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Neuromorphic implementation of robotic control has been shown to outperform

conventional control paradigms in terms of robustness to perturbations and adaptation

to varying conditions. Two main ingredients of robotics are inverse kinematic and

Proportional–Integral–Derivative (PID) control. Inverse kinematics is used to compute

an appropriate state in a robot’s configuration space, given a target position in task

space. PID control applies responsive correction signals to a robot’s actuators, allowing

it to reach its target accurately. The Neural Engineering Framework (NEF) offers a

theoretical framework for a neuromorphic encoding of mathematical constructs with

spiking neurons for the implementation of functional large-scale neural networks. In this

work, we developed NEF-based neuromorphic algorithms for inverse kinematics and PID

control, which we used to manipulate 6 degrees of freedom robotic arm. We used online

learning for inverse kinematics and signal integration and differentiation for PID, offering

high performing and energy-efficient neuromorphic control. Algorithms were evaluated in

simulation as well as on Intel’s Loihi neuromorphic hardware.

Keywords: neural engineering framework, robotic control software, Loihi, neuromorphic engineering, spiking

neural networks, robotic arm

INTRODUCTION

While computational motion planning and sensing have emerged as focal points for countless
state-of-the-art robotic systems, in many ways, they are inadequate when compared with
biological systems, particularly in terms of energy efficiency, robustness, versatility, and
adaptivity (DeWolf et al., 2016). Consequently, neuromorphic (brain-inspired) computing
hardware and algorithms have been used in numerous robotic applications (Krichmar and
Wagatsuma, 2011). A typical neuromorphic processor comprises densely connected, physically
implemented computing elements that communicate with spikes, and emulate biological
neurons’ computational principles (Tsur and Rivlin-Etzion, 2020). However, designing algorithms
with spiking neurons is a challenging endeavor, as it requires the encoding, decoding, and
transformation of mathematical constructs without a central processing unit nor address-
based memory. One theoretical framework, which allows for efficient data encoding and
decoding with spiking neurons is the Neural Engineering Framework (NEF) (Eliasmith and
Anderson, 2003). NEF is one of the most utilized theoretical frameworks in neuromorphic
computing, and it was used to design neuromorphic systems capable of perception, memory,
and motor control (DeWolf et al., 2020). It serves as the foundation for Nengo, a Python-
based “neural compiler,” which translates high-level descriptions to low-level neural models
(Bekolay et al., 2014). A version of NEF was compiled to work on the most prominent
neuromorphic hardware architectures available, including the TrueNorth (Fischl et al., 2018),
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developed by IBM research, the Loihi (Lin et al., 2018),
developed by Intel Labs, the NeuroGrid (Boahen, 2017),
developed at Stanford University and the SpiNNaker
(Mundy et al., 2015), developed at the University
of Manchester.

Robot state can be defined in configuration space by a
set of joint angles defining each limb segment’s orientation.
Forward Kinematics (FK) refers to the computation used
to transform the robot’s configuration into its End-Effector’s
(EE) cartesian coordinates. Inverse Kinematics (IK) refers
to the opposite transformation in which a robot’s joint
configuration is computed from its EE location. While FK
can be analytically solved using transformation matrices or
trigonometry, IK is usually numerically optimized, as often
several joint configurations can produce the same EE position.
Many numerical optimization methods were developed for IK,
ranging from Jacobian inverse (Lynch, 2017) and fuzzy logic
techniques (Hagras, 2004) to artificial neural networks (Koker
et al., 2004). Once a target configuration is derived, the robot’s
actuators are controlled to approach it accurately. The most
widely used paradigm for robotic control is to continuously
actuate it by minimizing the distance between the robot’s current
EE location and its designated target. A PID controller applies
correction signals based on the error’s Proportional, Integral,
and Derivative terms (Ang et al., 2005). Robust neuromorphic
implementations of IK and PID are an essential milestone
for neurorobotics.

In this work, we propose NEF-based neuromorphic
algorithms for IK and PID. Algorithms were designed with
Nengo and evaluated on both simulation and Intel Loihi
neuromorphic hardware (Davies et al., 2018). We used real-
time learning and signal integration and differentiation for
IK and PID, respectively. Algorithms were utilized for the
control of a 6 Degrees of Freedom (DOF) robotic arm.
Our implementations offer high performing and energy-
efficient neuromorphic robot control, which can be compiled
over various neuromorphic hardware. In this work, we
evaluated the algorithm performance in simulation and on the
Loihi chip.

MATERIALS AND METHODS

Robotic Arm
The robotic arm we used in this research comprises nine servo
actuators (7 × Dynamixel’s XM540-W270, 2 × Dynamixel’s
XM430-W350). All actuators are capable of 40N radial load

and have an embedded Cortex-M3 microcontroller. The M3
is coupled with contactless 12 bit absolute encoders, allowing
the retrieval of the actuator’s position, velocity, and trajectory
as feedback for position estimation. The XM540 actuators
are used for arm movements and have a stall torque of

10.6Nm (at 12 v input). The XM430 actuators are used to
manipulate the EE (grasping, rotating) and have a stall torque
of 4.1Nm (at 12 v input). Actuators are manufactured by
ROBOTIS (Korea). Actuators do not have torque sensors
and were therefore actuated by current specifications. The
relation between the driven current and the generated rotational
velocity is not linear as it has to account for friction. In this
work, the current-speed association was estimated as described
below. Arm chassis is based on 3D printed grippers (allowing
function-tailored customization), ridged and lightweight T-slot
extruded aluminum arms, and aluminum brackets. The chassis
is connected to the actuators with industrial-grade slewing
bearings, and it was assembled by Interbotix (Downers Grove,
Illinois). Motion control was evaluated on the Nvidia Xavier chip
(Jetson AGX Xavier) and then realized on Intel’s Loihi chip.
Communication with the daisy-chained servos was based on
TTL half-duplex asynchronous serial communication, handled
by Dynamixel’s U2D2 control board. Overall, the arm design
provides 6 DOF, 82 cm reach, 1.64m span, 1mm accuracy, and
750 g payload.

Robot Simulation
To simulate the robot described above, we used the
Multi-Joint dynamics with Contact (MuJoCo) physics
simulation framework. The robotic arm and joint’s accurate
dynamic were specified using CAD-derived mechanical
description and inertia and mass matrices. CAD and dynamic
specifications were provided by Trossen Robotics (USA).
The simulation was developed using Nengo, a Python
package for building, testing, and deploying NEF-based
neural networks.

Forward and Inverse Kinematics
FK transform a robot’s configuration to the cartesian
coordinates of its EE. Here, it was implemented using
transformation matrices, which characterize the relative
transformation (rotation, translation) from each joint to the
next. For our five joints robot, FK would take the form of
T = T01T12T23T34T45T56, where Tij is the transformation
matrix in homogenous coordinates from the reference
frame at joint i to reference frame at joint j (indices 0 and
6 refer to the world’s and EE coordinate reference frames,
respectively). Initializing T with the appropriate set of rotations
and translations and multiplying it by a zero vector [0, 0, 0, 1]T

(in homogenous coordinate) will result in our FK model Tx(q):

Tx(q) =





0.2 (s4 (−c3 (s1c0c2 + s2c0c1) + s0s3) + c4 (c0c1c2 − s1s2c0)) + 0.3 (c0c1c2 − s1s2c0 − s1c0) + 0.06c0c1
0.2 (s4c3 (c1c2 − s1s2) + c4 (s1c2 − s2c1)) + 0.3 (s1c2 + s2c1 + c1) + 0.06s1 + 0.118

0.2 (s4 (c3 (s1c0c2 + s0s2c1) + c0s3) + c4 (s0s1s2 − s0c1c2)) + 0.3 (s0s1s2 − s0c1c2 + s0s1) − 0.06s0c1



 (1)

Where sx = sin(qx), cx = cos(qx), and qx is actuator x angle of
rotation. Tx(q) returns the EE position in the world’s coordinate
system, where the origin is at the robot’s base. The numerical
coefficients were derived by calculating the transformations
while taking into account the robot’s geometry, retrieved from
the robot’s CAD file.
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IK refers to the transformation in which a robot’s
configuration is computed from its EE’s desired location.
Generally, IK cannot be analytically solved, and it is, therefore,
usually numerically optimized. Here we used the Jacobian
inverse for IK. We calculate the Jacobian J of T, which relates
the change of the EE position x to the change of joint angles q:
J(q) = δx

δq . The Jacobian relates a change in robot configuration q̇

to a change in EE position ẋ with:

˙x(q) = J(q)q̇ (2)

Equation (2) allows us to specify a target in task space—that is, the
cartesian space centered on the EE’s origin—rather than the space
that can be directly controlled, the configuration space. Note that
the Jacobian has to be recalculated along the trajectory. With our
robotic system, the calculated Jacobian has the shape of (3, 5),
where 3 is the number of space dimensions (task space) and 5 is
the number of joints (configuration space). To compute IK, we
need to invert Equation (2). Since the Jacobian is not necessarily
invertible, a common practice is to use its pseudo-inverse form J+

allowing to compute q̇ = J+ẋ. Therefore, given an error in space
coordinates xd as the difference between the EE current position
xc and its target position xy, the appropriate change in joint space
can be computed using:

d
(

q
)

= J+
(

q
)

xd (3)

Where d
(

q
)

is the change in joint angles, for which the robot’s
EE will get closer to its target. In each iteration, this equation is
re-evaluated until xd is within some accuracy threshold. Once the
joint configuration for a given target point is concluded, control
signals, which achieve it, can be calculated using PID control.
Further details are provided in Lynch (2017).

PID Control
PID control is used universally in applications requiring accurate
control (Ang et al., 2005). Given a target position, a PID
controller will continuously reduce an error signal by providing
the robot’s actuator with the appropriate control signal to come
closer to its target. To do so, the PID controller generates a
signal u (t), which is proportional to the value of the error signal
e (t) (accounting for the current value of the error), to the error
integrated value over time (accounting for the past values of the
error), and to the error derivative (accounting for the projected
value of the error), using:

u (t) = Kpe (t) + Ki

∫ t

0
e (t) dt + Kd

de

dt
(4)

Where Kp,Ki, and Kd are the proportional, integral, and
derivative gain coefficients, respectively.

Neural Engineering Framework
Neuromorphic Representation
To represent a computation in a form suitable for neuromorphic
hardware, we represent numerical input vectors (or stimuli) with
spikes. Stimulus x can be represented as a using a = f (x), where
a takes the form of a = G (J (x)). G is a spiking neuron model

and J is its input current. Here, we used the leaky-integrate-
and-fire (LIF) model (Burkitt, 2006) for G. A distributed neuron
representation, where each neuron i responds independently to
x, will take the form ai = Gi (Ji (x)). Since neurons usually
have some preferred stimuli e to which they respond to a high
frequency of spikes, J can be defined using: J = αx·e+Jbias, where
α is a gain term, and Jbias is a fixed background current. Note that
both x and e are vectors. Therefore, x · e equals 1 when both x and
e are in the same direction and 0 when they are opposing each
other, where · is the dot product. With NEF, a neuron firing rate
δi is defined using (rate coding):

δi (x) = Gi[αiei · x+ Ji
bias] (5)

An ensemble of neurons, in which each neuron has its gain
and preferred direction, can distributively represent a high-
dimensional stimulus x. The represented stimulus x̂ (which is an
approximation of x) can be linearly decoded using:

x̂ =
∑

i

ai ∗ hdi (6)

Where di are linear decoders, which were optimized to reproduce
x using least squared optimization and ai∗h is the spiking activity
ai convolved with filter h (both are functions of time). Equations
(5) and (6) specify the encoding and decoding of mathematical
constructs using neuronal ensembles’ distributed activity.

Neuromorphic Transformation and Online Learning
A key aspect of neuromorphic computing is activity propagation,
or the transformation of represented values, implemented by
connecting neuron ensembles with a weighted matrix of synaptic
connections. The resulting activity transformation is a function
of x. Notably, it was shown that any function f (x) could be
approximated using some set of decoding weights df (Eliasmith
and Anderson, 2003). Here we will use it to compute Equations
(2)–(4) to provide a neuromorphic implementation of IK and
PID control. Defining f (x) in NEF can be made by connecting
two neuronal ensembles A and B via synaptic connection weights
wij(x) using:

wij = di ⊗ ej (7)

Where i is the neuron index in ensemble A, j is the neuron index
in ensemble B, di are the decoders of ensemble A, ej are the
encoders of ensemble B, which represents f (x) and⊗ is the outer
product operation.

Connection weights, which govern the transformation
between one representation to another, can also be adapted
or learned in real-time, rather than optimized during model
building. Weights adaptation in real-time is of particular interest
in robotics, where unknown perturbations from the environment
can affect the error. One efficient way to implement real-time
learning with NEF is using the Prescribed Error Sensitivity (PES)
learning rule. PES is a biologically plausible supervised learning
rule that modifies a connection’s decoders d to minimize an error
signal e calculated as the difference between the stimulus and its
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approximated representation: x̂ − x. The PES applies the update
rule: 1d = κeδ, where κ is the learning rate. Notably, it was
shown that when a− κ ‖δ‖2 (denoted γ ) is larger than−1, error
e goes to 0 exponentially with rate γ. PES is described at length
in Voelker (2015).

Neuromorphic Dynamical System and Integration
System dynamics is a theoretical framework concerning the non-
linear behavior of complex systems over time. Dynamics is the
third basic principle of NEF, and it provides the framework with
the capacity of using Spiking Neural Networks (SNN) to solve
differential equations. It is essentially a combination of the two
first principles of NEF: representation and transformation, where
we are using transformation in a recurrent scheme. Following
Equation (6), a recurrent connection (connecting a neural
ensemble back to itself) is defined using: x (t) = f (x (t)) ∗h(t). A
canonical description of a linear error-correcting feedback loop

can be described using: dx
dt

= Ax (t)+ Bu(t), where x (t) is a state
vector, which summarizes the effect of all past inputs, u (t) is the
input vector, B is the input matrix, and A is the dynamic matrix.
In NEF, this standard control can be realized by using:

dx

dt
= A′x (t) + B′u(t) (8)

Where A′ is the recurrent connection, which is defined as
τA + I, where I is the identity matrix, and B′ is the input
connection, which is defined as τB (Eliasmith and Anderson,
2003). This neural implementation can be used to implement a
neuromorphic integrator. For an integrator, input (e.g., velocity)

u is integrated to define x (e.g., position), where ( dx
dt

= u). In
terms of Equation (8), A = 0 and B = 1, resulting in a recurrent
connection of A′ = 1 and B = τ .

Loihi Chip
In this work, we’ve implemented IK and PID on Intel’s
neuromorphic research chip Loihi (Davies et al., 2018). NEF was
compiled on the board using the nengo_loihi library (version
0.19) (Lin et al., 2018). The nengo_loihi library was designed
to execute Nengo models on Loihi boards. It contains a Loihi
emulator backend for rapid model development and a hardware
backend for running models on the board itself. Nengo Loihi’s
hardware backend uses Intel’s NxSDK API to interact with the
host and configure the board. Each Loihi chip is comprised of
128 neuron-cores; each simulates 1,024 neurons and has 4,096
ports. Each chip also has ×86 cores, which are used for spike
routing and monitoring. Communication was established via an
SSH channel between our local computer and a virtual machine
installed on Intel’s neuromorphic research cloud.

RESULTS

Simulating Neuromorphic Inverse
Kinematics
IK was implemented with NEF using Nengo and tested on
our robotic arm. Our model schematic is shown in Figure 1A.
In terms of joint angles, the configuration of the robot was

introduced through a node into a neuron ensemble denoted
Current q. Ensemble Current q is fully connected to another
neuron ensemble, denoted Target q. These synaptic weights
are modulated to minimize the value decoded from neuron
ensemble Error using PES optimization. Ensemble Distance to
target encodes the EE distance from its designated target by
subtracting the current position of the EE (calculated using
Equation 1, applied on the value decoded from Target q)
with its desired position (given as an input through node xyz
Target). Both Target_q and the distance to target ensembles
are connected to a 5D ensemble, allowing for non-linear
computation between the five robot’s joint states. The difference
between the current and the desired robot’s joint configuration is
calculated through Equation (3), which is implemented through
the connection to ensemble Error. When the Error decoded value
is 0, ensemble Target q encodes the desired robot configuration.
The Error ensemble is connected to an inhibition signaling
node. Upon actuation (initiated once a sufficiently accurate
result is achieved), the error signal is zeroed; thus, Target
q is stabilized at its current state. Here, we performed IK
on our robot’s 5 joints, starting from an initial configuration
where all joints were zeroed (Figure 1B). As learning progresses,
the new robot configuration is calculated (Figure 1C), while
the error is continually minimized (Figure 1D). Raster plots
of ensembles q, target q, and error are shown in Figure 1E.
While the spiking pattern, which represents the initial joint
configuration, is constant, the target’s spiking pattern changes as
the error spiking pattern becomes more amorphous, indicating
convergence to zero.

We further analyzed the model by modulating neurons’
encoders and learning rates. Each neuron’s intercept defines
the part of the representation space in which the neuron
responds by firing, and it is reflected on the neuron tuning
curve (firing rate as a function of input). Note that the intercept
is the input value for which the neuron initiates spiking at a
high rate. Distributing intercepts uniformly between −1 and
1 makes sense for 1D ensembles for which they create a
uniform spanning of that space. This is not the case for high
dimensional ensembles. In our implementation, we used high
dimensional ensembles to represent the DOF of our robotic
system. With uniformly distributed intercepts, the resulted
tuning curves are uniformly distributed, resulting in a non-
efficient spanning of the representation space. As a result, the
system does not converge to its target, as is evident from the
error’s non-decreasing value (Figure 2A). Changing the intercept
distribution to follow a triangular pattern modulates the neurons’
tuning curved distribution such that the representation space
is adequality spanned. As a result, the system converges to
its target, as is evident from the decreasing error (Figure 2B)
(Gosmann and Eliasmith, 2016). This modification of the
intercept distribution is crucial for accurate representation in
5D space and it is briefly described in DeWolf et al. (2020) and
Gosmann and Eliasmith (2016). Our model relies on PES-based
optimization, and it is therefore constrained to a prespecified
learning rate. We tested our model with three different learning
rates, and as expected, error flattening is slower as we increase
the learning rate (Figure 2C). Suppose we permit our system
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FIGURE 1 | Neuromorphic implementation of IK. (A) A model for neuromorphic IK with online learning. Initial joint configuration is represented with neural ensemble

Current q and transformed to a target joint configuration, represented with neural ensemble Target q. This transformation is modulated (or learned) by minimizing an

error term, represented with neural ensemble Error, defined by distance to target. Nodes, which were used here to introduce signals are shown as rounded squares

and ensembles, which represent groups of spiking neurons are represented with a group of 5 circles; (B) Initialized zeroed states of the five joints angle; (C) Monitored

target joint angles as the algorithm optimized arm reaching to point [0.246, 0.62, 0.373] in task space. Each color represents a different joint angle, where bottom to

top curves (orange to green) correspond to the base to top joints of the robotic arm; (D) Monitored error, demonstrating error flattening as the arm is reaching its

target (learning rate is 0.001); (E) Raster plots of ensembles Current_q, Target q and Error.

to keep optimizing. In that case, the ensembles’ fluctuating
encoded values induce continuously changing results, where
changes in one joint’s angle are compensated with changes
in other joints (convergence is driven toward a zero gradient
potential field). Therefore, we are inhibiting learning once
some accuracy threshold is reached, thus holding the computed
weights constant and providing a stable target configuration
(Figure 2D). Once the desired configuration is calculated, the
robot should be actuated accordingly by using, for example,
a PID-controller.

Simulating Neuromorphic PID Controller
A PID controller integrates three error modulations to provide
the desired actuation, such that the system would approach a
target position. These three signals are described in Equation (4)
and are schematically presented in Figure 3A. Our PID controller
holds a model of engine actuation. Here, we modeled the
actuators using a basic speed-torque (implemented with a driving
current) model, which corresponds to our physical actuators. In

ourmodel, the actuator experiences static friction and it responds
exponentially fast once its gears become active, saturating at
some maximum speed. As we stop driving the engine, it is
losing momentum due to dynamic friction. When actuation is
reversed (current in reversed direction), the position is changed
accordingly. The actuation model is shown in Figure 3B. In this
work, we implemented the PID with spiking neurons using NEF.
The model schematic is shown in Figure 3C. The robot’s current
configuration is introduced through node Current q. We subtract
a feedback signal y (t) from it to compute an error signal. This
error signal is propagated to the output ensemble through three
paths: 1. Proportional path in which the error is proportionally
transformed through a gain factor kp, producing signal ep(t);
2. Integration path in which the error is integrated using a
neuromorphic integrator (see Methods for further details). The
result is scaled by a gain factor ki , producing signal ei (t); and 3. A
derivative path, implemented by connecting the error ensemble
to a 2D derivative ensemble. To implement derivation, the error
is propagated through two synapses: one with a short time scale

Frontiers in Neurorobotics | www.frontiersin.org 5 February 2021 | Volume 15 | Article 631159

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zaidel et al. Neuromorphic Inverse Kinematics and PID Control

FIGURE 2 | Analysis of neuromorphic IK. (A) Histogram of uniformly distributed intercepts (left). The uniformly distributed intercepts as reflected in the tuning curve’s

distribution, in which spike rate as a function of input is presented for each neuron. Each color represents a different neuron in the ensemble (middle). These uniformly

distributed intercepts lead to a non-uniform spanning of the representation space, thus driving non-zero-converging errors. Each color represents a joint’s error

following the colors’ mapping taken in Figure 1 and panel D below (right); (B) Histogram of trigonally distributed intercepts (left). Tuning curve’s distribution (middle).

These triagonally distributed intercepts lead to a uniform spanning of the representation space, thus driving zero-converging errors. Each color represents a joint’s

error (right); (C) Error value for the base joint (indicated otherwise in orange) with three learning rates: 0.02, 0.001, and 0.0005 (left to right), demonstrating that lower

learning rates induce slower error convergence. (D). Learned joint configuration with non-inhibited learning leads to a non-stabled joint configuration, as the arm is

continuously trying to improve its conformation in space (left). The introduction of an inhibition signal (marked red) is zeroing the error signal (middle). Learned joint

configuration with inhibited learning leads to a stable joint configuration (right).

(τ ) and the other with a longer one. The two values are subtracted
and scaled by a gain factor kd, producing signal ed (t). These
error signals ep(t), ei(t), ed(t) are summed in the output ensemble,
delivered to the engine as u (t), which also feedback as y (t). A
running example of this model is shown in Figure 3D. Given

a target angle position for the engine (normalized to 1), the
error is quickly reduced as the engine’s location approaches its
target. Raster plots for y (t) and u (t) are shown in Figure 3E.
These stable spiking dynamics of the control signals reflect fast
convergence to target.
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FIGURE 3 | Neuromorphic implementation of PID control. (A) The canonical schematic of a PID controller, comprising of integrated [ei (t)], proportional [ep(t)], and

differential [ed (t)] error terms; (B) Engine actuation model, which is used by our PID controller to induce motion. The engine is induced by a current (blue), generating

rotational speed (orange) in a non-linear fashion, as it is taking into account both static and dynamic gear’s friction; (C) Schematic of a neuromorphic PID controller;

(D) Neuromorphic PID controller in action. The engine is actuated such that its position is approaching the target while reducing the error; (E) Raster plots of

ensembles y (t) (feedback) and u (t) (robotic control).

To further analyze our neuromorphic PID control, we
examined it as a P (proportional path was enabled), a PI
(proportional and integrative paths were enabled), and a PD
(proportional and derivative paths were enabled) controller. By
implementing all three models, we demonstrated the classic PID
characteristics in a neuromorphic implementation. Particularly,
the P controller was shown to fall short of reaching the target, the
PI controller reached the target with inefficient dynamics, and the
PD controller had an improved reaching dynamic, but it failed
to reach the target accurately (Figure 4A). We further examined
our model by changing the number of neurons. Allocating 250
neurons per ensemble per dimension produced accurate results.
Reduced number of allocated neurons dramatically affected
performance and stability (Figure 4B). This result is compatible
with the noise characteristics of NEF-based representation in
which the decoders-induced static noise is proportional to 1

N2 ,
where N is the number of neurons (Eliasmith and Anderson,
2003). Synaptic time constants also constrain neuromorphic

implementations. Reducing these time-constants inhibits the
integration dynamic (Equation 8), as demonstrated in Figure 4C.

Robotic Control
Control was evaluated on a physical 6 DOF robotic arm
(described in the Methods). To demonstrate robot performance,
we utilized the MuJoCo physical simulator, in which we
accurately described the dynamic and mechanical characteristics
of our physical arm. Here, we used it to demonstrate the
integration of neuromorphic IK and PID control in a physical
setting. While IK was used to derive the robot configuration from
the desired EE location in space, PID was used to actuate the
robot, generating an EE trajectory toward the target. We created
a uniformly distributed 10,000 target points in a 2 × 2 × 1
meters volume (Figure 5A). We tested each point for reachability
using IK, constructing a 3D reachability map, where a black
point designates a reachable point with an accuracy of at least
1mm (Figure 5B). Arm base is located at the origin (0, 0, 0).
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FIGURE 4 | Analysis of neuromorphic PID control. (A) Implemented P, PI and PD control (left to right), where τi = 1, τd = 1, kp = 2, ki = 1, kd = 0.4; (B) PID control

implemented with 250, 15 and 5 neurons per ensemble per dimension (left to right); (C) PID control, implemented with τi = 1, 0.1, 0.01 (left to right).

For demonstration, we randomly chose two points and used PID
control to generate robot motion. The selected points, the final
arm configuration, and the generated EE trajectories are shown
in Figure 5C. Trajectories are linear (minimal path) as expected.
Distance to target curve is shown in Figure 5D, demonstrating
fast convergence to target.

Loihi Implementation
We implemented both IK and PID control on Intel’s Loihi
chip. When implementing IK with different learning rates, the
same error convergence pattern appears in both simulation and
on the board (Figures 6A,B). However, superimposed results
showed that the Loihi could converge better, as its error reduced
faster than in the simulated model (Figure 6C). We found it
to be consistent for various learning rates (Figure 6D). When
implementing PID control on the Loihi, we found it hard to
implement the derivative pathway, as it is currently cannot
support high synaptic time constants. Defining a long time-
constant is essential, as the generated control signal fluctuates,
affecting our capacity to derive the signal’s rate of change

accurately. However, for a time-constant of 10 ms, and a
configuration of kp=−1, ki =−0.1, kd= 0.35, the Loihi was able
to converge faster than simulation to the desired target, pointing
out its embedded learning accelerator (Davies et al., 2018).

DISCUSSION

IK and PID control are two of the most fundamental algorithms
for robotic control. While IK allows for defining trajectories
in task space and implementing it in configuration space,
PID provides a canonical way of efficiently approaching
a target. Neuromorphic control algorithms may acquire
some of the advantages of biological motor control. These
neuromorphic algorithms may closely emulate key features of
neurophysiological analogs, such as cerebro-cerebellar inverse
models (Ishikawa et al., 2016), in the case of IK, and vestibular,
oculomotor circuits (Lenz et al., 2008), in the case of PID control.
Notably, the cerebellum is known for maintaining internal
forward and inverse models for motion control. Moreover, it
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FIGURE 5 | Robot control. (A) uniformly distributed 10,000 target points in a 2 × 2 × 1 meters volume; (B) IK reachability map, where a black point designates a

reachable point with an accuracy of at least 1mm and a red point designates a non-reachable point. Arm base is located at the origin (0, 0, 0). A 3D reachability map

is shown in the left panel, and a cross-section at y = 0 is shown in the right panel; (C) Two random points (red) were chosen among the reachable points

(semi-transparent black). The arm configuration, resolved for each of the two target points are shown on the right, and the corresponding EE trajectories are shown on

the bottom (target is indicated with a red point, EE-origin with a black point and trajectory in blue); (D) Distance to the furthest target while reaching it using PID control.

was shown that the vestibulo-ocular reflex integrates inertial
and proportional visual information to drive the eyes in the
opposite direction to head motion, achieving retinal image
stabilization. However, from a pure engineering perspective,
executing control models with energy-efficient hardware is an
important endeavor, regardless of its biological plausibility.
For example, SpikeProp is one of the most widely utilized
back-propagation-based learning rules for SNNs (Bohte et al.,
2000), regardless of backpropagation being biologically plausible
or not (Lillicrap et al., 2020).

The notion of utilizing artificial neural networks for inverse
kinematics and robot control was explored back in 1993
(Jack et al., 1993) and more recently revisited by Csiszar
et al. (2017). Neuromorphic implementations, which are
based on SNN, have gained tremendous traction in past

decay due to the increased attention to neurorobotics and,
more recently, the emergent availability of neuromorphic
software and hardware frameworks. Accordingly, neuromorphic
implementation of IK and PID control was addressed in
several studies. For example, Folgheraiter et al. (2019) utilized
LIF neurons to implement a learning algorithm for adaptive
motion control. Barhen and Gulati (1991) demonstrated
neuromorphic inverse kinematics, concentrating on redundant
manipulators, using terminal attractors. More recently, PID
controllers have been neuromorphically implemented on an
FPGA board by Linares-Barranco et al. (2020) and on the
Loihi chip by Stagsted et al. (2020). Interestingly, Tieck et al.
(2009) demonstrated a neuromorphic PID-based control with
no need for inverse kinematic nor planning. These approaches,
however, are hardware/software – framework specific. NEF
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FIGURE 6 | Comparative analysis between simulation and the Loihi. (A) IK error trace in simulation with three different learning rates: 0.001, 0.005, and 0.0095 (left).

PID-control in a simulation where kp= 1, ki = 0.1, kd= 0.35, and τ = 0.1 (right); (B) IK error trace (left) and PID control (right) on the Loihi, with the same parameters

used in simulation; (C) Super imposed IK error traces on simulation and the Loihi with a learning rate of 0.0095; (D) Mean squared error for IK across different learning

rates on both simulation and the Loihi.

has the advantage of being able to deploy on numerous
neuromorphic hardware. IK with NEF was demonstrated
by DeWolf et al. in their work on the REACH adaptive
controller (DeWolf et al., 2016) and, more recently, in DeWolf
et al. (2020). REACH uses adaptive signals computed online
(using PES-learning) to modulate arm movement to adapt
to unexpected conditions. Our implementation takes a more
direct approach, aiming specifically at neuromorphic IK by
transforming task space to configuration space with a single
adjustable connection.

Neuromorphic systems are fundamentally limited to
the number of neurons, the encoding error, and the
synaptic time constants. In this work, we addressed these
constraints in the context of robotic control. NEF-based
representation is limited to a distortion error, which is
induced by the decoders themselves. Representation error is
expressed with:

E =
1

2

∫ 1

−1
(x− x)2 dx =

1

2

∫ 1

−1

(

x−

n
∑

0

aidi

)2

dx (9)

Where x is the encoded stimulus, x is the represented stimulus,
ai is the activity of neuron i, n is the number of neurons, and
di are the computed decoders, derived by the minimization
of E. This static distortion is proportional to the number of
neurons, according to E ≈ 1

n2
(Eliasmith and Anderson,

2003). As we increase the number of neurons, representation

error is reduced (Figure 4B). However, there is much more
to it. The selection of the encoders and the distribution of
the neurons’ tuning curves (intercept, maximal firing rate)
have a drastic effect on the representation, especially in higher
dimensions. Distributing intercepts uniformly between −1 and
1 makes sense for 1D ensembles. However, in a uniformly
occupied 2D space, a neuron with an intercept of 0.75 fires
spikes for only 7.2% of the represented space. In higher

dimensions, the proportions become exponentially smaller (or
larger for negatively encoded neurons). In high dimensions,
the naive distribution of intercepts results in many neurons

that rarely produce spikes or are always active, providing a

poor representation (see Figure 2A). A rational distribution of
encoders, particularly choosing encoders following a triangular
distribution (DeWolf et al., 2020), dramatically improved the

representation as was demonstrated in Figure 2B. Our design
is also constrained to synaptic time constants, which govern
the PID’s integral and derivative pathways, and the learning

rate, which regulates the learning pace of the IK model. The
time constant constraints on the PID’s integrative path were

explored in Figure 4C, and the effect of the learning rate
on the IK model was demonstrated in Figure 2C. While in

simulations, these time constants can be arbitrarily defined to

range across time scales, and indeed biological counterparts to
these signals extend from just a few milliseconds to minutes

and hours, current neuromorphic hardware does not provide the
same flexibility. This fact might have a dramatic effect when a
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derivate of a noisy signal has to be calculated. The Loihi chip,

for example, only supports a time constant of up to 100ms.
Working with such short time constants forces a more accurate
representation. However, implementing the model on the Loihi
suggests that its embedded learning circuitry (Davies et al.,
2018) allows it to converge faster to the target compared to the
simulated model (Figure 6B). The Loihi representation accuracy
is also demonstrated in the IK model, where it performed
continuously better than the simulated model across different
learning rates (Figure 6D).

In this article, we presented SNNs capable of PID control and
learning-based IK. We explored their implementation on both
simulation and neuromorphic hardware, thus demonstrating
NEF-based models for neurorobotics. Our implementations
use neuromorphic learning for IK and signal integration and
differentiation for PID, offering high performing and energy-
efficient robotic neuromorphic control.
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