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Finding the underlying principles of social attention in humans seems to be essential for

the design of the interaction between natural and artificial agents. Here, we focus on

the computational modeling of gaze dynamics as exhibited by humans when perceiving

socially relevant multimodal information. The audio-visual landscape of social interactions

is distilled into a number of multimodal patches that convey different social value,

and we work under the general frame of foraging as a tradeoff between local patch

exploitation and landscape exploration. We show that the spatio-temporal dynamics of

gaze shifts can be parsimoniously described by Langevin-type stochastic differential

equations triggering a decision equation over time. In particular, value-based patch

choice and handling is reduced to a simple multi-alternative perceptual decision making

that relies on a race-to-threshold between independent continuous-time perceptual

evidence integrators, each integrator being associated with a patch.

Keywords: audio-visual attention, gaze models, social interaction, multimodal perception, drift-diffusion model,

decision theory, perceptual decisions

1. INTRODUCTION

The main concern of this work is modeling gaze dynamics as exhibited by humans when
perceiving socially relevant multimodal information. Such dynamics accounts for gaze deployment
as unfolding in time, depending on where observers look, how long and when. It is known that
under certain circumstances humans spend themajority of time scrutinizing people, markedly their
eyes and faces, and spotting persons that are talking (cfr., Foulsham et al., 2010, for framing this
study, but see Hessels, 2020 for an in-depth discussion under general conditions and an up-to-date
review). This is not surprising since social gazing abilities are likely to have played a significant role
very early in the primate lineage (Shepherd and Platt, 2007).

Gaze, the act of directing the eyes toward a location in the visual world, is considered a
good measure of overt attention (Kustov and Robinson, 1996). This makes the research problem
addressed here relevant for many aspects, with promising applications in different fields, such as
social robotics, social gaze analysis, and clinical studies (Hessels, 2020). Endowing artificial agents
with the ability to gaze at social cues—a building block for many dyadic, triadic, and multiparty
interactions (Hessels, 2020)- has been deemed essential since early attempts to build socially
competent robots (Admoni and Scassellati, 2017; Wiese et al., 2017). A growing body of research is
devoted to quantitatively assess how humans gather social information through gaze so to infer
other persons’ intentions, feelings, traits, expertise, or even expectations and to analyse group
dynamics (Staab, 2014; Rubo andGamer, 2018; Grossman et al., 2019; Guy et al., 2019; Jording et al.,
2019). Over the years, a broad research spectrum has been established from traditional laboratory
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studies of social attention or social gaze to interactive settings,
unveiling the complexity of the problem (but see Hessels,
2020 for an enlightening and in-depth discussion). The
conversational videos we are exploiting have the virtue of
displaying real people embedded in a dynamic situation while
being relatively controlled stimuli (Foulsham et al., 2010). In
clinical research gaze is central to the investigation of attention
mechanisms in groups of patients with atypical development
in the appraisal of social cues, e.g., social anxiety disorder,
autism spectrum disorder, schizophrenia (Klein et al., 2019).
To such end, the analysis of social perception by employing
contextually rich video stimuli poses little cognitive demands
to the participants (Rubo and Gamer, 2018). Meanwhile,
modeling gaze as a dynamical stochastic process that unfolds
in space and time is gaining currency in clinical studies (e.g.,
Korda et al., 2016; Ioannou et al., 2020).

Surprisingly, limited research has addressed the
computational modeling of eye guidance in a multimodal
setting; only a handful of works have considered social cues in
such setting (cfr. Tavakoli et al., 2020, and Boccignone et al.,
2020, for a review). Yet, even when limiting to the unimodal case
of visual stimuli, gaze dynamics has been by and large overlooked
in computer vision in spite of the pioneering work of Aloimonos
et al. (1988), Ballard (1991), and Bajcsy and Campos (1992). The
current state of affairs is that effort is mostly spent to model
salience (Borji and Itti, 2013; Borji, 2021) as a tool for predicting
where/what to look at (for a critical discussion, see Tatler et al.,
2011; Le Meur and Liu, 2015; Foulsham, 2019; Boccignone et al.,
2020; Zhang et al., 2020).

Here we take a different stance and we focus onmodeling gaze
dynamics. To such end we build on foraging theory. Foraging
is a general term that includes where animals search for food
and which sorts of food they eat (Stephens, 1986; Bartumeus and
Catalan, 2009). In brief, the animal strives for maximizing his
intake of food in a “patchy” landscape: moment by moment it
selects the most convenient patch, moves to the patch and starts
foraging in that location. While exploiting the patch, the animal
gains energy at a rate that decreases as the food becomes depleted:
thus, at any time, he has to make a decision whether to stay or
leave for the next patch (MacArthur and Pianka, 1966).

Foraging is an appealing and principled framework for dealing
with gaze. The idea is simple: gaze deployment is the result of
the foraging behavior of the observer. Consider Figure 1. The
top-left image displays a video frame of a conversational clip
overlaid with a number of computed audio-visual patches. The
gaze trajectory of a perceiver, who is viewing and listening to the
clip, unfolds such that local, within-patch exploitation alternates
with long between-patch relocations (cfr. Figure 1, bottom-right
image). Indeed, much like the foraging animal, the perceiver
contends with two problems: What defines a patch as valuable
to gaze at? How is gaze guided within and between patches?

The idea of exploiting the foraging framework has gained
currency in the visual attention field and human cognition
theories (e.g., Hills, 2006; Pirolli, 2007; Cain et al., 2012; Wolfe,
2013; Ehinger and Wolfe, 2016; Mirza et al., 2016), and it is
deemed more than an informing metaphor (Wolfe, 2013). It has
been argued that what was once foraging for tangible resources

in a physical space became, over evolutionary time, foraging for
information in cognitive space (Hills, 2006).

In this perspective, the selection of individual patches is not
the most relevant issue (Wolfe, 2013; Ehinger and Wolfe, 2016).
Of more interest is when does a forager leave one patch for
the next one. Namely, the primary metric of concern in animal
ecology studies is the patch giving-up time (GUT). The most
influential account of average patch leaving behavior is Charnov’s
Marginal Value Theorem (MVT, Charnov, 1976). The MVT
states that it is time tomove when the rate of energy gain from the
currently visited patch drops below the average rate. The latter,
in turn, depends on the rate at which resources can be extracted
from patches and on the time for relocating to the next patch.
Accordingly, a poor patch yielding a low energy gain should be
abandoned earlier.

Recently, a model has been proposed (Boccignone et al.,
2020) that takes into account the above questions in order
to reframe gaze deployment as the behavior of a stochastic
forager while visiting audio-visual patches that convey different
social value. Most relevant, the patch leaving time was obtained
via the stochastic version of the MVT (McNamara, 1982).
However, the advantage of having a general solution derived from
first principles in the framework of optimal Bayesian foraging
(Bartumeus and Catalan, 2009) is mitigated by a computational
cost that might impact on possible application, such as social
robotics (cfr., Supplementary Figures 2, 3).

In this brief research report we investigate a patch handling
model, which is alternative to that proposed in Boccignone et al.
(2020). Here, the decision of relocating gaze from one patch to
the other relies on simple multi-alternative perceptual decision
making that embeds both patch leaving and choice. The latter
takes stock of recent work that spells out animal foraging in terms
of an evidence accumulation process (Davidson and El Hady,
2019). In our case evidence denotes the estimate of the relative
value of scrutinizing a patch with respect to the others. We
consider an integration-to-threshold mechanism, namely a race-
to-threshold between continuous-time independent evidence
integrators, each being associated with a patch. A snapshot
of the process is displayed in the top-right panel of Figure 1,
which shows the stochastic evolution of patch-related evidence.
Meanwhile, in the same vein of Boccignone et al. (2020), the
spatial displacement of gaze within and between patches is
obtained via an Ornstein-Uhlenbeck (O-U) process that operates
at two different spatial scales, local and global (bottom panels of
Figure 1).

As a result, the gaze deployment problem can be
parsimoniously formalized, both in time and in space,
through the evolution of a set of Langevin-type stochastic
differential equations. Then the question arises whether the
model presented here retains the same basic response features
obtained by Boccignone et al. (2020) while being computationally
more efficient.

In the Methods section, the model is presented to bare
essentials together with the experimental setup and the
evaluation protocol. In the Results section the outcomes of the
model are juxtaposed with those from the method introduced
in Boccignone et al. (2020); comparison with other methods is
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FIGURE 1 | Overall view of the patch cycle at the basis of the proposed model. (Top left) At any time t the perceiver captures the multimodal landscape of social

interactions as a set of audio-visual patches that convey different social value (speakers, faces, gestures, etc.); patches are shown as colored Gaussian blobs that

overlay the original video frame. (Bottom left) The simulated 2D spatial random walk (O-U process) is displayed starting from the frame center up to current gaze

location within the red patch (speaker’s face). (Top right) The decision making dynamics instantiated as the stochastic evolution (1D random walk with drift) of

independent racers, one for each patch (patches and racers are coded by corresponding colors); the current patch (red blob) is scrutinized until one of the racers

(winner) hits the threshold; the winner sets the next gaze attractor on the corresponding patch; in this case the light blue patch is the winner (non-speaking face);

(Bottom right) The simulated gaze trajectory within the new chosen patch after between-patch relocation has been performed. See text for details.

available in the Supplementary Material section, too. It is shown
that the simulated scan paths exhibit features that are statistically
similar to those of eye movements of human observers that were
eye tracked while watching and listening to conversational clips
in a free-viewing condition. Notably, the performance attained
is comparable, albeit relying on a simpler mechanism, and at a
low computational cost. Eventually, we discuss the results so far
achieved, highlighting the novelties of the method and its pitfalls,
while addressing its implications in perspective.

2. METHODS

2.1. The Model
The input to the model at time t is the multimodal landscape,
which we define as the time-varying ensemble of audio-

visual patches W(t) = {Pp(t)}NP
p=1. These serve as regions

of gaze attraction. Each patch is shaped as a 2-D Gaussian
with localization parameter (mean) µp and shape parameter
(covariance matrix) 6p. One example is provided in the top-
left image of Figure 1 displaying the set of computed patches
W(t) as Gaussian blobs that overlay the original video frame; the
patches correspond to the current speaker’s face, the faces of the
listeners, the speaker’s hand gesture, and a center-bias patch. It is

worth noting that the model needs not to rely upon any specific
technique for deriving the pre-attentive representation W(t), as
long as it captures relevant social multimodal information within
the scene (persons, speakers, gestures, etc.).

Moment by moment, the perceiver, who is viewing and
listening to the audio-visual clip, will (1) select one patch to gaze
at, most likely the speaking face, (2) scrutinize it for a certain
time, (3) move to a different patch, and so forth. Denote rF(t) =
(xF(t), yF(t)) the vector of the spatial coordinates of gaze at time t.

The evolution over time of rF(t) defines a trajectory, that
is the spatiotemporal dynamics of gaze. Such trajectories are

best described as the unfolding of local displacements within

a patch followed by larger relocations between patches. Gaze
allocation to one patch depends on the time-varying context of
the scene and on the value Vp that each patch p is assigned
within such context (e.g., the value of a patch including a face of
a speaking person changes when the person becomes silent). In
our setting, no specific external task or goal is given (free-viewing
condition). Then, if the ultimate objective of an active perceiver
is total reward maximization (Zhang et al., 2020), reward can
be related to the “internal” value (Berridge and Robinson,
2003). The latter has different psychological facets including
affect (implicit “liking” and conscious pleasure) and motivation
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(implicit incentive salience, “wanting”). Indeed, social signals
are expected to induce responses as other reward stimuli do,
i.e., motivational approach as well as hedonic response (Vernetti
et al., 2018).

Under such circumstances, the behavior of the perceiver can
be formalized as that of a forager, gaze being the means to
gather valuable information within the scene. At any time t,
the forager is engaged either in local patch exploitation or in
landscape exploration across patches. This entails solving the
decision making problems of patch choice and patch giving up,
together with setting the appropriate spatial dynamics for visiting
the currently handled patch or relocating to a new one.

As to the decision problem, here, rather than resorting to
optimal Bayesian foraging (Boccignone et al., 2020), we frame it
in the physics of optimal decision making (Bogacz et al., 2006;
Gold and Shadlen, 2007). Decision making depends upon the
forager’s estimate of the relative value of scrutinizing a patch
with respect to the others, namely the evidence qp(t) assigned to
patch p at time t (Bogacz et al., 2006; Gold and Shadlen, 2007).
In turn, the evidence depends on both the patch value Vp and
the overall dynamics of the patch ensemble (cfr. section 2.1.1
below). Evidence accumulation is computed by integrating a 1D
Markov Gaussian process in the form of a Langevin-type drift-
diffusion model. The decision making process is summarized via
the evolution of state variables st and p∗t . Both depend upon
the evidence qp(t): the first one is a binary random variable
accounting for the switching from within-patch exploitation
(st = 0) to between-patch relocation (st = 1); the second
variable indexes the patch chosen to be handled at time t, thus
p∗t ∈ {1, · · · ,NP}.

Eventually, based on the forager’s decisions, the stochastic
evolution of gaze deployment, namely the spatiotemporal
trajectory rF(t), is generated by a 2D Markov Gaussian process.
Precisely the latter is a 2D Ornstein-Uhlenbeck (O-U) process,
which operates at two different spatial scales, within-patch and
between patches, respectively. The O-U process is a mean
reverting process where patches serve as trajectory attractors (cfr.
section 2.1.2); the typical outcome of the O-U process is displayed
in the bottom panels of Figure 1.

The model can be succinctly formalized as follows:

2.1.1. Decision Making Dynamics
We represent the perceptual decision making problem as a
continuous-time race model in a multi-choice setting (Bogacz
et al., 2006; Krajbich and Rangel, 2011), where the NP patches
compete one against the other to attract gaze. The response at
time t is obtained by evolving over time, for each patch, the
evidence accumulation process until a choice is made (top-right
panel of Figure 1). Evidence in favor of each patch is accumulated
at different rates depending on the patch value and on whether it
is being gazed. For each patch p, the process has the form of the
following stochastic differential equation (SDE):

dqp(t) = Ip(t)dt + cdW(t), p = 1, · · · ,NP. (1)

The drift term Ip(t) denotes the mean rate of incoming evidence;
the second term cdW (W being a Wiener process) represents

white noise, which is Gaussian distributed with mean 0 and
variance c2dt.

Equation (1) can be numerically integrated between 0 and t
with initial condition qp(t) = 0: (Lemons, 2002; Kloeden and
Platen, 2013):

qp(t
′) = qp(t)+ Ip(t)δt + c

√
δtz(t), p = 1, · · · ,NP, (2)

with z(t) ∼ N (0, 1) and δt being the time increment t′ = t + δt.
We set c = 1; drift Ip(t) is computed as follows:

Assume that the value Vp is available for each patch p on the
basis of the patch type; this can be derived, for instance, from
eye tracking data as the prior probability of gazing at speaking
persons, non-speakers, etc., within the social scene. The drift rate
Ip(t) associated to the racer of the p-th patch at time t depends on
whether or not patch p is being currently exploited, i.e., p = p∗

and p 6= p∗, respectively, and on the relative patch value νp:

Ip(t) = 9(p, p∗)νp. (3)

Define the gazing function 9 as

9(p, p∗) =

{

e
− φ

Vp
t

p = p∗

1 otherwise
, (4)

φ being a positive constant; the relative value νp is

νp = η
Vp

Vp∗
e
−κ

∥

∥

∥
µp−µp∗

∥

∥

∥

(5)

In Equation (5) the negative exponential e
−κ

∥

∥

∥
µp−µp∗

∥

∥

∥

, κ > 0
accounts for the visibility of the patch p from the current patch

p∗. The visibility is weighted by the η
Vp

Vp∗
term, η > 0, in order to

scale the drift rates of all patches as a function of the prior value
of the current one. As a consequence, the average accumulation
rate is reduced when visiting valuable patches (hence producing
higher residence times); it is increased when visiting poorer
ones that will be given up earlier. Clearly, the exponential term
implies higher drift rates for the currently visited patches since
promoting the nearest sites, including the current one. This
entails high probability for the current patch to be chosen again.
Meanwhile, in order to avoid the process being stuck to the
current patch, the function 9 (Equation 4) decreases the drift
rate of the visited patch exponentially in time. The drift rates of
most valuable patches will be affected by a slower decrease, thus
allowing for longer patch exploration.

Coming back to Equation (1), qp(t) grows at the rate Ip(t) on
average, but also diffuses due to the accumulation of noise. A
decision is made as soon as the random walk of one among the
qp(t) variables crosses a barrier a. This is accounted for by the
decision equation

sp,t = H(qp(t)− a), p = 1, · · · ,NP, (6)

where H is the Heaviside function and sp,t denotes the response
function related to patch p, clearly, a piece-wise constant function
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admitting only the values 0 and 1. Race termination occurs as
any qp(t) reaches the decision criterion, that is sp,t = 1. Then,
the choice of the motion regime or scale (i.e., local vs. global)
accounted for by st , and that of the attractor indexed by p∗t can
be written

st = sp,t , p∗t = p. (7)

When p∗t 6= p∗t−1, that is the chosen patch is different from the
previous one, a between-patch relocation occurs, and st = 1 until
the new patch is reached (bottom panels of Figure 1); otherwise,
(p∗t = p∗t−1), st is set to 0 and the exploration of the current patch
is resumed.

2.1.2. Spatial Dynamics
Given the state (st , p

∗
t ), and following Boccignone et al. (2020),

the spatial dynamics of gaze is obtained by evolving the FOA
position rF(t) over time through the state-dependent stochastic
differential equation that defines the 2D O-U process

drF(t) = B
(st)
p∗ [µ

(st)
p∗ − rF(t)]dt +D

(st)
p∗ (rF(t))dW

(st)(t). (8)

This generates a mean reverting trajectory, µ
(st)
p∗ being the

attractor location (center of mass of the selected patch). Clearly,
when st = 1 the attractor serves as the target of a large scale
gaze relocation; when st = 0, the attractor constrains local patch
exploitation. Examples of the O-U outcome are displayed in the
bottom panels of Figure 1.

In Equation (8), the 2 × 2 matrix B
(st)
p∗ controls the strength

of attraction (drift) of rF toward the location µ; D
(st)
p∗ is a 2 × 2

matrix representing the diffusion parameter of the 2D Brownian
motionW(t). Precisely, for the 2D mean-reverting O-U process,

B
(st)
p∗ = (b

(st)
x,p∗ , b

(st)
y,p∗ )

T , D
(st)
p∗ = (σ (st))2I, with W = (Wx,Wy)

T

denoting independent Brownian processes. Equation (8) can be
integrated so that the evolution in time of rF(t) = (xF(t), yF(t))
between 0 and t is computed by numerically advancing the gaze
position through the update equation from t to t′ = t+ δt, i.e., δt
time units later, and initial condition x0 = xF(t):

xF(t
′) = xF(t)e

−b
(st )

x,p∗ δt + µx(1− e
−b

(st )

x,p∗ δt
)

+

√

γx(1− e
−2b

(st )

x,p∗ δt
)z(t)

yF(t
′) = yF(t)e

−b
(st )

y,p∗ δt + µy(1− e
−b

(st )

y,p∗ δt
)

+

√

γy(1− e
−2b

(st )

y,p∗ δt
)z(t) (9)

with z ∼ N (0, 1). As to the O-U parameters, the drift terms b
(st)
x,p

and b
(st)
y,p are set proportional to the width of the patch p if st = 0,

or proportional to the distance from the target patch, otherwise.

The diffusion terms are γ
(st)
x = σ (st )

b
(st )

x,p∗
, γ

(st)
y = σ (st )

b
(st )

y,p∗
with σ (st)

proportional to the average distance between patches if st = 1;
equal to 1, otherwise.

2.2. Experimental Set-Up
Our experimental set-up can be recapped as follows:

As to stimuli and eye tracking data we use a large publicly
available dataset (Xu et al., 2018), which is influential in current
research on computational modeling of attention (Borji, 2021).
We evaluate the proposed model (from now on, Proposed)
by straightforward comparison to the GazeDeploy
model (Boccignone et al., 2020). The main goal is the assessment
of the effectiveness and the computational efficiency of the novel
decision making procedure. For what concerns confronting
with other models, only a few have been proposed that are
experimentally at the ready for actual simulation of gaze
deployment, i.e., with the capability of handling time-varying
scenes and the availability of a software implementation (e.g.,
Boccignone and Ferraro, 2014; Zanca et al., 2020). For the sake
of completeness, full evaluation with respect to these models
and their variants is reported in the Supplementary Table 1 and
Supplementary Figure 7.

The evaluation protocol involves the simulation of
both models to generate gaze trajectories. These are then
quantitatively compared with data from human observers via the
ScanMatch (Cristino et al., 2010) and the MultiMatch (Jarodzka
et al., 2010; Dewhurst et al., 2012) metrics. Details are given in
the sections below.

2.2.1. Stimuli and Eye Tracking Data
The adopted dataset (Xu et al., 2018) consists of 65 one-shot
conversation scenes from YouTube and Youku, involving 1–27
different faces for each scene. The duration of the videos is cut
down to be around 20 s, with a resolution of 1, 280 × 720 pixels.
The dataset includes eye tracking recordings from 39 different
participants (26 males and 13 females, aging from 20 to 49, with
either corrected or uncorrected normal eyesight), who were not
aware of the purpose of the experiment. A 23-inch LCD screen
was used to display the test videos at their original resolution.
Eye tracking was carried out using a Tobii X2-60 eye tracker at
60 Hz. All subjects were required to sit on a comfortable chair
with a viewing distance of about 60 cm from the LCD screen;
no chin rest was used. Before viewing videos, each subject was
required to perform a 9-point calibration for the eye tracker.
The subjects were asked to free-view videos displayed at random
order. The 65 test videos were divided into three sessions, and
there was a 5-min rest after viewing each session to avoid eye
fatigue. Moreover, a 10-s blank period with black screen was
inserted between two successive videos for a short rest. Event
classification into saccades and fixations with relative duration
was performed via eye tracker embedded algorithms with default
settings. Eventually, 1, 011, 647 fixations in total were retained.

A caveat concerns the lack of full data quality reporting
compliant with the criteria discussed by Holmqvist et al. (2012),
considering the high level of noise (low precision) of the
Tobii X2-60 eye tracker. On the other hand, this issue is in
our case mitigated by the fact that when performing within-
patch analysis, we are mostly interested in a phenomenological
description of local gaze dynamics. Clearly, this would have
been a serious impediment, if we had recursively applied our
method to scrutinize specific items within the patch (e.g., the
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eyes for gauging gaze direction, or other facial cues for expression
recognition). In foraging terms (Stephens, 1986), such recursion
would account for prey choice and handling. However, this goal
was out of the scope of the present investigation.

2.2.2. Evaluation Protocol
We compare the scan paths simulated from a number of model-
based, “artificial” observers with those recorded from human
observers (the Real model). The rationale is to assess whether
simulated behaviors are characterized by statistical properties
that are significantly close to those featured by human subjects
eye tracked while watching conversational videos. Put simply,
any model can be considered adequate if model-generated scan
paths mimic those generated by human observers (which we
regard as samples of the Real model) while gazing at the same
audio-visual stimuli.

As to the evaluation metrics, we adopt the ScanMatch
(Cristino et al., 2010) and the MultiMatch (Jarodzka et al., 2010;
Dewhurst et al., 2012)methods. ScanMatch (SM) is apt to provide
an overall performance summary, whilst MultiMatch (MM)
specifically addresses the many dimensions of gaze dynamics.
The SM and MM metrics are computed on scan paths, that
is a sequence of fixations and saccades. The Proposed and
the GazeDeploy models generate continuous gaze trajectories
that can be assimilated to raw data produced by eye trackers.
Yet, the exploration and exploitation dynamics can be thought
of as following a “saccade and fixate” strategy (Land, 2006).
Further, the conversational stimuli we are using result in limited
motion of patches, mostly due to head turning and hand
gestures. Then, to classify fixation and saccade events in model
generated trajectories we adopt, from a data analysis perspective,
a functional definition of such events (Hessels et al., 2018). We
consider a fixation as a period of time during which a static or
a moderately displacing part of the visual stimulus (the patch)
on the screen is gazed at and that in a human observer would
be projected to a relatively constant location on the retina.
This corresponds to local dynamics in the exploitation stage.
Accordingly, saccades are the gaze shifts for redirecting the line
of sight to a new patch of interest, as performed along the
exploration stage. This is operationalized using the NSLR-HMM
algorithm (Pekkanen and Lappi, 2017) with default settings;
the original implementation is available from online repository
(cfr., Supplementary Material, Computer Code). The algorithm
classifies fixations, saccades, smooth pursuits, and post-saccadic
oscillations. To serve our purposes, smooth pursuits were
retained as fixations.

In detail, SM divides a scan path spatially and temporally
into several bins and then codes it to form a sequence of
letters. The frame width was divided into 14 bins, while the
height was split in eight bins; the temporal bin size was set to
50 ms. Two scan paths are thus encoded to two strings that
are compared by maximizing the similarity score. This metric
indicates the joint spatial, temporal and sequential similarity
between two scan paths, higher SM score denoting a better
matching. Complementary, the MM metrics computes five
distinct measures that capture the different scan path features:
shape, direction, length, position, and duration. Higher score

of each metric means better matching. The MM algorithm
allows for scan paths sequences to be simplified in order
to reduce their complexity. This is carried out by grouping
together saccades of angular or amplitude differences below some
predefined thresholds. Likewise, fixations are grouped if their
duration is shorter than a duration threshold. In the adopted
evaluation protocol no simplification was performed (i.e., no use
of the direction, length, and duration thresholds), as even small
differences in scan paths performed on a dynamic stimuli can
correspond to major differences in the attended scene.

The evaluation protocol runs as follows: assume a number
Nobs of human observers. Then, for each video in the test set:
(1) compute SM and MM similarity scores for each possible
pair of the Nobs observers (Real vs. Real); (2) for each model:
(2.a) generate gaze trajectories from artificial observers; (2.b)
parse/classify trajectories into scan paths (saccades and fixations
with the relative duration) via the NSLR-HMM algorithm
(Pekkanen and Lappi, 2017); (2.c) compute SM and MM scores
for each possible pair of real and Nobs artificial scan paths (Real
vs. Model). Eventually, (3) return the average SM and MM
scores for Real vs. Real and Real vs. Model comparisons.

In what follows we consider each MM dimension to be a
stand-alone score. Thus, the analysis uses six different scores:
the five obtained from the MM dimensions of shape (MMShape),
direction (MMDir), length (MMLen), position (MMPos), and
duration (MMDur), plus the SM score SM.

2.2.3. Simulation Details
The rationale of the simulations was to focus on the performance
of the different gaze control strategies of the Proposed
and of the GazeDeploy models. The input provided to
either model was the same, namely the patch representation
recapped in the Supplementary Material, Patch computation.
The bottom layers of patch computation (face detection, speaker
detection) rely on deep neural network modules that were
independently optimized on a different dataset (Boccignone et al.,
2019).

In addition, a baseline Random model was adopted. This
simply generates random gaze shifts by sampling (x, y) fixation
coordinates from an isotropic Gaussian distribution located at
the center of the scene (center-bias). The Gaussian standard
deviation is set proportional to the height of the video frames.
The fixation duration is sampled from a uniform distribution
ranging from 67 to 1, 699 ms corresponding to the 0.01 and 0.99
quantiles of the empirical distribution of real fixations duration.

To optimize onmodel parameters, ten subjects were randomly
sampled out of the 39 participants and their scan paths used
to determine the free parameters of the proposed model via a
grid search maximizing metric scores according to the procedure
described in section 2.2.2. This yielded the optimal values φ =
0.18, η = 5, κ = 15, and a = 1.7. The same procedure
was performed to optimize GazeDeploy free parameters, as
described in (Boccignone et al., 2020). The remaining 29 subjects
were used for evaluation.

The code for the simulation of all models is available in online
repositories (cfr., Supplementary Material, Computer Code).
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3. RESULTS

A demonstration of the output obtained from model simulation
is included in the Supplementary Video 1. The result is by and
large representative of those obtained on the whole dataset.

Overall, the simulated model generates scan paths that
mimic human scan paths in terms of spatiotemporal statistics
(but see Supplementary Figure 5 for a concrete example on
a single video): the saccade amplitude distributions exhibit a
multimodal shape, with short saccades preferred to long ones;
fixation duration distributions from both real and simulated
data reveal a right-skewed and heavy-tailed shape; prima facie,
a high similarity can also be noticed between saccade direction
distributions of real and simulated data. The same conclusions
can be drawn by observing Supplementary Figure 6, which
reports the same statistics and comparison on the whole dataset.

For visualization purposes, Figure 2 depicts at a glance the
estimated empirical densities of the similarity scores achieved by
using the protocol introduced in section 2.2.2. Scores obtained
from the Real vs. Real comparison represent the gold
standard. A preliminary, qualitative inspection shows that the
Proposed model, much like the GazeDeploy model, gives
rise to empirical densities that are close to those yielded by real
subjects. This holds for all dimensions, with the exception of the
direction scoreMMDir .

For what concerns the efficiency of the two methods, all
things being equal as regards the input provided (the ensemble
of audio-visual patches W(t) and the O-U spatial dynamics),
the computational cost of the decision making procedures of
Proposed and GazeDeploy amounts to the 0.2 and the
44.6%, on average, of the total computation time, respectively,
at frame rate. A summary of the cost profiling is reported in
Supplementary Figure 4.

As to the quantitative evaluation of the effectiveness of
the methods, in the following we adopt well-established
statistical tests in order to assess whether or not each model
generates scan paths that significantly differ from those of
human observers and to gauge the size of such difference
(effect size).

3.1. Statistical Analyses
In a nutshell, we are interested in performing a statistical
comparison of the performance between multiple models over
each video of the adopted dataset. This is the typical repeated
measure analysis between multiple groups, for which standard
ANOVA is usually performed. The ANOVA test requires
populations distributions to be normal and homoscedastic (with
the same finite variance). If either normality or homoscedasticity
cannot be ensured, non-parametric statistical tests (like the
Friedman test) should be employed. In the analyses that follow,
the SM metric and each dimension of the MMmetric are treated
as separate scores. Significance level of all statistical tests is
α = 0.05.

As to scores MMShape and MMLen, the Shapiro-Wilk test with
Bonferroni correction rejected the null hypothesis of normality
as opposed to the SM,MMDir ,MMPos, andMMDur scores.

For all scores the null hypothesis of homoscedasticity of
distributions was rejected by either Bartlett (in case of normality
of distributions) or Levene (non-Gaussian distributions) tests.
Hence, the Friedman test with Nemenyi post-hoc analysis was
performed. The results for each score are depicted in Figure 3

via the corresponding Critical Difference (CD) diagrams. These
provide quantitative support for the preliminary observations
offered by the empirical densities in Figure 2.

Notably, according to the SM metric and the adopted
assessment strategy, the scan paths simulated from the
GazeDeploy and Proposed procedures cannot be
distinguished from those of Real subjects (this is further
demonstrated by the fact that these two models achieve small or
negligible effect sizes, as reported in Supplementary Table 1).

The SM score can be conceived as an overall summary of
the performance of the considered models. A deeper analysis
can be performed by inspecting the individual dimensions
provided by the MM metric. One important result is delivered
by theMMDur dimension, summarizing the similarity of fixation
duration between aligned scan paths: again, the Proposed and
GazeDeploy models cannot be distinguished from the gold
standard (Real), exhibiting negligible and small effect sizes,
respectively (see Supplementary Table 1).

A similar conduct is exhibited by the MMShape, MMLen, and
MMPos scores.

The MMDir score is worthy of mention: in this case,
GazeDeploy and the Proposed procedures perform
comparably with the Random model. This is probably due to
the fact that saccade direction modeling is not addressed by both
models, but just absorbed into the gaze shift policy at hand.

4. DISCUSSION

We set out to investigate the modeling of gaze dynamics
as exhibited by a perceiver who scrutinizes socially relevant
multimodal information. This effort was developed under the
framework of foraging behavior.

The work presented here builds upon previous
one (Boccignone et al., 2020). However, in that case the
cogent problems of patch choice and leave were framed within
an optimal Bayesian setting (Bartumeus and Catalan, 2009).
Here, in a different vein, we considered a simple multi-alternative
perceptual decision making approach. This relies on a race-to-
threshold between independent integrators, each integrator
being associated with a patch (Bogacz et al., 2006; Ditterich,
2010; Krajbich and Rangel, 2011). In consequence, the eye
guidance problem can be parsimoniously formalized in terms of
the evolution of the stochastic differential equations (1) and (8)
together with the decision equation (6).

The gain in simplicity and computational efficiency does
not come to the cost of performance as it might have been
expected. The results so far achieved, when inspected under
the lens of statistics, show that the proposed method is
comparable to the GazeDeploy method in terms of either
the overall performance, as measured by the SM score, and the
specific scores gauged by MM. In particular, the remarkable
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FIGURE 2 | The estimated empirical densities f (score) for the considered models (via Kernel Density estimation). (A) Shows the distributions for the ScanMatch score;

(B–F) show the distributions related to the five MultiMatch dimensions.

result obtained by GazeDeploy for what concerns fixation
duration—which in that case was related to the MVT modeling
of the giving-up—is also replicated by this simpler method. Thus,
a question arises in regard to the relations, if any, between the two
models. A thorough discussion of this point would carry us deep
into establishing formal connections between themethods, that is
out of the scope of this brief research report. A few considerations
must here suffice.

Optimal foraging theory, markedly theMVT and its stochastic
extension, provides general rules for when an animal should leave
a patch. This lays the theoretical foundation for assessing optimal
decision-making, though lacking mechanistic explanation. It
has been shown under appropriate conditions (Davidson and

El Hady, 2019) that optimal foraging relying on patch-leaving
decisions can be connected to a stochastic evidence accumulation
model of foraging, namely a drift-diffusion model (DDM, Ratcliff
et al., 2016). This describes the process through which an
animal gathers information to make decisions. The DDM can
be solved for conditions where foraging decisions are optimal
and equivalent to the MVT (Davidson and El Hady, 2019).
Notably, the DDM can be extended to a multi-alternative DDM
(Bogacz et al., 2006). The latter, for instance, has been applied
to eye tracking experiments involving multiple choice in value-
based decision (Krajbich and Rangel, 2011). The continuous-
time independent race integrators that we used here, should
be considered as a theoretically sub-optimal solution; yet,
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FIGURE 3 | Critical Difference (CD) diagrams of the post-hoc Nemenyi test (α = 0.05) for the ScanMatch (A) and MultiMatch scores (B–F) when comparing the

proposed model with the GazeDeploy procedure, the gold standard and a baseline random model. Diagrams can be read as follows: the difference between two

models is significant if the difference in their ranks is larger than the CD. Models that are not significantly different from one another are connected by a black CD line.

Friedman’s test statistic (t) and p-value (p) are reported in brackets.

according to results we gathered so far, it qualifies as a viable
solution for trading down complexity of the full MVT approach.
Overall, differently from optimal foraging theory, DDMs and
generalizations (Bogacz et al., 2006; Ratcliff et al., 2016) provide a
mechanistic framework suitable to unravel behavioral and neural
underpinnings of value-based decision making. Interestingly
enough, stochastic race accumulator have been proposed to
model neural activity for action selection in the pre-motor
areas (Ognibene et al., 2006). Also, from a neurobiological
standpoint, a body of evidence suggests the firing properties
of neurons that are likely to drive decisions in the LIP and
the FEF are well-described by stochastic accumulator models
(Gold and Shadlen, 2007).

The Langevin-type equation formalizing evidence
accumulation is entangled with the 2D spatial Langevin-
type equation (O-U process) accounting for the two different
scales of landscape exploration and of local patch exploitation.
On the one hand this succinctly permits the use of one and
only dynamics of oculomotor behavior in the vein of current
literature suggesting that visual fixation is functionally equivalent
to visual exploration on a spatially focused scale (the functional
continuum hypothesis, Otero-Millan et al., 2013). On the other
hand, the strict interplay between the evidence accumulation
equation and the 2-D multiscale gaze shift equation puts
forward the present study for having a special bearing on
current proposals in computational models that address the
focal and ambient dichotomy and the relation between saccade
amplitude and fixation duration (Le Meur and Fons, 2020).
This issue was well-known in the eye tracking literature (Unema
et al., 2007) but overlooked in the computational modeling of
visual attention.

Beyond the merit of the above theoretical aspects, the model
bears on potential applications for researchers interested in social
gaze. Our approach allows for operationalizing the effect of
social information on gaze allocation in terms of both decision
making and value attributed to different kinds of gaze attractors.
Meanwhile, it takes into account spatial tendencies in the
unfolding of gaze trajectories. The basic foraging dimensions of
value-based patch selection and patch handling over time pave
the way for analysing in a principled framework social gaze
as related to persons’ intentions, feelings, traits, and expertise
by exploiting semantically rich multimodal dynamic scenes.
Video stimuli are clearly advantageous when investigating social
attention compared to static stimuli (Risko et al., 2012). Complex,
dynamic and contextually rich video clips elicit more natural and
representative viewing behavior in participants, even though it
might deviate from that found in everyday situations (Risko et al.,
2012; Hessels, 2020). In a sense, this experimental arrangement
should provide a better approximation to a “real world”
social dynamic context, thus bearing higher ecological validity.
However, the latter is a problematic claim (one good place to look
for further reflection on these matters is Holleman et al., 2020).
In what follows, we shall limit our discussion to particular
contexts of social robotics. Yet, in general, our model and set-
up can be useful for investigating social attention under a variety
of circumstances, such as in clinical populations as discussed in
the Introduction.

The computational efficiency of the method shows promise
for application in robotics, markedly in social robotics, where
active vision plays an important role and where social robot’s
sensitivity to environmental information and the ability to
localize the people around itself is crucial (Admoni and
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Scassellati, 2017; Wiese et al., 2017; Zhang et al., 2020). Social
robots need to gather information about their human fellows
to facilitate mutual understanding and coordination (Zhang
et al., 2020). Designing robot gaze itself is challenging and
difficult to standardize due to the variations in physical robots
and human participants, while burdened with architectural
constraints. Early research efforts (Breazeal et al., 2001) relied
on simple saliency-based schemes (Itti et al., 1998) inherited
from computer vision (Shic and Scassellati, 2007; Ferreira
and Dias, 2014); in the last decade these have been reshaped
in the form of deep neural nets, such as convolutional
networks (Zhang et al., 2020). Yet, the aptness of accounting
for task, value and context in the visuo-motor loop is
crucial. In this perspective, it is acknowledged that socially
interactive robots would greatly benefit from the development
of probabilistic real-time frameworks that implement automatic
attention mechanisms (Ferreira and Dias, 2014). For instance,
in a recent work (Rasouli et al., 2020), active visual behavior
has been grounded in the probability of gazing at a location
that accounts for an empirical exploitation/exploration trade-
off; here, the same issue is set but in a principled framework.
Also, the stochasticity, which is inherent to our approach, has
proved to be strategic. It has been reported (Martinez et al.,
2008) that a stochastic gaze control mechanism enables the
i-Cub robot to explore its environment up to three times
faster compared to the standard winner-take-all mechanism (Itti
et al., 1998). Indeed, stochasticity makes the robot sensitive
to new signals and flexibly change its attention. This, in
turn, enables efficient exploration of the environment as
the basis for action learning along interactive tasks (Nagai,
2009a,b). Further, the proposed method is suitable to be
implemented in both overt and covert gaze action selection
and generation (Rea et al., 2014). Results achieved here in a
multimodal conversational setting are likely to be relevant in
everyday multimodal settings where the robot is requested to
gaze at people around (Zibafar et al., 2019). Clearly, in a real
world context the bottom layer of patch computation should
efficiently embed suitable methods that have been applied for
speaker localization in the field of humanoid robotics (e.g.,
Zibafar et al., 2019; Rea et al., 2020).

This study has several caveats. For instance, statistical
analyses have highlighted problems in gaze direction modeling.
This is a difficult hurdle to face. Some contextual rules have
been proposed in the computer vision field (Torralba et al.,
2006) and in the psychological literature (Tatler and Vincent,
2008). However, these might be put into question out of
the lab and in dynamic environments. One solution could
be that of a data-driven strategy (Le Meur and Coutrot,
2016; Hu et al., 2020), albeit raising in turn the problem
of generalizability. Further, the accumulator model lacks of
a detailed account for the actual handling of within-patch
items (i.e., what would be considered “prey handling” in
the animal ecology field). One example is the processing of
components of facial expression and gaze of people involved
in the interaction. Here, the bare phenomenological account
that we have presented forgoes processing details. Nevertheless,
different policies of deploying gaze to specific items in facial

expressions might also affect emotional responses (Schomaker
et al., 2017; Rubo and Gamer, 2018). These aspects need to be
further investigated.
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Supplementary Video 1 | The supplementary video shows a simulation of the

proposed model on a video clip. A visual demonstration of both the decision

making dynamics and spatial dynamics is provided.

Supplementary Table 1 | Central tendencies for each score and model

computed as mean (M) or median (MED) with associated dispersion metrics

(standard deviation, SD or median absolute deviation, MAD. Effect sizes are

computed as the Cohen’s d or the Cliff’s between the given model and

real subjects.

Supplementary Figure 1 | A sketch of the patch computation procedure from

the audio/visual input.

Supplementary Figure 2 | The prediction by MVT is that a poor patch should be

abandoned earlier than a rich patch. The time axis starts with a travel time with no

energy gain after which the forager finds a patch. The shapes of the red and black

gain curves, arising from resource exploitation, represent the cumulative rewards

of a “rich” and a “poor” patch, respectively. For each curve, the osculation point of

the tangent defines the optimal patch residence time (adapted from Boccignone

et al., 2020).

Supplementary Figure 3 | Overall description of the switching behavior. The first

block depicts the typical trend of the instantaneous reward rate for two types of

patches (rich and poor). These can be conceived as Giving Up Time (GUT)

functions; as time goes by, the GUT function approaches the quality threshold Q,

the run being faster for poorer patches. At any time step the decision stay/go is

taken by sampling a Bernoulli RV (third block) whose parameter is given by the

distance between the GUT function and the quality threshold at that time

(opportunely scaled by a logistic function, c.f.r. second block).
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Supplementary Figure 4 | Time profiling. (a) Time required (seconds) by the

modules composing the Proposed and GazeDeploy method for the analysis and

simulation on a single video frame (results reported on a logarithmic scale). (b)

Percentage of computation time required by Pre-attentive modules (Face/Speaker

Detection, Spatio-Temporal Saliency and patch computation) and actual Gaze

Deployment (Decision Making and Spatial Dynamics) for the GazeDeploy

procedure. (c) Comparison of time requirements between the GazeDeploy and

Proposed procedures in relation to those of the Pre-attentive modules. (d)

Percentage of computation time required by Pre-attentive modules (Face/Speaker

Detection, Spatio- Temporal Saliency and patch computation) and actual Gaze

Deployment (Decision Making and Spatial Dynamics) for the Proposed procedure.

Supplementary Figure 5 | (a) Frame of video 008 with overlaid heatmap of real

fixations. (b) Frame of video 008 with overlaid heatmap of generated fixations. (c)

Real (red) and Generated (blue) saccades amplitude distribution. (d) Real (red) and

Generated (blue) fixations duration distribution. (e) Real saccades direction

distribution. (f) Generated saccades direction distribution.

Supplementary Figure 6 | (a) Heatmap of real fixations on the whole dataset (b)

Heatmap of generated fixations on the whole dataset (c) Saccades amplitude

distribution on the whole dataset for Real (red) and Generated (blue) scanpaths (d)

Fixations duration distribution on the whole dataset for Real (red) and Generated

(blue) scanpaths (e) Real saccades direction distribution on the whole dataset (f)

Generated saccades direction distribution on the whole dataset.

Supplementary Figure 7 | Critical Difference (CD) diagrams of the post-hoc

Nemenyi test (α = 0:05) for the ScanMatch and MultiMatch scores when

comparing different models proposed in literature plus the gold standard and a

baseline random model. Friedman’s test statistic (t) and p-value (p) are reported

in brackets.
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