Our
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FIGURE 8 | Power spectral density (PSD) distributions of EEG signals for

subjects 1 and 3. (A) PSD distributions of the alpha band of EEG signals in the

alert state (a1) and in the fatigue state (a2). PSD distributions of the whole

band of EEG signals in the alert state (a3) and in the fatigue state (a4) for

subject 1. (B) PSD distributions of the alpha band of EEG signals in the alert

state (b1) and in the fatigue state (b2). PSD distributions of the whole band of

EEG signals in the alert state (b3) and in the fatigue state (b4) for subject 3.

future efforts will be devoted to collecting a larger sample
size from either simulated or real driving fatigue test to
further evaluate the performance of the proposed RBF-TLLH
in detecting driving fatigue. Furthermore, deep neural network
models have attracted increasing attention in recent years
because of their powerful non-linear fitting capability, high
dimensional data processing capability, large fault tolerance,
and strong feature extraction capability. The proposed RBF-
TLLH will be compared with deep neural network models,
such as LSTM, to further evaluate its performance in driving
fatigue detection. In addition, recent research on latent analysis

have proved its power in feature extraction, and this method
will be used in a future study (Wu et al., 2019, 2020). Lastly,
labeling the driving states for a larger sample size could be
expensive and time-consuming. In order to solve this problem,
semi-supervised classification algorithms will be considered in
the future work (She et al., 2018, 2019, 2020a,b; Wu et al.,
2018a,b).

CONCLUSION

In this study, a two-level learning hierarchy RBF network
has been developed for EEG-based driving fatigue detection
to optimize the classification performance (fatigue vs. alert).
The experimental results show that the proposed method
achieved a superior classification performance compared to other
methods in terms of prediction accuracy and computational
efficiency. Due to the significantly fewer core parameters to
be determined for training the RBF classifier, this proposed
approach presents excellent ease of use and large potential
application possibilities for the detection of driving fatigue in
the future.
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