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Occlusions, restricted field of view and limited resolution all constrain a robot’s ability to

sense its environment from a single observation. In these cases, the robot first needs to

actively query multiple observations and accumulate information before it can complete

a task. In this paper, we cast this problem of active vision as active inference, which

states that an intelligent agent maintains a generative model of its environment and acts

in order to minimize its surprise, or expected free energy according to this model. We

apply this to an object-reaching task for a 7-DOF robotic manipulator with an in-hand

camera to scan the workspace. A novel generative model using deep neural networks is

proposed that is able to fuse multiple views into an abstract representation and is trained

from data by minimizing variational free energy. We validate our approach experimentally

for a reaching task in simulation in which a robotic agent starts without any knowledge

about its workspace. Each step, the next view pose is chosen by evaluating the expected

free energy. We find that by minimizing the expected free energy, exploratory behavior

emerges when the target object to reach is not in view, and the end effector is moved

to the correct reach position once the target is located. Similar to an owl scavenging

for prey, the robot naturally prefers higher ground for exploring, approaching its target

once located.

Keywords: active vision, active inference, deep learning, generative modeling, robotics

1. INTRODUCTION

Despite recent advances in machine learning and robotics, robot manipulation is still an
open problem, especially when working with or around people, in dynamic or cluttered
environments (Billard and Kragic, 2019). One important challenge for the robot is building a good
representation of the workspace it operates in. In many cases, a single sensory observation is not
sufficient to capture the whole workspace, due to restricted field of view, limited sensor resolution
or occlusions caused by clutter, human co-workers, or other objects. Humans on the other hand
tackle this issue by actively sampling the world and integrating this information through saccadic
eye movements (Srihasam and Bullock, 2008). Moreover, they learn a repertoire of prior knowledge
of typical shapes and objects, allowing them to imagine “what something would look like” from
a different point of view. For example, when seeing a coffee mug, we immediately reach for the
handle, even though the handle might not be directly in sight. Recent work suggests that active
vision and scene construction in which an agent uses its prior knowledge about the scene and the
world can be cast as a form of active inference (Mirza et al., 2016; Conor et al., 2020), i.e., that
actions are selected that minimize surprise.
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Active inference is a corollary of the free energy principle,
which casts action selection as a minimization problem of
expected free energy or surprise (Friston et al., 2016). The
paradigm states that intelligent agents entail a generative model
of the world they operate in (Friston, 2013). The expected
free energy naturally unpacks as the sum of an information-
seeking (epistemic) and an utility-driven (instrumental) term,
which matches human behavior of visual search and “epistemic
foraging” (Mirza et al., 2018). Furthermore it is also hypothesized
that active inference might underpin the neurobiology of the
visual perception system in the human brain (Parr and Friston,
2017).

Recent work has illustrated how active vision emerges from
active inference in a number of simulations (Mirza et al., 2016;
Daucé, 2018; Conor et al., 2020). However, these approaches
typically define the agent’s generative model upfront, in terms of
small, often discrete state and observation spaces. Most similar is
the work by Matsumoto and Tani (2020), which also considers
a robot manipulator that must grasp and move an object by
minimizing its free energy. Their approach differs from ours
in the sense that they use an explicitly defined state space,
containing both the robot state and the object locations. In
order to be applicable for real-world robot manipulation, the
generative model should work with realistic sensory observations
such as camera inputs. Therefore, in this paper, we explore the use
of deep neural networks to learn expressive generative models,
and evaluate to what extent these can drive active vision using
the principles from active inference. We consider the active
vision problem of finding and reaching a certain object in a
robotic workspace.

While a lot of research on learning generative models of
the environment has been performed, most of them only
consider individual objects (Sitzmann et al., 2019b; Häni et al.,
2020), consider scenes with a fixed camera viewpoint (Kosiorek
et al., 2018; Kulkarni et al., 2019; Lin et al., 2020) or train
a separate neural network for each novel scene (Mildenhall
et al., 2020; Sitzmann et al., 2020). We tackle the problem
of an active agent that can control the extrinsic parameters
of an RGB camera as an active vision system. Both camera
viewpoint and its RGB observation are therefore available for
our approach. To leverage the available information, our learned
generative model is based on the Generative Query Network
(GQN) (Eslami et al., 2018). This is a variational auto-encoder
that learns a latent space distribution to encode the appearance
of the environment through multiple observations from various
viewpoints. Whereas, Eslami et al. (2018) integrates information
of these different viewpoints by simply adding feature vectors,
we show that this does not scale well for many observations, and
propose a novel Bayesian aggregation scheme. The approximate
posterior is computed through Gaussian multiplication and
results in a variance that properly encodes uncertainty.

We evaluate our approach on three specific scenarios. First,
we validate our generative model and Bayesian latent aggregation
strategy on plane models of the ShapeNet v2 dataset (Chang
et al., 2015). In addition, we provide an ablation study on the
different aspects of our model architecture and compare different
aggregation methods. Second, we evaluate action selection

through active inference on observations of 3D coffee cups
with and without handles. We evaluate the interpretation of
the uncertainty about the cup from the variance of the latent
distributions. Finally, we consider a robotic manipulator in a
simulated workspace. The robot can observe its workspace by an
RGB camera that is mounted to its gripper and is tasked to find
and reach an object in the workspace. In order to solve the reach
task, the robot must first locate the object and then move toward
it. We show that exploratory behavior emerges naturally when
the robot is equipped with our generative model and its actions
are driven through active inference.

To summarize, the contributions of this paper are
three-fold:

• We develop a deep neural network architecture and training
method to learn a generative model from pixel data consistent
with the free energy principle, based on Generative Query
Networks (GQN).

• We propose a novel Bayesian aggregation strategy for GQN-
based generative models which leverages the probabilistic
nature of the latent distribution.

• We show that we can use a learned generativemodel to partake
in active inference and that natural behavior emerges, first
searching before attempting to reach it.

This paper is structured as follows: the proposed method is
explained in section 2, where the generative model (section 2.1)
and the active inference framework (section 2.2) are introduced
first. Section 2.3.1 then explains how the approximation of
the expected free energy can be achieved using the learned
distributions. Section 2.3.2 finally elaborates on how these
distributions are learned using deep neural networks through
pixel-based data. Section 3 considers the results from applying
the proposed method on numerous scenes of increasing
complexity. First, the proposed model architecture is evaluated
on a subset of the ShapeNet dataset (section 3.1). Next, the
learned distributions are evaluated on whether they can be used
within the active inference framework on the use case three
dimensional cup (section 3.2). Finally the robot manipulator
in simulation is used for the reaching problem (section 3.3).
A discussion on the results, related work and possible future
prospects is provided in section 4. A conclusion is provided in
section 5.

2. METHOD

In this section we first discuss how the artificial agent interacts
with the world through a Markov blanket, and that its internal
generative model can be described by a Bayesian network. Next,
we further unpack the generative model and describe how the
internal belief over the state is updated. In the second section
the theoretical framework of active vision and how this relates
to an agent choosing its actions is elaborated on. Finally, we
show how a learned generative model can be used to compute
the expected free energy to drive the action-perception system
known as active inference. We also go into the details of the
neural network architecture and how it is learned exclusively
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FIGURE 1 | The internal generative model of the artificial agent is represented

as a Bayesian network. The environment is considered unchanging and is

described by a latent variable s. The observations ok depend on both the

environment described by s and the agent’s viewpoint denoted by vk. The first

i viewpoints have been visited and are used to infer a belief over the joint

distribution. Future viewpoint vi+1 has not been visited or observed yet.

Observed variables are shown in blue, while unobserved variables are shown

in white.

from pixel-based observations by minimizing the variational
free energy.

2.1. The Generative Model
We model the agent as separated from the true world state
through a Markov blanket, which means that the agent can only
update its internal belief about the world by interacting with
the world through its chosen actions and its observed sensory
information (Friston et al., 2016). In the case of active vision,
the actions the agent can perform consist of moving toward a
new viewpoint to observe its environment. We thus define the
action space as the set of potential viewpoints the agent can
move to. The sensory inputs of the agents in this paper are a
simple RGB camera and the observations are therefore pixel-
based. In this paper, we limit ourselves to an agent observing and
reaching toward objects in the environment, but not interacting
with them. Hence, we assume the environment is static and its
dynamics should not be modeled in our generative model as we
do not expect an object on the table to suddenly change color,
shape, or move around without external interaction. However,
one might extend the generative model depicted here to also
include dynamics, similar to Çatal et al. (2020).

More formally, we consider the generative model to take the
shape of a Bayesian network (Figure 1) in which the agent can
not observe the world state directly, but has to infer an internal
belief through sensory observations ok and chosen viewpoints vk.
The environment or world which can be observed from different
viewpoints is described by the latent factor s. When a viewpoint
vk is visited, an observation ok is acquired which depends on the
chosen viewpoint and environment state s. The agent uses the
sequence of observations to infer a belief about the world through
the latent distribution s.

The generative model describes a factorization of the joint
probability P(o0 : i, s, v0 : i) over a sequence of observations o0 : i,
states s and viewpoints v0 : i. In the remainder of this paper,
the colon notation 0 : i is used to represent a sequence going

from element 0 until the ith element. The generative model is
factorized as:

P(o0 : i, s, v0 : i) = P(s)

i
∏

k=1

P(ok|vk, s)P(vk) (1)

As the artificial agent can only interact with the world through
its Markov blanket, the agent has to infer the posterior belief
P(s|o0 : i, v0 : i). For high dimensional state spaces, computing
this probability becomes intractable and approximate inference
methods are used (Beal, 2003). The approximate posterior Q is
introduced, which is to be optimized to approximate the true
posterior distribution. The approximate posterior is factorized as:

Q(s|o0 : i, v0 : i) =

i
∏

k=0

Q(s|ok, vk), (2)

This approximate posterior corresponds to the internal model
that the agent uses to reason about the world. In the next
section, we will discuss how variational methods can be used
to optimize the approximate posterior by minimizing the
variational free energy.

2.2. The Free Energy Principle
According to the free energy principle, agents minimize their
variational free energy (Friston, 2010). This quantity describes
the difference between the approximate posterior and the true
distribution or equivalently, the surprise. The free energy F for
the graphical model described in Figure 1 can be formalized as:

F = EQ(s|o0 : i ,v0 : i)[logQ(s|o0 : i, v0 : i)− log P(o0 : i, s, v0 : i)]

= − log P(o0 : i, v0 : i)
︸ ︷︷ ︸

Evidence

+DKL[Q(s|o0 : i, v0 : i)||P(s|o0 : i, v0 : i)]
︸ ︷︷ ︸

Approximate vs true posterior

= EQ(s|o0 : i ,v0 : i)[− log P(o0 : i|v0 : i, s)]
︸ ︷︷ ︸

Accuracy

+ DKL[Q(s|o0 : i, v0 : i)||P(s)]
︸ ︷︷ ︸

Complexity

= EQ(s|o0 : i ,v0 : i)

[

−

i
∑

k=0

log P(ok|vk, s)

]

+ DKL[Q(s|o0 : i, v0 : i)||P(s)] (3)

This formalization can be unpacked as the sum of the Kullback-
Leibler divergence between the approximate posterior and the
true belief over s, and the expected negative log likelihood over
the observed views o0 : i given their viewpoints v0 : i. It is clear
that if both distributions are equal, the KL-term will evaluate to
zero and the variational free energy F equals the log likelihood.
Minimizing the free energy therefore maximizes the evidence.

We can further interpret Equation (3) as an accuracy term,
encouraging better predictions for an observation ok given a
viewpoint vk and the state s, and a complexity term promoting
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“simpler” explanations, i.e., closer to the prior belief over s. The
approximate posterior can then be acquired by:

Q(s|o0 : i, v0 : i) = argmin
Q(s|o0 : i ,v0 : i)

F ≈ P(s|o0 : i, v0 : i), (4)

However, the agent does not only want to minimize its surprise
for past observations, but also for the future. Minimizing the free
energy with respect to the future viewpoints will drive the agent to
observe the scene in order to further maximize its evidence, and
can therefore be used as a natural approach to exploration. The
next viewpoints to visit can hence be selected by evaluating their
free energy. However, it is impossible to compute this free energy,
as observations from the future are not yet available. Instead,
similar to Conor et al. (2020), the expected free energy G can be
computed for the next viewpoint vi+1. This quantity is defined as
the free energy expected to encounter in the future when moving
to a potential viewpoint vi+1. The probability distribution over
the considered future viewpoints can be computed with respect
to G as:

P(vi+1) = σ (−G(vi+1)), (5)

Where G(vi+1) is the expected free energy for the future visited
viewpoint, σ is the softmax operation which transforms the
expected free energyG for every considered viewpoint vi+1 into a
categorical distribution over these viewpoints. The expected free
energy is then obtained by computing the free energy for future
viewpoint vi+1:

G(vi+1)

= EQ(s,oi+1|o0 : i ,v0 : i+1)
[logQ(s|o0 : i, v0 : i+1)− log P(o0 : i+1, s|v0 : i+1)]

= EQ(s,oi+1|o0 : i ,v0 : i+1)
[logQ(s|o0 : i, v0 : i+1)− log P(s|o0 : i+1, v0 : i+1)

− log P(o0 : i+1|v0 : i+1)]

≈ −EQ(oi+1|o0 : i ,v0 : i+1)

[

DKL[Q(s|o0 : i+1, v0 : i+1)||Q(s|o0 : i, v0 : i)]
]

︸ ︷︷ ︸

Epistemic value

− EQ(oi+1|o0 : i ,v0 : i+1)
[logP(o0 : i+1)]

︸ ︷︷ ︸

Instrumental value

(6)

This expected free energy can be reformulated as the sum of an
instrumental and an epistemic term. The epistemic value is the
KL-divergence between the posterior belief over s after observing
the future viewpoint, and before visiting this viewpoint. As the
true posterior is not available, we approximate P(s|o0 : i+1, v0 : i+1)
using the approximate posterior distribution Q(s|o0 : i+1, v0 : i+1).
Please note that in the final step, the condition on the viewpoints
in the instrumental value can be omitted. Which can be
interpreted as an intelligent agent creating a preferred prior in
advance that is not dependent on the corresponding viewpoints.
Intuitively, this KL-term represents how much the posterior
belief over s will change given the new observation. An agent
that minimizes free energy will thus prefer viewpoints that
change the belief over s, or equivalently, to learn more about

its environment. The instrumental value represents the prior
likelihood of the future observation. This can be interpreted as
a goal that the agent wants to achieve. For example in a reaching
task, the agent expects to see the target object in its observation.

2.3. Active Vision and Deep Neural
Networks
To apply active inference in practice, a generative model
that describes the relation between different variables in the
environment, i.e., actions, observations, and the global state, is
required. When using this paradigm for complex tasks, such as
reaching an object with a robot manipulator, it is often difficult
to define the distributions over these variables upfront. In this
paper, we learn the mapping of observations and viewpoints
to a posterior belief directly from data using deep neural
networks. We model the approximate posterior Q(s|o0 : i, v0 : i)
and likelihood P(ok|s, vk) as separate neural networks that
are optimized simultaneously, similar to the variational auto-
encoder approach (Kingma and Welling, 2014; Rezende et al.,
2014).

The approximate posterior Q(s|o0 : i, v0 : i) is modeled through
a factorization of the posteriors after each observation. The belief
over s can then be acquired by multiplying the posterior beliefs
over s for every observation.We learn an encoder neural network
with parameters φ to learn the posterior qφ(s|ok, vk) over s given
a single observation and viewpoint pair (ok, sk). The posterior
distributions over s given each observation and viewpoint pair
are combined through a Gaussian multiplication. We acquire the
posterior distribution as a Normal distribution proportional to
the product of the posteriors:

Qφ(s|o0 : i, v0 : i) ∝

i
∏

k=0

qφ(s|ok, vk). (7)

Secondly, we create a neural network with parameters ψ that
estimates the pixel values of an observation ôk, given the selected
viewpoint vk and a state vector s. The likelihood over the
observation pψ (ôk|vk, s) is modeled as an image where every
pixel is an independent Gaussian distribution with the pixel value
being the mean and a fixed variance.

We jointly train these models using a dataset of tuples
{(ok, vk)}

k=i
k=0

for a number of environments by minimizing the
free energy loss function:

L =

i
∑

k=0

||ôk − ok||2 + DKL[Qφ(s|o0 : i, v0 : i)||N (0, I)] (8)

This loss function is reformulated as a trade-off between
a reconstruction term and a regularization term. The
reconstruction term computes the summed mean squared
error between the reconstructed observations ô0 : i and ground-
truth observations o0 : i. This term corresponds with the accuracy
term of Equation (3), as minimization of the mean squared error
is equivalent to minimizing log likelihood when the likelihood is
a Gaussian distribution with a fixed variance. The regularization
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term is identical to the complexity term of Equation (3) and
computes the KL-divergence between the belief over the state s
and a chosen prior, which we choose to be an isotropic Gaussian
with unit variance.

2.3.1. Approximating the Expected Free Energy for

Active Vision

Under active inference, the agent chooses the next viewpoint to
visit in order to minimize its expected free energy as described
in section 2.2. The agent selects the viewpoint by sampling from
the categorical distribution P(vi+1). As described by Equation (5),
this categorical distribution is acquired by computing the
expected free energy G for every potential viewpoint vi+1, and
applying the softmax function on the output. The expected
free energy is computed by separately evaluating the epistemic
and instrumental term from Equation 6. Calculating these
expectations for every possible viewpoint is intractable, hence we
resort to Monte Carlo methods to approximate the expected free
energy through sampling.

A schematic overview of our method is shown in Figure 2.
For a target viewpoint vi+1, the epistemic term is the expected
value of the KL divergence between the belief over state s

after observing oi+1 (i.e., Q(s|o0 : i+1, v0 : i+1)) and prior to
observing oi+1 (i.e., Q(s|v0 : i, o0 : i)). The latter distribution is
the output after feeding all previous observations o0 : i and
their corresponding viewpoints v0 : i through the neural network
qφ(s|o0 : i, v0 : i). This is shown on the left of Figure 2 and provides
the agent with the current belief over s. To estimate the posterior
distribution Q(s|o0 : i+1, v0 : i+1), an imagined observation ôi+1

must be sampled. The likelihood model is used to do this,
conditioned on the potential viewpoint vi+1 and a sampled
state vector from Q(s|o0 : i, v0 : i), an estimate of the observed
view ô is made. Together with the initial observations o0 : i
and viewpoints v0 : i, the imagined view is encoded through
the posterior model to approximate Q(s|o0 : i+1, v0 : i+1) as
shown on the right of Figure 2. As both prior and posterior
distributions are approximated by a Multivariate Gaussian
with a diagonal covariance matrix, the KL divergence can be
computed analytically. To approximate the expected value over
Q(s|o0 : i, v0 : i), we repeat this process for multiple state samples
and average the obtained values.

The instrumental term, as described in Equation 6, is the
expected negative log likelihood of the observed view oi+1 for
the future viewpoint vi+1. Again, we approximate this value
by sampling from the state distribution, and forwarding this
through the likelihood model. We calculate the negative log
likelihood of each imagined observation ôi+1 according to a
prior distribution over this observation. This process is repeated
for numerous samples from Q(s|o0 : i, v0 : i), and the computed
log likelihood is averaged to calculate the instrumental term.
In the case of a robotic reaching task, this prior distribution
takes the form of a desired goal observation, and computing log
likelihood reduces to computing the mean squared error between
an imagined observation ôi+1 and a reference goal observation.

2.3.2. Model and Training Details

Both neural networks are directly optimized end-to-end through
pixel data, using a dataset consisting of different scenes. We
define a scene as a static environment or object in or around
which the agent’s camera can move to different viewpoints. The
agent has observed the set of i observations and viewpoints from
a scene S = {(ok, vk)}

k=i
k=0

. The view ok is an RGB image scaled
down to a resolution of 64 × 64 pixels and the viewpoint vk is
represented by a seven dimensional vector that consists of both
the position coordinates and the orientation quaternion.

The generative model we consider belongs to the family of
variational auto-encoders (Kingma and Welling, 2014; Rezende
et al., 2014). It most resembles the Generative Query Network
(GQN) (Eslami et al., 2018). This variational auto-encoder
variant encodes information for each observation separately and
aggregates the acquired latent codes. Similarly to the GQN,
our encoder generates a latent distribution for each observation
separately and combines them to form the current scene
representation. From this scene representation, the decoder has
to render the expected observations given a target viewpoint.

We deviate from the GQN presented by Eslami et al. (2018)
in two ways. First, whereas GQNs concatenate the viewpoint
parameters somewhere in the encoder and use an auto-regressive
decoder architecture, we use convolutional neural networks for
both encoding and decoding, and use FiLM layers (Perez et al.,
2018) for conditioning. The encoder is conditioned on the
viewpoint parameters and the decoder is conditioned on both
the query viewpoint vi+1 and the scene representation vector.
Secondly, whereas GQNs aggregate the extracted representations
from the encoder by mere addition, we use a Bayesian inspired
aggregation scheme. We consider the distributions from the
model described in section 2.1. Instead of the addition used in
the GQN, we use a factorization of the posterior Q(s|v0 : i, o0 : i)
to aggregate the acquired representations through Gaussian
multiplication. When a new observation oi is available, the
current belief distribution N (µcur , σ

2
curI) is updated with the

output of the encoder network qφ(oi|vi), a Normal distribution
N (µobs, σ

2
obs

I), using Gaussian multiplication:

µ =
σ
2
cur · µobs + σ

2
obs

· µcur

σ 2
cur + σ

2
obs

, (9)

1

σ 2
=

1

σ 2
cur

+
1

σ
2
obs

(10)

This way of refining belief of the acquired representations is
equivalent to the update step found in Bayesian filtering systems
such as the Kalman filter (Kalman, 1960). As the variance in
each dimension reflects the spread over that state vector, it
can be interpreted as the confidence of the model. The belief
over the state is therefore updated based on their uncertainty
in each dimension. Additionally, using this type of aggregation
has the benefit that the operation is magnitude-preserving. This
results in a robust system that is invariant to the amount of
received observations, unlike an addition-based system. For
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FIGURE 2 | The flow followed when evaluating the expected free energy using deep neural networks for a given potential new viewpoint vi+1. Starting on the left of

the figure, the encoder neural network that approximates the posterior qφ (s|o0 : i , v0 : i ) encodes the observations o0 : i and corresponding viewpoints v0 : i until now into

a belief over the state s. From this belief, a state vector is sampled and is used together with viewpoint vi+1 to predict the imagined view from this viewpoint. The

instrumental value is computed as the log likelihood that the target image is generated from the distribution over the predicted image. This is marked by the red arrow.

This imagined view ôi+1 is passed through the approximate posterior model to acquire the expected belief over s after selecting viewpoint vi+1. The epistemic value is

computed as the KL divergence between the approximate posterior before observing the imagined view ôi+1 and after. This is marked by the blue arrow. Finally, the

expected free energy is approximated by averaging over a number of samples.

stability reasons, we clip the variance of the resulting distribution
to a value of 0.25.

We parameterize our model as follows. The inputs are
first expanded by using a 1 × 1 convolution that maps
the RGB channels to a higher dimensional space of 64
channels. The encoder consists of four convolutional layers
with a stride of 2, a kernel size of 3 × 3 and feature maps
that increase with a factor 2 every layer (16, 32, 64, 128).
They are interleaved with FiLM layers (Perez et al., 2018)
that learn a transform for the extracted features based on
the viewpoint pose. The extracted feature representation is
then transformed in two feature vectors that represent the
mean and variance of the latent state s. In each considered
experiment this latent size is different. The decoder mirrors
this architecture with four convolution blocks, each convolution
block first applies a convolution that halves the amount of feature
maps, after which a convolution is applied which preserves
the amount of feature channels (128, 128, 64, 64, 32, 32).
Here, the FiLM layers are conditioned on the concatenated
latent code and query pose. Between every convolution block
in the decoder, the image is linearly upsampled. LeakyReLU
activations are used after every convolutional layer. The output
of the decoder is finally processed using a 1x1 convolution
that maps the 64 channels back to RGB channels. For the
specifics of the neural network, the reader is referred to
Supplementary Material.

This model is optimized end-to-end by minimizing the
free energy loss with respect to the model parameters,
as described in Equation (8) using Adam (Kingma and
Ba, 2015), a gradient-based optimizer. Additionally, we
use the constraint-based GECO algorithm (Rezende
and Viola, 2018) that balances the reconstruction and
regularization term by optimizing Lagrangian multipliers
using a min-max scheme.

3. RESULTS

Three experiments were designed to evaluate both our model
and the proposed active vision system. In a first experiment, we
consider a subset of the ShapeNet dataset (Chang et al., 2015) to
evaluate model performance. We conduct an ablation study on
different aggregation methods for the state encodings produced
by the generative model. We show that our model exhibits
performance similar to other aggregation strategies, while being
more resistant to the number of observations and better
leveraging the Bayesian character of the extracted distributions.
In a second experiment, we consider scenes consisting of a
3D coffee cup that potentially has a handle. We investigate the
learned approximate posterior distribution and its behavior when
observing different views. We analyze the behavior that emerges
in our artificial agent when driving viewpoints selection using the
epistemic term. In the final experiment, we consider a realistic
robotic workspace in CoppeliaSim (Rohmer et al., 2013). Scenes
are created with an arbitrary amount of random toy objects with
random colors. A task is designed in which the robot manipulator
must find and reach a target object. First, we investigate the
exploratory behavior when no preferred state is provided and
see that the agent explores the workspace. We then provide
the agent with a goal by specifying a preferred observation and
computing the full value ofG. We observe that the agent explores
the workspace until it has found and reached its target.

3.1. ShapeNet
In the first experiment we want to evaluate the proposed neural
network architecture on a subset of the ShapeNet dataset (Chang
et al., 2015). We focus on whether the neural architecture is
capable of learning to implicitly encode the three dimensional
structure of a scene from purely pixel-based observations by
minimization of the free energy loss function. Additionally,
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we want to validate our novel aggregation strategy which
uses a factorization of the approximate posterior to combine
the extracted representations for all observations. The novel
aggregation method ensures that the resulting distribution will
always be in the same order of magnitude, independently of the
number of observations, in contrast to the addition method from
the original work by Eslami et al. (2018).We expect to see that our
approach outperforms the GQN baseline when provided with a
large amount of observations.

To separate the influence of the overall network architecture
from the used aggregation method to combine extracted latent
distributions from all separate observations into a belief over
the state s, we perform an ablation study. Besides the proposed
approach, we also introduce three variants to combine latent
distributions, while using the same encoder-decoder architecture
with a latent size of 64 dimensions. We compare our approach
to the addition method from the original GQN paper (Eslami
et al., 2018), a mean operation (Garnelo et al., 2018), or a max-
pooling (Su et al., 2015) operation. As these ablations do not
propose a method to integrate the variance of the individual
reconstructions, the variance of the new observation is set to a
fixed value of 1 for every dimension. We also compare the results
with the original GQN architecture.

All models in this experiment are trained on the same data
using the free energy loss function from Equation (8). The
observations are RGB images with a resolution of 64 × 64.
The viewpoints are a 7-dimensional vector, that correspond to
the position in Euclidean coordinates and the orientation in
quaternion representation. Themodel is optimized end-to-end as
described in section 2.3.2. A batch size of 100 sequences per mini-
batch is used. Similar to the approach used by the GQN, between
3 and 10 observations are randomly provided during training to
enforce independence on the amount of observed data. These
models are then trained until convergence. The GQN baseline
is optimized using the traditional ELBO loss as described in the
original paper by Eslami et al. (2018).

Table 1 shows the average mean squared error (MSE) of novel
views generated for all objects in the test set for a varying number
of observations. We observe that our model outperforms the
others for 30 and 60 observations, whereas GQN has similar
performance on 10 observations. Also note that our model has an
order of magnitude fewer parameters than the GQNmodel. From
the ablation study, we can indeed note that the GQN suffers from
the addition aggregation method. Max-pooling seems to perform
better with more than ten observations, but has an overall higher
MSE compared to our approach. The same is true for the mean-
pool ablation, which improves as more observations are added.
This improvement can be attributed to the reduction of noise on
the representation vector by having more observations.

Examples of the reconstructions generated from the
aggregated latent space are shown in Figure 3. Clearly the GQN
achieves the best performance when operating in the trained
range, but when more observations are added the quality of
the decoded image decays rapidly and the object is no longer
recognizable. The same behavior can be noticed for the addition
ablation. Our model yields comparable reconstructions as the
GQN for 10 observations, but achieves to uphold this quality

TABLE 1 | Average MSE over all objects in the selected test set of ShapeNet

planes data.

Model # param MSE (10 obs) MSE (30 obs) MSE (60 obs)

GQN 49.5M 0.0143 ± 0.0110 0.0354 ± 0.0228 0.0438 ± 0.0275

Ours 3.6M 0.0151 ± 0.0138 0.0148 ± 0.0133 0.0147 ± 0.0133

Addition

ablation

3.6M 0.0169 ± 0.0122 0.1222 ± 0.1102 0.2409 ± 0.1599

Max-pool

ablation

3.6M 0.0175 ± 0.0112 0.0170 ± 0.0110 0.0176 ± 0.0101

Mean-pool

ablation

3.6M 0.0182 ± 0.0110 0.0175 ± 0.0103 0.0175 ± 0.0094

The bold value indicates the lowest MSE for every column.

level as well after 60 observations, and is even able to improve
its reconstruction. Both the max-pool and the mean-pool
ablation are less affected after 60 observations, but the overall
reconstructions are less detailed.

3.2. The Cup
In active inference, viewpoints are selected by minimizing the
agent’s expected free energy. It is essential that the predicted
distributions through our learned generative model are well-
behaved and thus are able to properly represent ambiguity
when it has no, or incomplete, information about the scene. In
this experiment, we evaluate the distributions produced by the
learned generative model and analyze whether they are able to
capture the ambiguity provided by the scene. We expect to see
dubiety in both the reconstructed imagined views of the cup,
as well as in the variance of the produced distributions. We
also investigate the behavior that emerges when viewpoints are
selected by minimizing the epistemic term of the expected free
energy and expect exploratory behavior to surface.

We consider simple scenes that consist of a 3D model of a
coffee cup that can vary in size and orientation. It can potentially
be equipped with a handle. For each created scene, 50 views of
64 × 64 pixels are randomly sampled from viewpoints around
the object. A dataset of 2,000 different scenes containing a cup
were created in Blender (Blender Online Community, 2018),
of which half are equipped with a handle. One thousand eight
hundred of these scenes were used to train the generative model.
The parameters of the neural network are optimized in advance
using this prerecorded dataset byminimizing the free energy over
the acquired observations as explained in section 2.3. For each
scene, between 3 and 5 images are provided to the model during
training. The model for this experiment is the same as described
in section 2.3, but with a latent dimension size of 9. The following
experiments were conducted on scenes of cups in the validation
set that were not seen during training.

To evaluate whether the generative model is able to capture
the ambiguity of a cup when not all information is gathered
through observations yet, we consider two nearly identical cups,
both positioned in the same orientation and scaled with the
same factor. The only difference between these cups is that one
has a handle, while the other one does not. We provide our
learned model with a single observation that does not resolve the
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FIGURE 3 | Evolution of imagined observations for different models on an unseen ShapeNet example when 10, 30, or 60 observations are provided. Our Observer

model maintains a good reconstruction quality even if more observations are considered than during training.

FIGURE 4 | Generated observations are shown in this figure. (A) An ambiguous observation is provided to the generative model, and this is reflected in ambiguous

reconstructions after observing the cup from the other side. (B) The model is provided with an additional unambiguous observation of a handle. (C) The model is

provided with an additional observation of the cup from the other side which does not contain a handle.

ambiguity about the location and does not reveal the presence of
a handle. We now use the likelihood model over the observation
ok+1 to generate the expected observation, which is shown in
Figure 4A. When looking at these generated cups, it shows both
cups with and without handle, with the handle at a random
position. This can be attributed to the fact that the orientation of
the cup is not known, and the model therefore does not know at
what position to draw a handle. This ambiguity is also reflected
in the high variance shown in the extracted latent distribution
(Figure 5A).

When a new observation from a different viewpoint around
the cup is added to the model, the ambiguity can be noticed
to clearly drop. Figure 4B shows the reconstructed cups in
case the handle is observed. These reconstructions are sharp
and draw the handle consistently at the same position. This
consistency is also reflected by the lower variance of its latent
distribution shown in Figure 5B. The same observation without
a handle was provided as a second observation for the cup
without a handle. The generated cups of this scene are shown
in Figure 4C. In Figure 5C, a lower variance compared to the
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FIGURE 5 | This figure is a representation of the distributions over the approximate posterior with a latent state of nine dimensions. As the approximate posterior is

represented by a multivariate Gaussian distribution with a diagonal covariance matrix, each dimension can be considered independently. (A) The distribution after an

ambiguous observation is represented. (B) The approximate distribution for an unambiguous observations of a handle is represented. The variance is on average 9.08

times lower in each dimension than prior to observation in (A). (C) The same unambiguous observations without a handle is provided. In this case, the variance is on

average 2.83 times smaller in each dimension than in (A).

FIGURE 6 | The epistemic values are shown for all potential viewpoints. This value is computed as the KL divergence between the belief over latent state s with the

observations marked by a red observer and the expected posterior belief when choosing the next viewpoint vi+1. The epistemic values are normalized by the softmax

operation with a temperature of 1, as described in section 2. The red color marks the observation viewpoint that has been observed. The color of the camera

represents the likelihood that this viewpoint is selected next. (A–C) shown for three scenarios with a different initial viewpoint in (A) through (C).

one shown in Figure 5A can again be noticed. We thus conclude
that optimizing the generative model through a minimization of
expected free energy results in well-behaved latent distributions.

Additionally, we want to evaluate whether using the expected
free energy as a viewpoint selection policy is a valid approach
for active vision. We hypothesize that if the agent observes the
cup from one viewpoint, it will prefer policies that move the
agent to observe the cup from the other side, to gain as much
information as possible in the least amount of observations. The
potential viewpoints are uniformly spaced in a circle around the
cup at a fixed height, and with an orientation toward the cup.
Figure 6 shows the probability distribution over the potential
viewpoints P(vi+1) for three different initial observations. It is
clear that in general, the agent will choose a viewpoint far away
from the current observation to maximize the information gain
with respect to the cup.

3.3. Robot Manipulator
In the final experiment, a robotic environment in
CoppeliaSim (Rohmer et al., 2013) is considered. The workspace
is equipped with a robot manipulator on a fixed table, which
has an RGB camera mounted to its gripper. Some toy objects

are placed on the table within reach of the manipulator. These
objects are randomly chosen and can take the shape of a cube,
a sphere, a cylinder or a bar that could either be standing
up or laying down. These objects have a Lambertian surface
with a uniform color. An example of such a scene is shown in
Figure 7. The agent is able to manipulate the extrinsic camera
parameters through robotic actuation of the gripper. It can then
observe different areas of the workspace. Similar to the previous
experiment, we first learn the neural network parameters from a
prerecorded dataset, which is then used in the proposed active
vision scheme for viewpoint selection. The model architecture is
identical to the one in the previous experiments, but with 256
latent state space dimensions.

In order to learn the model parameters, a prerecorded
dataset was created using the same environment in CoppeliaSim.
Up to five randomly selected toy objects are spawned in the
workspace. The orientation and position of the objects within
the workspace are determined randomly by sampling from a
uniform distribution. A dataset of 8,000 such scenes is created,
in which the robot end-effector is moved along a trajectory that
covers the entire workspace at different heights. We constrain the
end-effector to look in a downwards orientation. This facilitates
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FIGURE 7 | An example scene of the robotic workspace in CoppeliaSim.

Three random objects are spawned at arbitrary positions and rotations. This

scene is used for the experiments in section 3.3.

the training process and does not limit performance on this
use case, as the robot is still able to observe all objects placed
on the workspace from a top view. During training, these
observations are shuffled randomly, and a subset between 3 and
10 observations are selected and used as model inputs.

We design two cases for the active vision experiments in
the robotic workspace. In the first case, we put an additional
constraint on the height of the agent and only allow the agent
to move in the x and y direction of the workspace, i.e. parallel
with the table. We choose this to limit the potential viewpoints
of the agent to observe the epistemic and instrumental behavior
in more detail, with respect to the imagined views. In the second
case, we allow the agent to also move along the z-axis. We can
now evaluate the global behavior of the agent and observe that
when it explores a new area, it will first prefer viewpoints from
higher vantage points in which it can observe a large piece of
the workspace, after which it will move down to acquire more
detailed observations.

3.3.1. Active Vision With 2 Degrees of Freedom

This experiment considers the case where the artificial agent is
limited to 2 degrees of freedom. We limit the degrees of freedom
to make the analysis of the behavior more interpretable. The
results of this experiment are shown in Figure 8.

Even though the generative model is capable of inferring
the state and generating an imagined view for any viewpoint
in a continuous space of the robotic working area, it would be
computationally expensive to compute the expected free energy
for all potential viewpoints. Instead, we sample a uniform grid
of potential future viewpoints over the robotic workspace, and
evaluate the expected epistemic value for these samples using the
method described in section 2.

First, only the epistemic value is considered. We look at the
behavior for an active vision agent for the scene visualized in
Figure 7. For results on additional scenes, the reader is referred to
Supplementary Material. The agent starts in an initial position
in which it can not observe any of the objects that are lying on
the table. Its current observation is shown in the first image of
Figure 8C. The agent imagines the entire workspace to be empty
without objects, this can be seen in the imagined observations

for the potential viewpoints, shown in Figure 8B. The epistemic
value is computed for all potential viewpoints, and is shown
in Figure 8A. The largest epistemic values are located in the
center of the table, as the agent believes that observations from
these locations will allow it to learn more. After moving to the
viewpoint with the highest epistemic value, the agent observes the
yellow cube and the red ball. The generative model is then able
to reconstruct these objects correctly at the potential viewpoints,
which can be observed in the second plot of Figure 8B. We
notice, that after observing these objects, the agent still prefers
to look at these positions for a number of steps. The internal
model of the environment is still being updated, which we can
see in the sharper reconstructions in the first and second row of
Figure 8. This can be attributed to the aggregation strategy for
the approximate posterior. A single observation of the objects
will not transform the distribution entirely, but a weighted mean
and variance is computed. This results in a slower process for
updating the state distribution, and it can result in the agent
trying to observe the same area for a number of steps. Similar
to the experiment in section 3.1, the observations can be seen to
improve as the latent distribution improves. After a few steps, this
distribution converges to a fixed value as can also be noted by the
decreasing epistemic values shown in Figure 8A. Additionally, as
the agent imagines no new objects at the other viewpoints, it does
not believe they will influence its belief over s. After the agent has
refined its internal model, in step 7, the viewpoints it has not yet
observed result in a higher epistemic value, after which the agent
moves to this location. It finally observes the blue cube in the top
which is then also reconstructed in the imagined views.

In a second experiment, we evaluate the behavior that
emerges when the full expected free energy is used to drive
viewpoint selection. Both the epistemic and instrumental values
are computed and used to acquire the expected free energy for
every potential viewpoint. The instrumental value is computed
as the log likelihood of the expected observation under a
desired goal prior distribution. We choose the distribution of
this preferred observation as a multivariate Gaussian in which
each pixel is an independent Gaussian with as mean value
the target goal observation and a fixed variance of 0.65. We
empirically determined this value for the goal variance which
yields a good trade-off between the epistemic and instrumental
behavior. In this case we use an observation of the blue cube as
goal observation, namely the final observation from the epistemic
exploration, and shown in Figure 8C. Please note that any
observation could be used as a goal.

When we look at the behavior that emerges in Figure 9, we
notice that initially the agent has no idea where it can observe
it’s preferred observation. This can be observed by the uniform
instrumental value shown in Figure 9B at step 0. The epistemic
value takes the upper hand, and the chosen viewpoint is again
in the center of the table, similar as in the case when only
the epistemic value was considered. At this new viewpoint, the
agent observes the yellow cube and the red ball. Notice how
the instrumental value becomes lower at these viewpoints in
Figure 9B. The agent realizes that these viewpoints will not aid in
the task to reach the blue object. However, as the epistemic value
at this time step is larger than the range of the instrumental value
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FIGURE 8 | A sequence of steps performed by an artificial agent driven through minimization of the epistemic term from the expected free energy.

Information-seeking behavior can be observed. (A) A representation of the epistemic value for different potential future viewpoints in different steps of the sequence.

The legend is provided on the right, darker values mean higher epistemic values, and are thus more likely to be chosen by the agent. (B) The imagined observations

for the potential viewpoints at different steps in a sequence executed by an agent driven according to the active inference paradigm. (C) The last observation the

agent has acquired from the previous step. The black squares in the bottom of each frame are the gripper handles.

at this viewpoint, they contradict each other and the epistemic
value is still dominant. Please note that while the absolute value
of the instrumental term is much higher than the epistemic term,
these are relative to each other. The range of the instrumental
term is in the same range as the epistemic value. After observing
a few observations, the instrumental term finally takes the upper
hand and the agent is driven away to further explore the area.
It finally finds the blue cube in the top right in the 7th step. As
the instrumental value is very high for this observation, it now
takes the upper hand and the agent will naturally remain at this
location. Notice how the agent has found the object in less steps
than when it was only driven through epistemic value. Because
the agent now prefers to search and reach its goal observation,
it will avoid getting stuck at a specific location as long as this is
not the preferred observation. It is therefore better at finding the
target to reach, however it will not necessarily explore the entire
workspace, as it would when only considering the epistemic term
given enough steps. It is important to note that the instrumental
value to the right of the target value is low in magnitude. The
model believes it is unlikely that it will find the target observation
here. This can be attributed to the pixel-wise log likelihood that
is computed, even though the object is in view, because it is at
different pixel locations, this will be a less likely observation than
an area of the table that does not contain objects. To combat this
characteristic, we sample the grid of potential viewpoints with a
lot of overlap between the neighboring views.

3.3.2. Extending to Three Degrees of Freedom

Finally, we no longer constrain the movement along the z-axis
for the robot manipulator. The orientation is still in a fixed
downwards position. We still consider the same scene as in the
previous experiments and start the robot gripper in the same
initial position without any observations. We evaluate whether
this third degree of freedom improves the speed at which the area
can be uncovered, and whether the chosen actions matches the
biological behavior encountered in for example an owl. The owl

will fly to a high vantage point to search for its prey, and move
down when it has localized it (Friston et al., 2016).

We task the robot to find the blue cube from the final
observation in Figure 8 again. The different achieved robot poses
and their corresponding observations are shown in Figure 10.
In the executed trajectory, we notice that the owl-like behavior
emerges through the minimization of expected free energy.
Initially, the agent has no knowledge about the workspace and
moves its gripper and corresponding camera toward a higher
vantage point from which it can observe the workspace. Initially,
the agent only observes a red and a yellow object, after which it
moves closer to inspect these objects. It has updated its internal
model by observing the object from up close, and it is clear
through the instrumental value that the desired observation is
not at this location. In a similar manner as explained in the
experiment with two degrees of freedom, the agent again moves
to a higher vantage point, but more to the center of the table. It is
now able to observe both the blue cuboid and the edges of the red
and yellow objects. It has localized the target and moves toward
its preferred state. The agent does not move in the subsequent
steps, showing that it has reached the point that provides it with
the lowest expected free energy. We also notice that the agent
has found the object faster than in the previous experiment. The
additional degree of freedom is immediately exploited by the free
energy principle. For the acquired results on additional scenes,
the reader is referred to Supplementary Material.

4. DISCUSSION

In the above experiments, we have shown that it is possible
to use the active inference paradigm as a natural solution for
active vision on complex tasks in which the distribution over
the environment is not defined upfront. Similar to prior work
on learning state space models for active inference (Çatal et al.,
2020), we learn our generative model directly from data.
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FIGURE 9 | This figure represents a sequence of movement when driving viewpoint selection through minimization of the expected free energy. The agent is now

equipped with a preferred state. As a preferred state, we set the final observation from the epistemic exploration shown in Figure 8C, but in principle, any observation

could be used. (A) A representation of the epistemic value for different potential future viewpoints in different steps of the sequence. The legend is provided on the

right, darker values mean higher epistemic values, and are thus more likely to be chosen by the agent. (B) A representation of the instrumental value for different

potential future viewpoints in different steps of a sequence. The legend is provided on the right, darker values mean higher instrumental values and are thus more likely

to be chosen by the agent. (C) The chosen viewpoint at this step is shown by a black square. This is done by applying the softmax operation to the full expected free

energy. (D) The imagined observations for the potential viewpoints for different steps in a sequence executed by an active inference driven agent. (E) The last

observation the agent has acquired from the previous step. The black squares in the bottom of each frame are the gripper handles.

FIGURE 10 | The chosen trajectory for an artificial agent when viewpoints are chosen by the minimization of expected free energy. The preferred state is chosen

randomly as the final observation from the epistemic exploration shown in Figure 8C. (A) Shows the pose of the robot at each step. Step 1 represents the initial state.

(B) The corresponding observation from the gripper at that step.

We have observed that a sheer epistemic agent will explore
the environment by moving to different viewpoints in the world.
When we use the full expected free energy to drive viewpoint
selection, we observe that epistemic foraging behavior emerges,
and the agent will explore the environment with random saccades

and will move toward a higher vantage point to observe a larger
area at one time, similar to the behavior of an owl scavenging
for prey.

For robots to solve complex tasks, one of the first steps is to
perceive the world and understand the current situation. This
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work shows that the learned generative model is capable of being
used in a neurologically inspired solution for perception of the
world. As this theoretical framework of active inference is already
equipped to deal with actions that perturb the world, this solution
can be extended with a more complex generative model that
is able to estimate the changes the agent, or other autonomous
beings can make in the world.

While our approach allows to learn the generative model
purely from pixel data, this also has a couple of drawbacks.
In our case for instance, the model is trained using a large
amount of data in a simulation environment with a restricted
number of object shapes and colors. To be applicable for real-
world scenarios, probably an even larger model and dataset
are required. Also, it is clear that the reconstructions are not
sharp, and blurry objects are reconstructed. This is typical for
a variational auto-encoder, and while many approaches exist to
create sharper reconstructions (Makhzani et al., 2015; Heljakka
et al., 2018, 2020; Huang et al., 2018), we argue that this is not
necessary for our case. As long as the generated observations
are spatially correlated and the object properties such as size
and color are correctly reconstructed, the generative model will
be capable of working within the active inference framework.
This can be compared to someone trying to remember the fine
details of a recently visited building. A person is able to draw
the general structure of the building, but will find difficulty to
draw each stone correctly with the correct shade. However, this is
not necessary to find the door and navigate through the building.
Nevertheless, by using the mean squared error in pixel space to
train the likelihood model, small-sized objects will generate a
small gradient signal, and will be difficult for themodel to encode.
To mitigate this, one could look at different loss functions, for
example perceptual loss (Johnson et al., 2016) or contrastive
loss (Hadsell et al., 2006).

Our approach evaluates the expected free energy for a
number of considered potential viewpoints. The computational
complexity of this algorithm scales linearly with the number of
considered viewpoints. However, given enough GPU memory,
this algorithm can easily be modified to compute the expected
free energy for all potential viewpoints in parallel, making it
an algorithm with constant time complexity. Provided that the
neural network can be run on a GPU, it can be used for real-time
control of physical robot manipulators.

In future work, we want to investigate more efficient methods
for evaluating the free energy and planning in a complex state
space. In this case, it was feasible to evaluate the expected
free energy for each viewpoint as we sampled a limited grid
of future viewpoints and only looked at one step in the
future. The amount of expected free energy values to compute
would increase exponentially, as more time steps ahead are
considered. Additionally, in future work we would like to add
object interaction, i.e., allowing the robot to move objects in
a specific desired configuration. Moreover, this approach will
be increasingly important in collaboratory settings. The robotic
agent can encounter occlusions and limited field of view for
multiple reasons such as other humans obstructing objects or
placing things in front of the target object. It is in these situations
essential to be able to reason about the scene and choosing

the optimal next viewpoint. In follow-up work, the actions of
human collaborators can be modeled through their own free
energy minimization scheme and can be integrated in the active
inference framework to select the next best view. Finally, the goal
is to evaluate this method on a real-life robot.

Related Work
The related work falls in two categories, i.e., scene representation
learning and related work in the area of active vision. There is a
lot of research that considers the problem of scene representation
learning and proposes different neural network architectures to
aid the process of learning proper representation models of our
neural network architecture. In the second part we consider the
domain in active vision, this is an active research domain in
traditional computer vision problems, but has also been applied
to many reinforcement learning tasks.

Scene representation learning is a research field in which
the goal is to learn a good representation of the environment.
A vast amount of work exists that considers representation
learning for separate objects. Multi-View CNN (MVCNN) uses
views from multiple viewpoints to learn a representation for
classification and segmentation (Su et al., 2015). DeepVoxels uses
a geometric representation of the object, in which each voxel has
a separate feature vector, which is then rendered through a neural
renderer (Sitzmann et al., 2019a). In their follow-up work on
Scene Representation Networks, this was extend to replace the
voxelized representation by a neural network, estimated through
a hypernetwork, that predicts a feature vector for any point in
3D space. These features are then rendered through a neural
renderer (Sitzmann et al., 2019b).

Object-centric models have also gained a lot of attention
lately. These models stem from the seminal work on Attend
Infer Repeat (Eslami et al., 2016) in which a distinct latent code,
which separately encodes the position and the type of object,
is predicted per object in the scene. This is done through a
recurrent neural network that is capable of estimating when all
objects are found. In SQ-AIR, this work is extended to sequences
of images, and a discovery and propagation mechanism was
introduced to track objects through different frames (Kosiorek
et al., 2018). These have been extended to better handle physical
interactions (Kossen et al., 2020) or be more scalable (Crawford
and Pineau, 2020; Jiang et al., 2020). These extensions have
also been combined by Lin et al. (2020). 3D-RelNet is also an
object-centric model that predicts a pose for each object and
their relation to the other objects in the scene (Kulkarni et al.,
2019). While these approaches seem promising, in their current
implementation they only consider video data from a fixed
camera viewpoint. These models do not lend themselves to an
active vision system.

Implicit representation models learn the three dimensional
properties of the world directly from observations with no
intermediate representation. A single neural network is then
created for each scene. Neural Radiance Fields (NeRF) learn to
infer the color values for each three dimensional point through
a differentiable ray tracer from a set of observations (Mildenhall
et al., 2020). The follow-up work by Park et al. (2020) adapts the
algorithm for a more robust optimization and the work by Xian
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et al. (2020) extends this to deal with video sequences. SIRENs
also belong to this category, however, this network is optimized
directly from the three dimensional point cloud (Sitzmann
et al., 2020). While these works often result in very sharp
reconstructions with a large amount of detail present in the
scenes, they are difficult to optimize due to the large training
times and do not allow for new observations to be added on
the fly.

The last category of methods encodes the scene in a latent
vector that describes the scene in a black box approach. The latent
vector does not enforce geometric constraints. The Generative
Query Network does this by encoding all observations separately
into a latent vector, which is then summed to acquire a global
representation of the scene (Eslami et al., 2018). This latent
vector can be sampled and decoded through an autoregressive
decoder (Gregor et al., 2015), which is then optimized in an
end-to-end fashion. This work considers full scenes in which
the observer can navigate. This has also been extended with
an attention mechanism to separately encode parts of each
observation, in order to better capture the information (Burgess
et al., 2019). Our model most resembles this GQN architecture,
as this is a straightforward implementation that allows for
arbitrary viewpoints and which could easily be extended with our
Bayesian aggregation strategy. Other approaches result in sharper
reconstructions, however they either optimize a neural network
per scene, work with a fixed observer viewpoint, or only consider
separate objects.

Active vision systems are called active since they can change
the camera extrinsic parameters to improve the quality of
the perception (Aloimonos et al., 1988). In most active vision
research, the next best viewpoints are selected to improve the
amount of observations need to scan an area, for exploration and
mapping or for reconstruction of the world.

Most traditional methods use a frontier-based approach to
select the next viewpoint (Yamauchi, 1997; Chen et al., 2011;
Fraundorfer et al., 2012; Forster et al., 2014; Kriegel et al., 2015;
Hepp et al., 2018). The frontier is defined as the boundary
between the observed area and the unobserved area, and thus
these models require an explicit geometric representation of the
world. Typically these methods use a discretized map of the
world, an occupancy grid in 2D (Yamauchi, 1997) or a voxelized
rasterization in 3D (Fraundorfer et al., 2012). The points on
the frontier are then evaluated through a utility function that
scores the amount of information that will be gained. These
utility functions are often hand-crafted and uncertainty or
reconstruction based (Wenhardt et al., 2007; Dunn and Frahm,
2009; Forster et al., 2014; Kriegel et al., 2015; Isler et al., 2016;
Delmerico et al., 2018; Hepp et al., 2018).

With the rise of deep learning, active vision problems has also
been tackled through learning-based approaches. The problem
has been cast as a set covering optimization problem in which
a reinforcement learning agent has to select the least amount
of views to observe the area (Devrim Kaba et al., 2017). This
approach assumes that the area is known in advance, and
that an agent can be trained on this. It does not allow for
unseen environments. Other deep learning techniques have
also been proposed. Hepp et al. (2018) learn a utility function

using a data-driven approach that predicts the amount of new
information gained from a given viewpoint. They learn this
directly using supervision with oracle data. Instead of learning
a utility function, deep neural networks that directly predict the
next-best viewpoint have also been researched (Doumanoglou
et al., 2016; Mendoza et al., 2020). These methods require a
ground-truth “best” view, for which a dataset is created using the
full scene or object information.

Biology has inspired work on active vision and perception
as well. An active vision system for robotic manipulators was
proposed that is inspired by the way primates deal with their
visual inputs (Ognibene and Baldassare, 2014). Rasouli et al.
(2019) propose a probabilistic bio-inspired attention-based visual
search system for mobile robotics. Similar to our work, active
inference has already been applied to different active vision
settings. Mirza et al. (2016) show that the free energy principle
can be used for visual foraging. They define a classification task,
where the agent must acquire visual cues to correctly classify the
scenario it is in. Follow-up work (Conor et al., 2020) considers a
hierarchical scene in which decisions are made at multiple levels.
Fovea-based attention to improve perception and recognition
on image data has been performed through the free energy
principle (Daucé, 2018). While these approaches show promising
results, they all consider designed scenarios for which the state
space can be carefully crafted in advance.

Our approach closely connects to traditional active vision
systems in which a utility function is evaluated. The expected
free energy formulation is used as a utility function in our
work. However, in contrast to these traditional approaches,
we use a deep neural network to encode the representation
of the environment instead of using geometric representations
or hand-crafting the distributions that are acquired. While
active vision techniques that use neural networks typically use
these models to predict the next best viewpoint directly, or
predict a learned utility function. We reason that the expected
free energy is a natural solution to this problem, as this
is the utility function that determine the actions of living
organisms (Friston, 2013). We use our neural networks to
imagine future states, belief about the environment and, similar
to the work Finn and Levine (2017), use these to plan the
agent’s actions.

5. CONCLUSION

In this paper we investigated whether the active inference
paradigm could be used for a robotic searching and reaching
task. As it is impossible for real-world scenarios to define
the generative model upfront, we investigated the ability to
use a learned generative model to this end. We showed
that we were able to approximate a generative model using
deep neural networks and that this can be learned directly
from pixel observations by means free energy minimization.
To this end we expanded the Generative Query Network
by aggregating the latent distributions from each observation
through a Gaussian multiplication. We conducted an ablation
study and showed that this model had similar performance
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as other aggregation methods when operating in the training
range, and that the model outperformed other techniques when
multiple observations were considered. In a second experiment
we evaluated whether this model was capable of inferring
information about a cup, namely its orientation and whether
or not it has a handle. We showed that the agent actively
samples the world from viewpoints that allow itself to reduce
the uncertainty on its belief state distributions. In the third
case, we show that an artificial agent with a robotic manipulator
explores the environment until it has observed all objects in
the workspace. We showed that if the viewpoints are chosen
by minimization of the expected free energy when provided
with a target goal, the agent explores the area in a biologically-
inspired manner and navigates toward the goal viewpoint
once it has acquired enough information to determine this
specific viewpoint.
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APPENDIX

TABLE A1 | Neural network architecture.

Layer Neurons/filters

Convolutional (1 × 1) 64

Convolutional (3 × 3) 16

LeakyReLU

FiLM (conditioned on vk ) 16

Convolutional (3 × 3) 32

Posterior (φ) LeakyReLU

FiLM (conditioned on vk ) 32

Convolutional (3 × 3) 64

LeakyReLU

FiLM (conditioned on vk ) 64

Convolutional (3 × 3) 128

LeakyReLU

FiLM (conditioned on vk ) 128

Linear 2 × latent size

The posterior model describes the encoder used in the neural network. The latent size

varies from experiment to experiment. In the ShapeNet experiment, the latent size is 64,

in the experiment of the cup, the latent size is 9. In the final case, for the robotic workspace,

the latent size is 256. In the posterior model, each 3 × 3 convolution uses a stride of 2 to

reduce the spatial resolution of the data. The 1 × 1 convolutions use a stride of 1.

TABLE A2 | Neural network architecture of the likelihood model.

Layer Neurons/filters

Linear 4 × 4 × 3

LeakyReLU

Convolutional (3 × 3) 128

LeakyReLU

Convolutional (3 × 3) 128

LeakyReLU

FiLM (conditioned on vk and s) 128

Convolutional (3 × 3) 64

LeakyReLU

Convolutional (3 × 3) 64

LeakyReLU

Likelihood (ψ ) FiLM (conditioned on vk and s) 64

Convolutional (3 × 3) 32

LeakyReLU

Convolutional (3 × 3) 32

LeakyReLU

FiLM (conditioned on vk and s) 32

Convolutional (3 × 3) 16

LeakyReLU

Convolutional (3 × 3) 16

LeakyReLU

FiLM (conditioned on vk and s) 16

Convolutional (1 × 1) 3

This model estimates the pixel values of a potential viewpoint. Each 3 × 3 convolution

is preceded by a linearly upsample step that doubles the image resolution. The 1 × 1

convolutions use a stride of 1.
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