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Three-dimensional scanners have been widely applied in image-guided surgery (IGS)

given its potential to solve the image-to-patient registration problem. How to perform a

reliable calibration between a 3D scanner and an external tracker is especially important

for these applications. This study proposes a novel method for calibrating the extrinsic

parameters of a 3D scanner in the coordinate system of an optical tracker. We bound an

optical marker to a 3D scanner and designed a specified 3D benchmark for calibration.

We then proposed a two-step calibration method based on the pointset registration

technique and nonlinear optimization algorithm to obtain the extrinsic matrix of the 3D

scanner. We applied repeat scan registration error (RSRE) as the cost function in the

optimization process. Subsequently, we evaluated the performance of the proposed

method on a recaptured verification dataset through RSRE and Chamfer distance (CD).

In comparison with the calibration method based on 2D checkerboard, the proposed

method achieved a lower RSRE (1.73 mm vs. 2.10, 1.94, and 1.83 mm) and CD (2.83

mm vs. 3.98, 3.46, and 3.17 mm). We also constructed a surgical navigation system to

further explore the application of the tracked 3D scanner in image-to-patient registration.

We conducted a phantom study to verify the accuracy of the proposed method and

analyze the relationship between the calibration accuracy and the target registration

error (TRE). The proposed scanner-based image-to-patient registration method was also

compared with the fiducial-basedmethod, and TRE and operation time (OT) were used to

evaluate the registration results. The proposed registration method achieved an improved

registration efficiency (50.72 ± 6.04 vs. 212.97 ± 15.91 s in the head phantom study).

Although the TRE of the proposed registration method met the clinical requirements, its

accuracy was lower than that of the fiducial-based registration method (1.79 ± 0.17 mm

vs. 0.92 ± 0.16 mm in the head phantom study). We summarized and analyzed the

limitations of the scanner-based image-to-patient registration method and discussed its

possible development.
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1. INTRODUCTION

The rapid development of 3D scanning devices has introduced
the possibility of acquiring high-quality 3D models within
seconds. Three-dimensional scanners have been widely applied
in image-guided surgery (IGS) given their potential to solve the
image-to-patient registration problem (Cao et al., 2008; Fan et al.,
2014, 2020), which directly affects the positioning accuracy of
surgical navigation systems. As the core step in IGS, image-to-
patient registration has attracted considerable research attention
worldwide (Fitzpatrick et al., 2002; Gerber et al., 2013; Chu et al.,
2017; Kim and Kazanzides, 2017).

In early IGS systems, image-to-patient registration was mostly
based on artificial fiducials, which was called fiducial-based
registration. The fiducial-based registration method was first
applied to the clinic by Roberts et al. (1986), and several special
fiducials were attached to the skin to align the CT image and
the operating microscope. Maurer et al. (1997) used implantable
fiducials in IGS, and the clinical results showed that the target
registration error (TRE) ranged from 0.5 to 0.6 mm, reaching
a submillimeter accuracy. Kim and Kazanzides (2017) proposed
a fiducial-based registration framework that uses fiducials with
a specific shape to position in CT images, thereby reducing
the positioning error introduced by the operator. However, the
fiducial-based registrationmethod is limited by its disadvantages,
such as complicated operation, high time cost, trauma, and
potential hazard in contact.

In recent years, the image-to-patient registration method
has evolved from fiducial-based registration to surface-based
registration (Lathrop et al., 2010; Simpson et al., 2012; Ji
et al., 2015; Fan et al., 2016) to achieve a fast, nonfiducial,
and noninvasive image-to-patient registration. A series of
surface-based image-to-patient registration methods have been
proposed and have quickly become a research hotspot. Simpson
et al. (2012) compared several tools for intraoperative surface
acquisition, including tracked laser range scanners (LRS), tracked
pointers, and tracked conoscopic holography sensors, and found
that the LRS-based facial spatial digitization method performs
best. Generally, a tracked marker needs to be fixed on the
3D scanner, and some specific calibration procedures are then
conducted to establish a coordinate relationship between the 3D
scanner and the external tracker, such as hand-eye calibration
(Tsai and Lenz, 1989; Heller et al., 2016; Wan and Song, 2020).

However, the application of 3D scanner-based image-to-
patient registration still has many limitations. A summary of
image-to-patient registration methods in IGS (Willems et al.,
2001; Schicho et al., 2007; Woerdeman et al., 2007; Grauvogel
et al., 2010; Soteriou et al., 2016; Zhao et al., 2018) reveals
that conventional fiducial-based registration methods always
outperform surface-based ones. Eggers et al. (2006) revealed
that the residual rotational error is the most significant factor
for the deviation of surface-based image-to-patient registration.
Therefore, eliminating the residual rotational error in the
extrinsic parameters of a 3D scanner is critical to improve the
performance of 3D scanner-based image-to-patient registration.

In this study, a dedicated 3D benchmark and a novel
calibration method were proposed to calibrate the extrinsic

parameters of a 3D scanner in the coordinate system of an optical
tracker. The main contributions of this study are summarized
as follows.

(1) A 3D benchmark for calibrating a 3D scanner was
designed to compensate for the large residual errors
in 2D checkerboard-based 3D scanner calibration tasks.
The designed benchmark can also be applied to various
calibration scenarios of different types of 3D scanner.

(2) A two-step calibration method was proposed to calibrate
the extrinsic parameters of the 3D scanner based on
pointset registration technique and nonlinear optimization
algorithms. In comparison with the conventional hand-
eye calibration method based on 2D checkerboard, the
proposed method showed better performance in verification
experiments.

(3) A complete 3D scanner-based image-to-patient registration
framework was proposed, and the proposed two-step
calibration method was applied to achieve the image-to-
patient registration procedure.

The rest of this paper is organized as follows. In section
2, we reviewed the conventional camera calibration method
based on 2D checkerboard. In section 3, we explained our
calibration method in detail. In section 4, we validated and
compared our proposed approach with state-of-the-art methods.
We summarized those factors that restrict the development of the
scanner-based method for image-to-patient registration and then
described the possible future research directions.

2. RELATED WORKS

In this section, we initially summarized the related works on
2D camera calibration and then reviewed some works related to
estimating the extrinsic parameters of 3D scanners.

2.1. 2D Camera Calibration
Camera calibration is a fundamental task in the field of computer
vision. Through the calibration process, themapping relationship
between the 3D world and the 2D image captured by the camera
is established, thereby guiding the computer to recognize the
entire real world. In the camera calibration task, the camera is
usually simplified as a pinhole model. On the basis of this model,
the intrinsic matrix (K) of the camera can be formulated as

K =





fx 0 u0
0 fy v0
0 0 1



 (1)

where u0 and v0 are the principal points, and fx and fy are the
focal lengths. For 2D camera calibration methods, a calibration
benchmark with specific geometric properties that are easy to
identify and extract is often used. Zhang (2000) proposed a
2D calibration benchmark with a checkerboard image. The
corresponding calibration method requires the camera to take at
least three images containing the checkerboard image at different
positions. At the same time, a certain number of fixed corners of
the checkerboard is taken to calculate the intrinsic and extrinsic
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parameters in the world coordinate system. Thismethod has been
widely used in academic research and industrial fields due to its
simplicity of operation and high precision.

2.2. Calibrating the 2D Camera in an
External Coordinate System
With the development of robotic technology, calibrating the
camera in the external coordinate system (robot workspace) is
necessary to enable the robot to acquire and understand the
appropriate information about its workspace. In the industrial
robot system, the relative transformation between the coordinate
system of a camera and that of a robot must be initially
determined, and the robot can then perform its specific
tasks autonomously. This situation is the well-known hand-eye
calibration problem.

The hand-eye calibration problem (Tsai, 1987; Daniilidis and
K., 1999; Heller et al., 2016) can be clearly described by the
mathematical formulaAX = XB, where X is the unknownmatrix
to be estimated. Solving this problem usually requires capturing
data in multiple positions. Afterward, a series of equations are
established to solve the final transformation matrix (also called
the extrinsic matrix), as shown in Figure 1.

FIGURE 1 | Schematic of the hand–eye calibration problem.

2.3. Calibrating the 3D Scanner in an
External Coordinate System
Other than the 2D images projected by a camera, a 3D scanner
can capture the 3D geometric shapes of objects. A high-quality
3D scanner provides manifold solutions for diverse fields, such
as computer-assisted surgery and robotic system with 3D vision.
The general structure of the structured-light-based 3D scanner
usually comprises a binocular camera for 3D reconstruction and
an RGB camera for capturing texture images, and the coordinate
mapping between the RGB and binocular cameras requires
an additional transformation TScanner

RGB . In this case, similar to
2D camera calibration methods, the extrinsic parameters of
3D scanners can be calibrated using a 2D checkerboard by
considering TScanner

RGB .
Figure 2 shows two commonly used methods for calibrating

the 3D scanner based on a 2D checkerboard. Except for special
instructions, the coordinate system of the external tracker is
regarded as the world coordinate system throughout the rest
of the study. Figure 2A illustrates a closed-form solution for
3D scanner calibration using a tracked pointer. The 3D world
coordinates of the corners in the 2D checkerboard are picked by
the tracked pointer. At the same time, the corresponding corners
are extracted from the captured RGB images. Combined with the
known TScanner

RGB , the relationship between the captured corners
in different coordinates forms a closed loop. Then, the optimal
target transformation TMarker

Scanner can be solved by SVD algorithm
easily. Figure 2B illustrates a numerical solution, where the
corners acquired in the RGB images are mapped to the pointsets

in the 3D space for calibration. The subsequent operation is

similar to the hand-eye calibration method of the RGB camera

mentioned above, where multiple sets of data need to be collected
in different positions and a series of equations are constructed to
estimate the final transformation.

However, given thatTScanner
RGB is an approximation with residual

error. This residual error will accumulate in multiple spatial
transformations and eventually lead to the increase in positioning

FIGURE 2 | Methods for 3D scanner calibration based on a 2D checkerboard: (A) closed-form solution (Pick-2D): pick points using a tracked pointer; and (B)

numerical solution (Hand–Eye-2D): based on hand–eye calibration algorithm.
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FIGURE 3 | Proposed calibration method for the 3D scanner.

errors, which will be evaluated in the experiments section.
Although various applications based on the tracked 3D scanner
have been proposed (Pheiffer et al., 2012; Fan Y. et al., 2017), 3D
scanner calibration in the external coordinate system requires a
better solution.

Figure 3 illustrates a schematic of the proposed method
for calibrating the extrinsic parameters of the 3D scanner.
Four related coordinate systems are the optical tracker
{NDI}, optical marker {Marker}, 3D scanner {Scanner}, and
calibration benchmark {Model}. By sorting out the coordinate
transformation relationship shown in the figure, we obtain the
hand-eye calibration equation in general form, AX = XB, as
shown as follows:

(T̂NDI
Marker)

−1TNDI
MarkerT

Marker
Scanner = T̂Marker

ScannerT̂
Scanner
Model (TScanner

Model )−1 (2)

where X (TMarker
Scanner) is the unknown matrix to be estimated, and

matrices A and B can be obtained by performing additional
calculations. Several methods for solving the AX = XB equation
have been proposed in academic and engineering practice (Tsai
and Lenz, 1989; Daniilidis and K., 1999; Heller et al., 2016). Given
the particularity of 3D scanner calibration, this study focuses on
three parts, namely, (1) the calibration benchmark design; (2) the
solution of the relative parameters in the equation, including A,
B, and X; and (3) the global optimization strategy for fine-tuning
the target transformation X.

3. METHODS

In this study, we calibrated the extrinsic parameters of the
tracked 3D scanner. First, we designed and printed a specified
3D benchmark through 3D printing technology. On this basis,
we constructed a novel calibration framework via pointset
registration to calibrate the extrinsic matrix of the 3D scanner.
Afterward, we proposed a global optimization strategy based on
the nonlinear optimization technique to fine-tune the obtained

FIGURE 4 | Designed 3D calibration benchmark: (A) engineering drawing

(mm); (B) rendering drawing; and (C) physical drawing.

extrinsic matrix. We eventually constructed a surgical navigation
system and used the calibrated 3D scanner to achieve the image-
to-patient registration process.

3.1. 3D Benchmark Design
Given the particularity of the 3D scanner calibration, a specific
benchmark that meets the following design principles should
be designed: (1) the discernibility of the benchmark should be
guaranteed to ensure that the captured data at different positions
and orientations can be aligned accurately; (2) the 3D features
of the benchmark should be sufficient to ensure the accuracy of
pointset registration; and (3) the integrity of the visible surface of
the benchmark at different positions and orientations should be
guaranteed to capture as much surface data as possible.

On the basis of these design principles, a specific benchmark
for calibrating the extrinsic parameters of the 3D scanner was
designed and printed through 3D printing technology. The
printing error was controlled within 0.2 mm as shown in
Figure 4.

The designed benchmark comprises 4 × 4 3D submodels.
Except for the hemisphere (r = 20 mm) located at the corner for
determining direction, the rest is filled with pentahedrons (l= 40
mm, h = 15 mm). This design aims to ensure that most of the
surface of the benchmark can be captured while maintaining as
many 3D features as possible. Moreover, this design can improve
the ability of the captured data to describe the 3D space and the
calibration accuracy of the 3D scanner to a certain extent. The
designed 3D benchmark can also be used for the calibration tasks
of the 3D scanner in various other scenarios.

3.2. Determining the Equation Parameters
Using the calibration benchmark mentioned above, we
comprehensively described the calculation of the parameters in
the proposed calibration framework. Matrix A represents the
relative transformation of the optical marker when scanning
in different positions and orientations, which can be calculated
directly from the tracking data, and its accuracy is determined by
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the positioning error of the tracker. The positioning error of the
optical tracker (Polaris VEGA, Northern Digital Inc., Canada)
used in this study is 0.12 mm, which is extremely small and
hence will not be discussed.

Matrix B represents the relative transformation of the 3D
scanner in space. To estimate this matrix, we initially fixed
the designed benchmark in the world coordinate system. Then
the surface of the benchmark was captured by the 3D scanner
in different positions and orientations. Assuming that pm is a
random point in the coordinate system of the benchmark, the
corresponding point in the pointset captured by the scanner
shown in Figure 3 can then be formulated as

{

p
′

m = TScanner
Model

pm

p̂
′

m = T̂Scanner
Model

pm
(3)

Eliminating the common parameters pm in Equation (3) yields

p̂
′

m = T̂Scanner
Model (TScanner

Model )−1p
′

m = Bp
′

m (4)

According to Equation (4), matrix B in Figure 3 is the spatial
transformation between the captured pointsets. The matching
between pointsets was achieved by the iterative closest point
(ICP) algorithm (Besl and Mckay, 1992), which basic principle
is to iteratively find a transformation that best aligns two
pointsets. This algorithm achieves this principle by minimizing
the following alignment errors

Ereg(R, t) =
1

n

n
∑

i=1

‖qi − (Rqi + t)‖2 (5)

where R and t represent the rotation matrix and translation
vector that minimize the overall error between the two
pointsets, respectively; and pi and qi represent the i-th point
in these pointsets. Through pointset registration, the relative
transformation matrix of the scanner in different positions and
orientations could be estimated. By capturing multiple sets of
data in different positions and orientations, we could construct
a series of equations in the form of AX = XB. The method
proposed by Tsai and Lenz (1989) was used to estimate the
unknown matrix X, and the matrix was also called the extrinsic
matrix of the 3D scanner.

3.3. Global Optimization Strategy
In the previous sections, we have estimated the desired matrix
X. However, given the positioning error of the tracker and the
pointset registration error, the calibration result may shift toward
a specific position and orientation. To solve this problem, we
proposed a global optimization strategy to fine-tune matrix X.
We designed a cost function, and thematrixX obtained in section
3.2 was used as the initial value. Then, matrix X was fine-tuned
through the Levenberg-Marquart (Levenberg, 1944) nonlinear
optimization algorithm.

To make the extrinsic matrix X globally optimal, the designed
cost function used must be able to calculate the distance between
multiple pointsets scanned in the hand-eye calibration step

(section 3.2). Therefore, we need to extend the commonly
used distance measure between two pointsets to the calculation
of multiple pointsets. Assume that PTSi(i = 0, · · · , n) are
collected pointsets in different positions and orientations, where
n represents the number of collected pointsets. At the same time,
the corresponding transformationmatrix of the optical marker to
the world coordinate system is NDI

MarkerTi. Then, the transformation
of the i-th pointset from the scanner coordinate system to the
world coordinate system can then be expressed as

NDI
ScannerTi =

NDI
MarkerTi

Marker
ScannerTi (6)

Using this matrix, we could unify all pointsets into the world
coordinate system as follows

PTS
′

i =
NDI

ScannerTiPTSi(i = 0, · · · , n) (7)

Given a distance constraint metric δ (δ = 5mm in this study),
the alignment error between two pointsets was defined as the root
mean square that meet the distance constraints metric, which can
be expressed as

RMS(P,Q) =

√

√

√

√

1

n

n
∑

i=1

‖Ttranspi − qi‖2 (8)

where Ttrans is the transformation matrix between two pointsets;
pi and qi are the i-th point in P and Q, respectively; and n is the
number of points that meet the distance constraint metric δ. The
alignment error between a pointset and the other pointsets is then
defined as

RMSi =
1

n− 1

n
∑

j=0,j 6=i

RMS(PTS
′

i, PTS
′

j) (9)

where n is the number of collected pointsets. Therefore, the object
of nonlinear optimization is defined as minimizing the average
registration error of all pointsets called repeat scan registration
error (RSRE), which is formulated as

RSRE(R, t) = argmin
(R,t)

1

n

n
∑

i=0

RMSi (10)

As shown in Equation (10), RSRE is a measure used to quantify
the average spatial distance between multiple pointsets. By taking
RSRE as the cost function of nonlinear optimization, the extrinsic
matrix X initially obtained was fine-tuned. In this manner, the
ultimately obtained extrinsic parameters of the 3D scanner are
globally optimal and thus the error distribution of the scanned
pointsets in space becomes more uniform, which is similar to
the bundle adjustment algorithm (Triggs et al., 2000; Jeong et al.,
2012; Liu et al., 2018).

3.4. Application of the 3D Scanner in
Image-To-Patient Registration
This section describes the application of the 3D scanner in
image-to-patient registration. Several experiments were designed
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FIGURE 5 | Flowchart of the proposed 3D scanner-based image-to-patient registration method.

to verify the superiority of the proposed calibration method.
We constructed a surgical navigation system based on an
optically tracked 3D scanner to perform image-to-patient
registration. Figure 5 shows the flowchart of the proposed
registration method, which is mainly divided into three
parts, namely, 3D scanner calibration, surface registration, and
coordinate transformation.

First, the 3D scanner was calibrated using the proposed two-
step calibration method, and the transformation matrix TMarker

Scanner
between the 3D scanner and optical marker was estimated.
This step is usually performed in an experimental environment.
Second, by matching the pointsets collected by the 3D scanner
with the pointsets reconstructed from the medical images of
a patient, these medical images could be transformed into the
coordinate system of the 3D scanner. Third, the tracker detected
and determined the position and orientation of the optical
marker attached to the 3D scanner in real time. Combined with
the calibrated extrinsic matrix TMarker

Scanner of the 3D scanner, the
medical images could be transformed into the world coordinate
system where the patient is located, thereby completing the
image-to-patient registration process.

Pointset registration presents a fundamental problem in
computer vision. The well-known ICP algorithm is widely used
in the rigid registration of pointsets given its high efficiency
and good performance. However, ICP is also known for its
tendency to fall into the local minima. Therefore, convergence
can only be guaranteed when the pointsets to be registered
are roughly aligned. Furthermore, the ICP algorithm performs
poorly when addressing the pointset registration problem that
involves small coverage or large differences in poses. Therefore,
an initial pose transformation should be performed to roughly
align the two pointsets, and the ICP algorithm should be used for
fine registration.

The scanner-based image-to-patient registrationmethod faces
two problems, that is, (1) the uncertainty of the posture of
a patient in the navigation space creates a huge difference in
the initial posture of the pointsets to be registered; and (2)
a pointset containing the entire face of the patient cannot be
captured due to the limitations of the surgical environment,
and the captured pointsets may contain a large percentage of
outliers. To address the first problem, a coarse registration of
the pointset extracted from medical images using the captured
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pointset must be performed by manually selecting paired points
(Fan et al., 2014). However, doing so requires considerable
manual interaction, thereby increasing the complexity of the
operation. Therefore, a coarse registration method that ignores
the initial pose of the pointsets must be developed. The second
problem is a typical local registration problem of pointsets. For
the clinical scenario, the captured facial pointsets of the patient
may only partially overlap the pointsets extracted from medical
images. Therefore, the largest common pointset should be used
as the similarity measure in coarse registration.

In this study, the coarse-to-fine registration strategy was used
for the pointset registration process. Coarse registration was
achieved using the Super4PCS algorithm proposed by Mellado
et al. (2015) to obtain a good initial posture between two
pointsets. Afterward, the ICP algorithmwas used to achieve a fine
registration and find the R (rotation matrix) and t (translation
vector) that best align two pointsets. Let P = p1, p2, · · · , pm and
Q = q1, q2, · · · , qn be the facial pointset captured by the 3D
scanner and the corresponding facial pointset extracted from the
medical image, respectively. The registration goal of these two
pointsets is to minimize the following matching error:

E(R, t) = argmin
(R,t)

N
∑

i=1

‖(R(TNDI
MarkerT

Marker
Scannerpi)+ t)− qi‖ (11)

where TMarker
Scanner is the extrinsic matrix calibrated by the proposed

two-step calibration method, and TNDI
Marker

is the transformation
matrix of the optical marker attached to the 3D scanner
that is tracked by the optical tracker in real time. Therefore,
TNDI
Marker

TMarker
Scannerpi could be used to represent the pointsets

captured by the 3D scanner after being transformed into the
world coordinate system. A relationship between the virtual-
world coordinate system located by CT and the real-world
coordinate system located by the patient was then established,
thereby completing the image-to-patient registration process.

4. EXPERIMENTS AND RESULTS

A series of 3Dmodels were designed to evaluate the superiority of
the proposed method. Afterward, the feasibility of the proposed
3D scanner-based image-to-patient registration method was
evaluated. The influence of the residual error of the extrinsic
matrix of the 3D scanner on TRE was then evaluated, and the
importance of accurately calibrating the extrinsic parameters of
the 3D scanner was highlighted.

4.1. Evaluation of Different Calibration
Methods
The performance evaluation experiments were divided into two
parts. As shown in Figure 6, the regular models include a plane
(the upper plane of a cube with a side length l = 60 mm), a cone
(bottom radius r = 30 mm, height h = 20 mm), a tetrahedron
(side length l = 60 mm), and a hemisphere (radius r = 30 mm).
The irregular model was a head phantom whose size is the same
as that of a real human head.

FIGURE 6 | 3D models used in the experiments. Regular models: (A) cube;

(B) cone; (C) tetrahedron; and (D) hemisphere. Irregular model: (E)

head phantom.

The model surfaces were collected by the optically tracked
3D scanner in different positions and orientations and were
transformed into the world coordinate system using the
calibrated extrinsic matrix of the 3D scanner. Given that we could
not obtain the ground truth of the extrinsic matrix, the designed
error model RSRE and Chamfer distance (CD) were used to
evaluate the performance of the calibration method. CD was first
introduced by Hilditch (1969) and studied by Borgefors (1984)
to approximate the Euclidean metric. It has also been widely
used to measure the similarity between pointsets in point cloud
registration and reconstruction tasks (Wu et al., 2015; Fan H.
et al., 2017; Jiang et al., 2018). Suppose two pointsets P and Q
have nP and nQ points respectively. Then, the CD between them
is defined as:

CD(P,Q) =
1

nP

∑

p∈P

min
q∈Q

‖p− q‖22 +
1

nQ

∑

q∈Q

min
p∈P

‖p− q‖22 (12)

The distance metric was set to δ = 5mm, and the following
calibration methods were compared:

(1) Pick-2D: Obtains the closed-form solution of the extrinsic
matrix based on the 2D checkerboard model calibrated by
the RGB images and the points picked by the optically
tracked pointer;

(2) Hand-Eye-2D: Obtains the numerical solution of the
extrinsic matrix based on the 2D checkerboard model
calibrated by the RGB images and its mapping relationship
with the depth image;

(3) Hand-Eye-3D: Proposed without global optimization; and
(4) Proposed method: As described above.

The surfaces of the models were collected at seven positions,
including directly above and around the model, as a verification
dataset. The experimental results are shown in Table 1.

The verification experiment results reveal that the proposed
calibration method has a significantly higher accuracy than
the other methods. The Pick-2D has the largest calibration
error largely due to the point selection error introduced by
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TABLE 1 | Comparison of different calibration methods.

Methods
Plane (mm) Cone (mm) Tetrahedron (mm) Hemisphere (mm) Phantom (mm)

RSRE CD RSRE CD RSRE CD RSRE CD RSRE CD

Pick-2D 1.07 1.19 1.81 3.17 2.32 5.40 2.36 4.75 2.10 3.98

Hand-Eye-2D 0.95 0.98 1.67 3.17 2.26 5.39 2.14 4.38 1.94 3.46

Hand-Eye-3D 0.99 1.03 1.63 2.81 2.03 4.29 1.72 2.90 1.83 3.17

Proposed 0.95 0.92 1.34 1.92 1.68 2.92 1.72 2.88 1.73 2.83

FIGURE 7 | Box plots of the accuracy comparison among different calibration methods. (A) RSRE and (B) CD.

manual participation. The calibration error of the Hand-Eye-
2D is slightly smaller than the closed-form solution obtained
by the Pick-2D. The Hand-Eye-3D method has a smaller
calibration error than the other methods. Nevertheless, after
the global optimization process, the proposed method has
achieved improvements in accuracy and outperformed all the
other methods.

Figure 7 compares the performance of the proposed method
with that of the Pick-2D, Hand-Eye-2D, and Hand-Eye-3D.
These box plots show the error distribution among different
methods under multiple independently repeated experiments. In
the experiment that used the simplest plane model, the space
complexity of themodel is low, and the errors of all methods were
similarly low. As the complexity of the model increases, its ability
to describe the 3D space also improves, whereas the error level
gradually increases. Obviously, the RSRE and CD errors of the
proposed method are always the smallest.

Figure 8 shows the distance maps between the first pointset
(fixed directly above the model) and the rest of the random
pointset in the verification dataset. The distance map directly
shows the errors in different areas between the two pointsets.
Green means that the error is zero, and the error increases as
the color changes to red or blue. As shown in Figure 8, a red

or blue area appears in each graph, indicating that a large error
occurs in this area. By contrast, the large errors in the distance
map related to the proposed method are mostly concentrated in
the edge area, and this area is relatively smaller than the entire
graph. The estimated maximum error is <2.5 units.

4.2. Effects of Different Calibration
Methods on TRE
To further evaluate the superiority of the proposed calibration
method, we constructed a surgical navigation system and used the
calibrated 3D scanner to perform image-to-patient registration.
TRE was then used to measure the positioning accuracy of the
surgical navigation system. The feasibility of 3D scanner-based
image-to-patient registration was also validated. As shown in
Figure 9, a head phantom attached with 21 designed fiducial
points and a hip phantom attached with 19 steel balls (d= 1 mm)
were used to complete the experiments.

The designed phantom was scanned and reconstructed by
thin-slice CT with a thickness of 0.625 mm, and the marching
cubes algorithm (He, 1987) was used to extract the surface of
the phantom in the image for subsequent registration. Multiple
sets of independently repeated experiments were performed, and
the data obtained from each experiment included (1) PTSsource:
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FIGURE 8 | Distance maps calculated by different calibration methods (with

the first pointset as the matching reference).

FIGURE 9 | Models designed for the experiments: (A) head phantom; and (B)

hip phantom.

the skin pointset of the phantom extracted from the CT image;
(2) PTStarget : the skin pointset of the phantom captured by the

3D scanner; (3) TNDI
Marker

: the spatial transformation matrix to
the world coordinate system of the optical marker fixed on the
3D scanner; (4) Pi

virtual
: the fiducials picked from the CT image

of the phantom; and (5) Pi
real

: the fiducials picked from the
real world by the optically tracked pointer. The point index in
the fiducial points is represented by i. The captured pointsets
were transformed into the world coordinate system and can be
expressed as

PTSNDItarget = TNDI
MarkerT

Marker
ScannerPTStarget (13)

where TMarker
Scanner is the extrinsic matrix of the 3D scanner. The

pointset registration process was performed to align pointset
PTSsource with PTSNDItarget , and the transformation matrix TNDI

Image

from the virtual coordinate system of CT to the real-world

FIGURE 10 | Schematic of pointset registration. The top row is the head

phantom, and the bottom row is the hip phantom. (A) Surface of the phantom

extracted from CT. (B) Surface of the phantom captured by the 3D scanner.

(C) Pointset overlay diagram after registration. (D) Distance map of the

overlapped area after registration.

coordinate system could be obtained. Then, the final positioning
error TRE can be expressed as

TRE =
1

n

n
∑

i=1

‖TNDI
ImageP

i
virtual − Pireal‖ (14)

where n represents the number of fiducial points used to evaluate
errors, and the operator ‖ · ‖ represents the Euclidean distance
between two points in the Euclidean space. Figure 10 shows the
schematic of the registration of the two pointsets. The distance
map reveals that after registration, except for the extremely few
red and blue areas (e.g., the edges of the phantom) and other
areas due to incomplete scanning, the rest are almost all green
and yellow. In other words, the maximum error of registration is
controlled below 1 unit.

We performed seven sets of independently repeated
experiments and separately conducted simulation experiments
using Pick-2D, Hand-Eye-2D, Hand-Eye-3D, and the proposed
method to obtain the extrinsic matrix of the 3D scanner. Table 2
shows the experimental results. The TRE values calculated by
Pick-2D, Hand-Eye-2D, and Hand-Eye-3D are all relatively high,
whereas that obtained by the proposed method is more accurate.
In the experiment using head phantom, the TRE is controlled
within 2 mm, except for one set where accuracy has reached 2.15
mm. In the experiment using hip phantom, the TRE is relatively
high overall, which may be caused by the lack of 3D features of
phantom affecting the registration result of pointsets.

Figure 11 compares the performance of the proposed method
with those of Pick-2D, Hand-Eye-2D, and Hand-Eye-3D. In the
seven sets of independently repeated experiments using two
phantoms, the proposed method shows obvious superiority over
the other three methods.
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TABLE 2 | TRE values obtained by different methods.

Trials
Head phantom (mm) Hip phantom (mm)

Pick-2D Hand-Eye-2D Hand-Eye-3D Proposed Pick-2D Hand-Eye-2D Hand-Eye-3D Proposed

#1 5.69 4.08 2.61 1.66 7.66 5.73 3.61 2.58

#2 5.33 4.70 3.56 1.77 7.94 5.37 2.54 2.02

#3 6.88 3.54 3.16 2.15 7.52 6.14 4.41 2.77

#4 4.27 6.26 4.23 1.87 7.40 6.27 4.81 3.59

#5 5.21 4.00 3.27 1.82 7.77 5.86 3.51 2.27

#6 4.66 5.13 3.86 1.64 7.64 6.26 5.01 2.73

#7 4.98 4.85 3.09 1.63 6.83 5.58 4.44 3.17

Mean 5.29 4.65 3.40 1.79 7.54 5.89 4.05 2.73

Std 0.78 0.83 0.50 0.17 0.33 0.33 0.81 0.49

FIGURE 11 | Box plots of the experiment results obtained by different

calibration methods used in image-to-patient registration.

4.3. Effect of Residual Transformation
Noise on TRE
In section 4.2, a comparison of several methods reveals that
when the RSRE and CD of the calibration result is only slightly
different (RSRE and CD achieve 1.73–2.10 and 2.83–3.98 mm
in the head phantom experiment, respectively), the TRE values
greatly vary between 1.79 and 5.29 mm. Therefore, we further
verified the influence of the residual errors of the rotation and
translation components in the extrinsic matrix on the final
positioning accuracy by performing simulation experiments.
Using the experimental results in section 4.2 as reference, we
added different levels of noise to the matrix TMarker

Scanner in Equation
(11) for the simulation experiments.

The experiment was divided into two parts. First, we
decomposed the rotation matrix into rotation angle components
along three coordinate axes, added degree noise at 0.1◦ intervals
from−0.5 to 0.5◦ to each of the three rotation angle components,

and calculated the final TRE value. We used the same method to
add translation noise at 0.5 mm intervals from −2.5 to 2.5 mm
to the translation components on the three coordinates axes and
calculated the final TRE value. Table 3 shows the results.

Figure 12 shows the effect of residual noise, including rotation
and translation noises, on TRE. As the amount of added noise
increases, the final mean and variance of TRE generally show an
upward trend. At the same time, the TRE decreases after adding
−0.1◦ rotation noise or 0.5 mm translation noise (dotted line).
This abnormal phenomenon is often caused by residual errors
in the calibration matrix or the pointset registration process.
Moreover, every small angle (0.1◦) or translation (0.5 mm) of
the extrinsic matrix can cause a large change (0–2 mm) in
the final TRE value. In other words, the calibration accuracy
of the 3D scanner has a vital influence on the accuracy of
subsequent applications.

5. DISCUSSION

We proposed a method for accurately calibrating the extrinsic
parameters of an optically tracked 3D scanner based on pointset
registration and nonlinear optimization technique. In the image-
to-patient registration experiments, the proposed calibration
method achieved the best accuracy results. However, after
analyzing previous research on image-to-patient registration
(Gerber et al., 2013; Soteriou et al., 2016; Perwg et al., 2018),
we found that the TRE value achieved by the proposed 3D
scanner-based method was not the best.

Gerber et al. (2013) and Chu et al. (2017) argued that
the image-to-patient registration based on artificial fiducials is
highly accurate and can even reach submillimeter navigation
accuracy. Therefore, we compared our proposed image-to-
patient registration method with the artificial fiducial-based
method in two aspects, namely, TRE and operation time (OT).
We selected five noncoplanar fiducials to perform fiducial-based
registration, and the OT included selecting fiducials from the
image, picking fiducials in the real world, and running the fiducial
point registration algorithm. Moreover, the OT of the scanner-
basedmethod included extracting skin from the image, collecting
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TABLE 3 | Results of residual noise verification.

Noise (degree) −0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

Mean (mm) 4.84 3.72 2.66 1.74 1.30 1.66 2.60 3.68 4.80 5.94 7.09

Std (mm) 1.05 0.92 0.79 0.63 0.48 0.68 0.72 0.76 0.82 0.91 1.02

Noise (mm) −2.50 −2.00 −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50

Mean (mm) 5.32 4.49 3.68 2.90 2.19 1.66 1.53 1.79 2.34 3.05 3.83

Std (mm) 0.76 0.77 0.77 0.77 0.75 0.68 0.47 0.50 0.58 0.61 0.64

FIGURE 12 | Effects of different levels of noise on TRE: (A) Rotation noise; and (B) translation noise.

TABLE 4 | Results of different registration methods.

Trials
Fiducial-based Scanner-based

TRE (mm) OT (s) TRE (mm) OT (s)

#1 0.95 225.27 1.66 42.11

#2 1.18 194.05 1.77 54.82

#3 0.99 208.48 2.15 51.71

#4 0.73 210.94 1.87 43.55

#5 0.80 235.12 1.82 50.02

#6 0.74 227.24 1.64 51.57

#7 1.08 189.66 1.63 61.26

Mean 0.92 212.97 1.79 50.72

Std 0.16 15.91 0.17 6.04

the pointset of the model using the 3D scanner, and running the
pointset registration algorithm.

According to Fitzpatrick et al. (2002), TRE refers to the
distance between the position of the fiducial that is not used
for the registration and the corresponding position in the
real-world coordinate system after registration. Given that we
applied pointset registration, all identification points deviated
from the skin surface and were not used for registration.
Therefore, we used those fiducial points that were not used for

registration to evaluate the accuracy of fiducial-based registration
and then used all fiducial points to evaluate the accuracy
of the proposed registration method. We conducted seven
independently repeated experiments on the head phantom and
evaluated the errors of 21 fiducials on the phantom surface.
Table 4 presents the experiment results.

The accuracy of the proposed 3D scanner-based registration
method was 1.79 ± 0.17 mm. Although this method could
meet the clinical navigation requirements (<2 mm), its accuracy
was worse than that of the fiducial-based method (0.92 ± 0.16
mm) due to the residual error in the extrinsic matrix of the
scanner or the registration matrix of the pointsets. We have also
verified this finding in section 4.3. The proposed 3D scanner-
based registration method also had higher time efficiency than
the fiducial-based method (50.72 ± 6.04s vs. 212.97 ± 15.91s),
thereby saving valuable time for clinicians and patients.

The proposed 3D scanner-based image-to-patient
registration method also does not require fiducials to be
pre-attached on the face of patients before performing a
CT scan, thereby simplifying the operation process to a
certain extent and reducing the surgical costs. This method
also does not require contact with the skin of patients,
thereby guaranteeing operation safety. Therefore, the 3D
scanner-based image-to-patient registration method is
exceptionally friendly to the clinical environment, but its
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FIGURE 13 | Box plots of TRE and OT obtained by different registration methods. (A) TRE and (B) OT.

accuracy warrants improvement before its application in
image-to-patient registration.

6. CONCLUSION

Tracked 3D scanners are increasingly being used in IGS. External
tracking markers usually need to be bound with the 3D scanner,
and the 3D scanner can then be tracked in real time. In this
manner, the geometric data captured by the 3D scanner can be
aligned with the medical images of patients to achieve a precise
positioning of their anatomical structures or tissues. Therefore,
a precise calibration between the 3D scanner and the external
tracker is particularly important. However, this problem has not
yet been investigated in detail.

The 3D scanner captures RGB and depth images and performs
texturemapping through the projectionmatrix between RGB and
depth cameras. We can obtain the depth image or pointset with
texture. Given that RGB and depth cameras are independent,
some residual errors may be observed in the coordinate mapping
between them. Therefore, calibrating the 3D scanner using an
RGB image will introduce unnecessary errors and render the
results inaccurate.

To address these issues, we proposed a novel method for
calibrating the extrinsic parameters of the 3D scanner. First, the
surface of the benchmark was captured by the tracked 3D scanner
in multiple positions and orientations. A series of equations were
then formulated using the pointset registration technique and the
coordinate transformation process to estimate the initial extrinsic
matrix of the 3D scanner. Second, an error model called RSRE
was constructed and used as the cost function of the nonlinear
optimization algorithm to obtain the global optimal extrinsic
matrix. Experimental results show that the proposed calibration
method has a lower RSRE and CD value than the others based on
2D checkerboard.

Third, we constructed a surgical navigation system based
on an optically tracked 3D scanner. On the one hand, the
comparison of the influence of the extrinsic matrix of the
3D scanner obtained by different calibration methods on TRE
indicates that the proposed calibrationmethod obtains the lowest
TRE value. On the other hand, in comparison with the fiducial-
based image-to-patient registration method, the efficiency of the
proposed method is greatly improved. Although its accuracy is
not as good as that of the fiducial-based registration method,
the proposed 3D scanner-based registration method still meets
the clinical requirements and demonstrates noncontact and high
safety benefits, thereby highlighting its significant research value.

When using scanner-based registration method, data should
be subjected to multiple spatial transformations. In this case,
a small residual error may lead to huge errors in the
final transformation. Given the limited space and complex
clinical environment in operating rooms, problems such as an
incomplete acquisition of the facial pointset of the patient and a
low pointset registration accuracy may restrict the application of
scanner-based image-to-patient registration. We aim to address
these problems by conducting a follow-up work and verifying our
findings in the clinical scenario.
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