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This paper proposes a novel system for managing visual attention in social robots. This

system is based on a client/server approach that allows integration with a cognitive

architecture controlling the robot. The core of this architecture is a distributed knowledge

graph, in which the perceptual needs are expressed by the presence of arcs to stimuli

that need to be perceived. The attention server sendsmotion commands to the actuators

of the robot, while the attention clients send requests through the common knowledge

representation. The common knowledge graph is shared by all levels of the architecture.

This system has been implemented on ROS and tested on a social robot to verify the

validity of the approach and was used to solve the tests proposed in RoboCup @ Home

and SciROc robotic competitions. The tests have been used to quantitatively compare

the proposal to traditional visual attention mechanisms.

Keywords: visual attention, cognitive architectures, social robots, object-based visual attention, robotic cognition,

robot vision

1. INTRODUCTION

Mobile social robots incorporate a myriad of sensors and actuators (Kanda and Ishiguro, 2017),
for example sonar and LIDAR sensors for obstacle detection, autonomous location and navigation,
microphones and speakers for human-robot interaction, and more and more commonly, different
types of cameras. Unlike other sensors, the portion of the space that cameras can perceive is limited
by their field of vision, which is usually quite narrow compared to the entire space surrounding
the robot. Besides, the design of most mobile social robots resembles human morphology. Even
those non-humanoid robots place cameras on the robot’s head, which is attached to the body by an
articulated neck. These actuated cameras overcome the limitations of the narrow field of vision but
need to implement an attention management system because it is not possible to simultaneously
cover the entire space around the robot. Even if many cameras could be placed in the robot, along
with enough computer power to analyze the images, the cognitive system would need to focus
on the more relevant elements detected using an attention-managing system. For the sake of this
paper, the problem faced is to define where the attention systems have to direct the camera a mobile
service robot according to the perceptual needs thereof.

Visual attention systems based on fixed patterns for scanning a scene were the first approaches
made, but they have proven to not be very efficient, and more sophisticated approaches, such as
the one proposed in this paper, are required (Nguyen et al., 2018). Another aspect to take into
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account in the evolution of visual attention systems is the
integration into complex robotic software architectures which are
in charge of selecting the most adequate behavior to fulfill the
robot’s task. This integration requires the attention system to be
modular, parametrizable, and able to share a common way of
representing information.

In a previous work, Agüero et al. (2012), a method
for managing visual attention, integrated in the cognitive
architecture, was initially proposed. In that seminal work,
cognitive behaviors indicate their perceptual needs, and the
attention system organizes these needs according to their
salience. The new approach presented in this paper differs from
that work in that the attention system does not arbitrate among
behavioral needs, but among elements to be perceived that are
indicated by the planning system at the highest level of the
cognitive architecture. In order to do so, the system relies on a
centralized repository of information that has been implemented
as a “knowledge graph.” The robot stores all relevant internal and
external knowledge in this repository. The graph contains nodes
that represent the elements of the environment, and arcs that
indicate the relationships, symbolic or geometric, among them.

The software design of the proposed attention system is
modular, allowing specialization in the way different types of
stimuli are dealt with. Modularity has been achieved using a
client-server systems. This approach is also scalable, meaning
that it can be easily expanded with more types of stimuli by
adding separate clients. Monolithic approaches to the visual
attention systems make them much more difficult to extend.

This implementation has been validated in the
RoboCup@Home1 and European Robotics League2

competitions, which consist of a set of tests which take place in
a simulated domestic environment. The performance of each
robot is evaluated for tasks focused on assistance or collaboration
with humans, which is an excellent way to contrast different
research approaches. For all the tasks in these competitions,
robots need to visually perceive the scene. Some tasks require
the robot to look at a person’s face while talking with them or
to follow them around a house. For other tasks, the robot must
search for objects on a table, or check if it is carrying the correct
objects on its tray. All of the task in the competitions require
a challenging management of visual attention. In particular,
guaranteeing that no interest point remains unattended for a
long period of time is one of the most relevant requirements; the
time for answering questions about the environment is limited,
and the total time for accomplishing the task is also limited. We
consider that the maximum time that an interest point remains
unattended is the most relevant parameter when comparing
different solutions.

In summary, the main contribution made in this paper is the
design of the visual attention system. This system is integrated
into the cognitive architecture through the knowledge graph,
where visual perception requirements are expressed through the
creation of arcs between nodes that indicate these requirements.

1http://www.robocupathome.org/
2https://www.eu-robotics.net/robotics_league/

The remainder of the paper is structured as follows: In section
2 we review the state of the art of visual attention systems, and
how different cognitive architectures address their integration. In
section 3 we describe the proposed cognitive architecture. Next,
we describe the visual attention system. In section 5 real examples
of its operation are presented. Finally, in section 6, conclusions
are drawn and future work is discussed.

2. STATE OF THE ART

Visual attention management systems have been a recurrent
research topic in mobile robotics. Historically, there have
been different approaches to this problem, from basic ones,
where segmentation was directly used to focus the attention
of the robot, as in Scheier (1997), to ones using methods
borrowed from other scientific fields, such as psychology and
ethology. For instance, Butko and Movellan (2009) proposed
a method of driving a robot that scans scenes based on the
model of visual searches in humans. This method predicts
scanpaths to maximize the long-term information about the
location of the target of interest. In Meger et al. (2008) a
combination of a peripheral-foveal vision system, and the
attention system that combines bottom-up visual saliency with
structure from vision allowed the “Curious George” robot
to build a semantic map of the region explored, thereby
labeling objects.

The use of visual attention in social robots is widespread.
For instance, Kismet (Breazeal and Scassellati, 1999) the famous
robotic head which popularized the “affective computing”
paradigm, included an attention system capable of directing the
robot’s eyes toward the areas of interest of an image. These areas
of interest, or high salience, were calculated by combining several
filters (face detection, color, and movement), which allowed the
robot to pay attention to different scene elements. These are
the basic questions (Treue, 2003),: where, what and how such as
how to recognize a point of interest, and why it is needed it for
scene understanding.

The WABIAN humanoid robot (Hashimoto et al., 2002) was
also equipped with an active vision system that directed its gaze
toward people, based on images and sound. The work of Wolfe
(1994), studying how to determine relevant areas in images,
inspired these approaches. This concept of salience is addressed
in a multitude of works (Itti et al., 1998; Harel et al., 2006; Hou
and Zhang, 2007; Goferman et al., 2012; Grotz et al., 2017),
although most focus on which parts of the image are relevant,
without spatial information beyond the image. The salience-
based approach was previously explored by the authors of this
paper, as described in Garcıa et al. (2010), and is still present in
the current proposal.

In Bachiller et al. (2008), “Regions of Interest” are used in an
image to determine where to direct the camera of a robot. In
this case, the robot’s active tasks determine the attention zones.
Recent works (Stefanov et al., 2019) combine bio-inspiredmodels
with Neural Networks to obtain saliency maps, as opposed to
spatial areas of the environment. Our approach is not based on
the detection of exciting areas in images, but rather areas of
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space where to direct the robot’s camera. We enrich the image-
processing with 3-D information. Our attentive system never
works on image coordinates but orients itself on the real world.
Another relevant difference is that our system is intended to avoid
that any interest point identified by the cognitive level could
remain unattended for long periods of time.

Integrating the attention system into the cognitive
architecture is one of the major problems when using it as
a social robot. Some of the systems already mentioned are
effective in managing visual attention but are hardly integratable
into cognitive architectures.

In Agüero et al. (2012), the authors had proposed a method
of visual attention management applied to humanoid robots
integrated within the cognitive architecture base on salience. The
term salience ceases to be used only for areas of an image and
applies to points in space. The salience indicates the need to
look at them and increases proportionally to the need to see
them. Current behaviors determine this need. In this work, a
subsumption architecture (Brooks, 1986), developed for soccer
robots (Martin et al., 2010), integrates the attention system. The
different execution units that form the behaviors indicate their
perceptual needs, and it is the attention system that merges these
needs through salience. The current proposal differs from this
work in that the attention system does not arbitrate between
behavioral needs, but between elements to be perceived by a
single behavior.

Cortex is another cognitive architecture, closely related to our
own. Its attention system described in Manso et al. (2018) has
some similarities to our proposal. The main difference is that
Cortex indicates where to find items, instead of determining
search points. The system thereby determines which areas of the
environment can contain it, thus directing the robot’s gaze there.
Although similar in many aspects, the system presented in this
paper solves the problem of scanning an area and seeing what
can be found in it.

iCub robot (Ruesch et al., 2008) applies the concept of
EgoSphere, originally by Kawamura et al. (2005). This sphere
stores the orientation of the perceived elements to the robot.
Saliency and spatial information (angles only) determine the
orientation of the robot head. In this case, salience applies to
the areas of the self-sphere relevant to the robot. A highly-
valued contribution of this approach is sensory fusion. The
attention system also adds auditory information to modify the
salience of specific areas. Our proposed system is also able to
perform advanced spatial reasoning, not limiting the angle of
visual stimulation.

Visual attention can be influenced by other sensors. For
instance, in Aliasghari et al. (2020), visual attention is used
in a social robot to control where the gaze is directed within
the context of a group conversation. In order to make this
decision, the system uses other stimuli, such as where the
people are, where the sound comes from, hand movements,
and pointing gestures. It also uses some concepts of proxemic.
For instance, it is more natural to look at people who are
closer than those further away from the beholder. These
stimuli are incorporated into a logical control unit with

long-and short-term memory. This control unit decides the
neck’s movement.

3. THE COGNITIVE ARCHITECTURE FOR
SOCIAL ROBOTS

The cognitive architecture, in which the proposed attention
system is integrated, is organized in concentric layers, named
tiers, as shown in Figure 1. A more detailed description of the
architecture can be found inMartin et al. (2020). Describing from
the outermost layer to the innermost layer, which can also be
considered as a bottom-up description:

• Tier 5 represents the baremetal, the robot hardware and the
programming interfaces of the basic controllers of sensors and
actuators.
• Tier 4 interacts directly with these controllers to offer a

higher level of abstraction in defining the robot’s basic skills,
such as navigating to a place, picking up an object, talking with
a person, wandering, detecting objects, etc. The innermost
layers use the skills in this layer as primitives.
• Tier 3 is the operational level of the robot. These operations

are defined as actions. An action uses different skills from tier
4 to accomplish a unit task, e.g., getting the robot to move
from one room to another using the skill of navigation. In
addition, the robot should take into account whether the door
is open, using its perceptual and probably attention skills as
well. If the door is closed, the robot will use its manipulation
skills to open it and enter the destination room. The actions’
implementation defines how the skills are named and which
specific parameters (metric destination point, position of the
element to manipulate, phrase to speak, etc.) are used. Actions,
loops, branches, and sequences can be used to define the
control logic for achieving the task.
• Tier 2 is the task manager level where plans (ordered

executions of actions) are generated. It is based on a symbolic
planner which uses PDDL to define what types, symbolic
predicates, and actions are used to solve a problem. This
knowledge base is accessible by other tiers.
• Tier 1 manages the high-level mission of the robot. This

level is built using hierarchical state machines which define
the different stages of the robot mission at a high level
of abstraction. Transitions between states are implemented
by consulting predicates in the knowledge base, and the
goals to be solved by the planner in Tier 2 are defined
in the states.

Tiers 1 and 2 mainly use symbolic information for facing the
process of information abstraction, while Tiers 3 and 4 use sub-
symbolic information, mainly sensor readings. When a state
machine at Tier 1 establishes a goal, the planner at Tier 2 creates a
plan using the content of its knowledge base. This plan is built as
a sequence of domain actions. The planner delivers the actions at
Tier 3 one at a time. Each time an action indicates that it has been
successfully completed, the next one is delivered until the plan
finishes. If an action ends with an error, it forces a replanning.
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FIGURE 1 | Layered cognitive architecture shown as concentric tiers. The innermost layers (Tier 1) control the mission using a state machine, setting the goals to be

achieved by the planning layer (Tier 2). This layer activates the actions that are part of the plan (in Tier 3). Actions can use skills (at Tier 4) to carry out their task. These

skills can be perceptual or acting, directly sending information to the actuators, or receiving information from the sensors.

As mentioned previously, Tier 3 contains the implementation
of the actions defined in the PDDL domain at Tier 2. This level is
the bridge between both paradigms. The planner activates actions
according to the generated plan. When activated, the planner
passes the parameters to the actions (instances of a type). Usually,
the action must translate symbols into specific data. For example,
a move action could receive kitchen as a parameter. The action
must then obtain the metric coordinate corresponding to the
kitchen symbol and send it to the navigation module.

In order to manage the information between layers the
Knowledge Graph is defined. It stores all the information relevant
to the operation of the robot, and is accessible from all the Tiers.
This shared representation of data disengages some components
from others, especially among different layers. For instance, an
action in Tier 3 uses the result of computing a skill in Tier 4
by reading it from the knowledge graph. Tier 1 can also use the
symbolic information contained in the graph.

The elements of the knowledge graph are nodes and labeled
arcs. The nodes represent instances of a specific type. The
arches can contain a text, or they can provide a geometric
transformation. The visual attention requirements are expressed
as arcs of a special type “want_see,” as explained in the next

section, where the knowledge graph of Figure 2 is depicted in
more detail.

The relationship between the symbolic information at Tier 2
and the global knowledge graph is based on a synchronization
process. This process adds nodes to the knowledge graph when
the symbolic knowledge base creates instances of a relevant type.
It also creates arches when the symbolic knowledge base inserts a
relevant predicate. If the predicate has two arguments of related
types, the arc connects two nodes with a text corresponding to the
predicate. If the predicate has only one argument it is represented
as a self arc (need_check arc in Figure 2). Updates only go one
way, from the symbolic knowledge base to the graph. Updates
from the graph to the symbolic knowledge base are not permitted.

ROSPlan (Cashmore et al., 2015) is the planner used in Tier2
and a BICA (Martín et al., 2016) framework was used for the
implementation of the actions and skills, as BICA components.
A BICA component is an independent process which can
declare that it depends on other BICA components. When a
BICA component is activated, it automatically activates all its
dependencies. When all components which enable a dependency
are deactivated, the dependency is deactivated. This mechanism
is a simple way to save computation time when the results of
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FIGURE 2 | Knowledge Graph representing the internal and external knowledge of the robot. Ellipses represent nodes with an ID and a type. Black lines are text arcs

and blue lines are geometric arcs.

certain computations are not being used, and permits different
compositions of skills as shown in Figure 2.

4. THE ATTENTION SYSTEM

The attention system is integrated into the cognitive architecture
as a skill in Tier 4. It can be activated by actions in Tier 3 which
require attention to different stimuli. Actions set perceptual needs
in the knowledge graph by creating wants_see arcs from one
robot node to another, as shown by the red arrow in the left
part of Figure 3. Other skills in Tier 4 can also add arches
requesting attention, as well as in the innermost tiers if it is
considered necessary.

The attention mechanism is built as a client-server system, as
shown by the orange boxes in Figure 3. The three clients in the
figure send attention points to the attention server. The attention
server sends motion commands to the robot’s actuators in order
to direct the camera to a position in the space. Its main task is to
select the next pose to look at among all the requests received and
the length of time to maintain that position in the robot’s field of
view. The attention clients make requests to the server by sending
attention points.

Each attention point sent to the server is labeled with the
stimulus type and the id to perceive. A client can communicate
to the server that it no longer requires attending to a specific
type and/or instance. The server then removes these points from
its list.

There are as many clients as types of stimulus to deal with.
If the robot wants to perceive a table, it can mean that it is
interested in either scanning the entire surface, or in determining

the existence of the table itself. Different clients should be built
for each one. For example, if interested in the objects on the
table, the attention points will cover the table’s surface, apart from
assuming that the table is a static element of the environment. If
the robot wants to perceive a small object, there will be a single
attention point in the center of the object, if already detected. If
the object has not been detected yet, the points will be placed
where it is more likely that the object could be. Each type of
stimulus requires a custom client specialized in perceiving it
adequately. For example, while perceiving a person, it can be
enough to look at his face, but these are dynamic points.

Attention clients scrutinize the Knowledge graph in case their
participation is required, that is, they look for the existence of
wants_see arcs from one node to an element of the type that
this clientmanages. If so, it generates a set of attention points with
geometric information that indicates where to direct the robot’s
camera to perceive the stimulus.

In the case of Figure 3, there are nodes of types robot, table,
and person. There are also geometric and symbolic arches. Several
processes, named [stimulus]_attention_client one
for each type of node which the robot can pay attention to, are
shown in the center. Each one is aware of the changes in the
graph. In this case, table_attention_client should be
active because there is an arc from a node of type robot to a node
of type table. When active, table_attention_client
sends a set of attention_points in the frame of Table_1
to check.

Furthermore, the attention_server receives the
attention points of all the clients and iterates among each one of
them. The attention_server maintains a list with all the
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FIGURE 3 | Attention system architecture. The attention clients (orange rectangles in the center) observe the graph (left) looking for “want_see” edges. Each client is

specialized in one type of goal node for the “want_see” edge. When any of them activates, it sends the attention points to the attention_server (right). The

attention_server sends motion commands directly to the neck motors.

attention points received. For each point, it transforms it into a
coordinate related to the axes of the robot, and generates a pan
and a tilt that it sends to the motors of the robot’s neck, visiting
each point for a few seconds.

The attention module is not responsible for image detection,
only for looking there. If an action requires detecting objects on a
table, this action must activate both the attention and the module
that perceives the objects in the image.When an object is detected
in the image, this is written down in the graph, thereby allowing
eliminating the corresponding attention arcs from the action.

Attention clients send the points of attention of each one of
the elements to attend to (small circles of Figure 3) to the server.
Messages sent to the server contain the class and identifier of
the element. In addition, they contain a vector of 3D points.
For each point, we specify the reference axis (frame_id) of
its coordinates.

The attention server receives the set of new points, NP , sent
by the clients. The server stores the points received in a list.
Each point, p, on the list P that the server stores contains the
following fields:

• point_id: The attention server must be able to attend to
requests to eliminate points of attention, either by specifying
an entire class or just one instance of a class. This field contains
an identifier class.instance_id.n, where n is the i-th
point of attention of one of the elements. In this way, it is easy
to determine the points that belong to each class and instance.
• point: The point coordinates, stamped with its frame_id and

time.
• tilt and pan: The axes of reference of the points can move

with regard to the robot. That means that points could be
coordinates of a global map, and the robot could be moving,
or points could be coordinates of the robot arm, and the robot
could be moving its arm.
• epoch. Attention cannot be paid to one point again until

the rest of the points have been attended to. Epoch represents

Algorithm 1 Attention Server algorithm.

1: while robot_operation do

2: for all pi ∈ NP do

3: p
epoch
i = p

epoch
j , where pj = last(P)

4: P ← pi
5: end for

6: for all pi ∈ P do

7: paux1 = RT4×4(p
frame
i → pan_frame) ∗ pi

8: paux2 = RT4×4(p
frame
i → tilt_frame) ∗ pi

9: p
pan
i = arctan(p

y
aux1, p

x
aux1))

10: ptilti = arctan(pzaux2, p
x
aux2))

11: end for

12: sort(P)
13: repeat

14: p = first(P)
15: pepoch = pepoch+1

16: until is_in_fovea(p)
17: pan_t = ppan

18: tilt_t = ptilt

19: send_command_to_neck(pant , tiltt)
20: tflight = flight_time(pant−1, pant , tiltt−1, tiltt)
21: tin_point = 1.0 s
22: wait(tflight + tin_point)
23: end while

the current iteration of the attention system. Attentions
server does not attend to a point if there is another point
with a lower epoch value. Each point attended increases its
epoch by one.

The attention server calculates the pan and tilt values to send
to the robot’s neck actuators, calculated from P. pant−1 is the
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FIGURE 4 | Left image: Experimental setup. Right image: Laptop screen showing the objects being perceived (left part of the screen and their spatial location).

FIGURE 5 | Visual debugging of detections (left upper image), knowledge graph (left bottom figure), attention points (green circles), and attending point (red arrow) in

right part of the figure.

current pan value, and pant is the new pan value to send to the
actuators.

This algorithm is summarized in Algorithm 1 and is based on
these three rules:

1. The robot cannot handle an attention
point again until after handling the other
attention points.

2. The next attention point is the point that implies the least head
movement.

3. If the next attention point is already in the fovea, it is
considered handled.

In more detail, the algorithm works as follows:

• Lines 2-5 show how the server incorporates the new
points NP received from clients to the list P of
attention points.
• Lines 6-11 recalculate the pan and tilt of each point

before sorting. Many points could be defined in
frames that have changed with regard to the robot’s
neck. If we define points in map frame, their new
pan/tilt values depend on the robot displacement and
the localization.

• Line 12 sorts P using the operator “<” defined as:

pi < pj =











if p
epoch
i < p

epoch
j ,

or

if p
epoch
i = p

epoch
j and j(pi) < j(pj)

where,

j(p) = |ppan − pant−1| + |p
tilt − tiltt−1|

From now on, the most appropriate points to pay attention to
are at the top of the list.
• Lines 13–16 select the point p to attend on the 13–16. Starting

at the beginning of the list, we take the first one that is not in
the fovea.
• p point contains the new pan and tilt values. After sending

them to the actuators, the waiting time before sending other
values to the actuators must be calculated. This waiting time
depends on two time periods. The first one is the duration of
positioning in the new pan/tilt values (line 20). The second
one is the time in which the robot maintains attention to a
point. It is convenient for the robot to stop at a point for a
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FIGURE 6 | Evolution during the entire time of the experiment (X-axis) as a percentage of time (Y-axis) that there is any attention point in the fovea (central part of the

image). Each line represents a different algorithm, comparing our contribution (Optimized) with respect to the two usual algorithms of attention (Simple scanning and

Round robin).

FIGURE 7 | Evolution during the entire time of the experiment (X- axis) vs. the time in seconds (Y-axis) that it takes each algorithm to visit all the attention points.

short moment. The image could be moving or degenerating its
processing. We consider a second to be an appropriate value.

Our attention system’s design allows us to efficiently attend to
visual stimuli (objects, people, areas, etc.) since it personalizes
the attention for each stimulus type. The system is also
scalable: a new kind of stimulus to attend to requires
only creating an attention client that defines the points of
attention in the stimulus’s reference axis. In the next section
we will show the experiments carried out to validate our
proposal, a simple way to save computation time when
the results of certain computations are not being used and

which allows different compositions of skills as shown in
Figure 2.

5. EXPERIMENTAL VALIDATION

This section describes the experiments carried out with a real
robot to evaluate the validity of our proposal. The main feature
of an attention system is attending to the relevant areas of robot
operation. In order to determine what the advantages of the
proposed system are, two other classical approaches have also
been implemented:
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FIGURE 8 | Evolution during the entire time of the experiment (X-axis) of the accumulated neck rotation, in radians (Y-axis), that it takes each algorithm to visit all the

attention points.

1. Slow scan across the environment around the robot. This
mechanism would be activated whenever the robot wants to
perceive something, moving the robot’s neck in a fixed pattern.

2. Selection of the point of attention, pi, from the list P using
round-robin without ordering the points to optimize the
movement of the robot’s neck.

The metrics used to compare this proposal vs. these other two
approaches are:

• The percentage of time that the robot is attending relevant
areas.
• The time to cover all relevant areas.
• The amount of energy used to cover all relevant areas.

The correctness of the detections has not been included as
criterion for the experimentation because it depends on other
modules in charge of perception. Neither has a quantitative
analysis of the integration of the attention system in the cognitive
architecture been included because this analysis can only be done
qualitatively. In our system was validated by integrating it into
the software of the SciRoc Robotics competition.

The SciRoc competition environment Figure 4 was
reproduced for the evaluation. It simulates a restaurant in
which the robot should check how many persons are sitting at
the tables and which objects are on the tables. The robot is in
front of one of the tables (mesa_1), and to its left there is another
table (mesa_2). There are several objects to be detected on the
tables, and two people sitting, one at each table. The setup of this
experiment can be seen in this video 3.

The robot knows a priori its relative position to the table. This
information is introduced in the knowledge graph (Figure 5).
A table_attention_client was implemented which establishes 10

3https://youtu.be/IyCyx_HfdrE

FIGURE 9 | Attention points (green circles) corresponding to the setup for the

second experiment, with the position of the robot (denoted by the axes of its

actuators). In this case, the attention points were located on three tables.

points of attention per table: 6 on the surface and 4 in positions
where there could be people. Attention points can be seen in
Figure 5 depicted as green circles.

A skill that adds “want_see” arcs in the graph from the robot
to the tables was specifically designed for this setup. Every 30 s,
the “want_see” arc is added to or deleted from table_2 (mesa_2
in the figure). When both arches are active, there are two points
of attention on each table. Initially, we activate attention for two
tables, so there are 20 attention points. At time 30, we remove an
arc, so the robot is attending to only one table, and there are 10
points’ the cycle loop restarts at time 60.

The attention mechanisms were compared with two
alternatives previously mentioned:
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TABLE 1 | Results of the second experiment, showing the time (in seconds) to deal with an attention point, and the number of points attended.

1 Table 2 Tables 3 Tables

Opt RR Scan Opt RR Scan Opt RR Scan

Mean 6.38 s 5.95 s 9.44 s 9.11 s 6.70 s 12.01 s 9.42 s 7.69 s 14.50 s

Stdev 4.40 s 6.90 s 7.76 s 5.71 s 6.84 s 0.83 s 5.47 s 7.69 s 13.20 s

Median 3.99 s 3.09 s 6.29 s 7.94 s 4.29 s 6.19 s 8.99 s 4.69 s 6.20 s

Max 18.89 s 28.49 s 31.09 s 28,39 s 37.39 s 37.89 s 25.69 s 50.09 s 41.39 s

Points 131 134 90 192 265 135 285 345 191

• Round Robin: the robot evaluates attention points in the order
in which they are stored on the server, which can be expressed
as a new operator <

′ defined as:

pi <
′ pj if p

epoch
i < p

epoch
j

• Scan: The robot continuously moves its neck to cover the
robot’s environment. This approach was optimized so that it
only scans the areas where there are points of attention. Before
scanning, it calculates the range of pan/tilt angles based on the
current points of attention.

Figure 6 shows the accumulated percentage of time that the
robot has any attention point in the fovea. The fovea is the
central area of the image, half the size of the total image. The
marks on the lines of each approach indicate when each epoch is
completed. As expected, the Scan approach is significantly worse
than the others.

Figure 7 shows the time it takes for each approach to complete
an epoch, that is, to visit each of the points of attention. The
system proposed shows times of around 5 s when there is only
one table active. In the case of two tables, the time only exceeds
15 s once. The Round Robin method takes more than double the
time in virtually all epochs. In any case, these results are much
better than those of the Scan method.

The last indicator is the energy required in each epoch. As it is
difficult to obtain energy measurements, the difference between
the current angle and the commanded angle was measured.
The smaller the displacement of the head, the lower the energy
required to visit a point of attention. Figure 8 shows that the
proposed system is also, by far, the one that preserves the most
energy to complete each epoch.

We carried out a second experiment to measure the time it
takes for each algorithm to return to an attention point. Figure 9
shows the distribution of the points of attentions (green dots) and
the coordinates transformation from the three tables to the robot
using the ROS tf visualization tool. The robot is in front of three
tables, each one with the same attention points. As in the previous
experiment, we consider that the robot deals with a point of
attention when it is in the fovea. An algorithm is considered best
if it does not allow points to be unattended for a long time.

We have carried out multiple runs of the three algorithms
attending one, two and three tables. In each case, we measured
the time that a point of interest is unattended. Each trial lasts 2
min, and the results of the experiment are shown in Table 1.

The table’s analysis reveals that the Round Robin algorithm
yields the best times in the mean and the median. Also, more

points are served in the 2 min that each trial lasts. The numbers
are very similar to the algorithm that optimizes attention,
although it deals with fewer points during these 2 min. Still, the
maximum time a point has waited to be observed is much longer
with the Round Robin algorithm, which is the critical factor that
we tried to minimize with our proposal. The scan algorithm,
which is the baseline in this work, has the worst statistics, showing
that our proposal significantly improves a robot’s attention.

In order to illustrate the criticality of the maximum time
parameter, it has to be noted that in the competitions, the
time that the robot is inactive is very limited. For instance,
the rulebook4 of the RoboCup competition states that 30 s of
inactivity disqualifies a robot. In the same way, the maximum
time for each trial is also limited.

6. CONCLUSIONS

This paper has presented a visual attention system integrated
into a cognitive architecture. This attention system calculates the
head movements necessary to perceive the elements of the robot’s
environment. The cognitive architecture integrates the attention
system as a robot skill. Perceptual needs are expressed in a degree
of knowledge, adding arcs that indicate this. The attention system
is aware of these attention arcs. The way of attending to an
element of the environment depends on the objective of this arc.

The experiments carried out show that the system proposed
improves conventional systems based on scanning the
environment. The robot’s gaze always goes to relevant areas
without wasting time in areas where the searched items cannot
be found. Attention to these areas is always given using the
lowest possible energy and stabilizing the image in a position to
perform the detection with sharp images.

We have tested this approach on a real Tiago robot. We
have proven its validity in one of the tests of the SciRoc
competition. To validate our approach, we have implemented
two representative attention methods. In this experimentation,
we have shown that our approach improves the other methods
according to the maximum time, which is the main factor in this
problem and has been highlighted in Table 1.

Finally, as a further work, we think that the energy consumed
by each method should be analyzed, as well as the relevance of
the order of the points in the RR method, fixed by the designer in
this method.

4http://www.robocupathome.org/rules
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