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Background: Surface electromyography (sEMG) based robot-assisted rehabilitation

systems have been adopted for chronic stroke survivors to regain upper limb

motor function. However, the evaluation of rehabilitation effects during robot-assisted

intervention relies on traditional manual assessments. This study aimed to develop a

novel sEMG data-driven model for automated assessment.

Method: A data-driven model based on a three-layer backpropagation neural network

(BPNN) was constructed to map sEMG data to two widely used clinical scales, i.e., the

Fugl–Meyer Assessment (FMA) and the Modified Ashworth Scale (MAS). Twenty-nine

stroke participants were recruited in a 20-session sEMG-driven robot-assisted upper

limb rehabilitation, which consisted of hand reaching and withdrawing tasks. The sEMG

signals from four muscles in the paretic upper limbs, i.e., biceps brachii (BIC), triceps

brachii (TRI), flexor digitorum (FD), and extensor digitorum (ED), were recorded before and

after the intervention. Meanwhile, the corresponding clinical scales of FMA andMASwere

measured manually by a blinded assessor. The sEMG features including Mean Absolute

Value (MAV), Zero Crossing (ZC), Slope Sign Change (SSC), Root Mean Square (RMS),

and Wavelength (WL) were adopted as the inputs to the data-driven model. The mapped

clinical scores from the data-driven model were compared with the manual scores by

Pearson correlation.

Results: The BPNN, with 15 nodes in the hidden layer and sEMG features, i.e., MAV,

ZC, SSC, and RMS, as the inputs to the model, was established to achieve the best

mapping performance with significant correlations (r > 0.9, P < 0.001), according to

the FMA. Significant correlations were also obtained between the mapped and manual

FMA subscores, i.e., FMA-wrist/hand and FMA-shoulder/elbow, before and after the

intervention (r > 0.9, P < 0.001). Significant correlations (P < 0.001) between the

mapped and manual scores of MASs were achieved, with the correlation coefficients

r = 0.91 at the fingers, 0.88 at the wrist, and 0.91 at the elbow after the intervention.

Conclusion: An sEMG data-driven BPNN model was successfully developed. It

could evaluate upper limb motor functions in chronic stroke and have potential
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application in automated assessment in post-stroke rehabilitation, once validated with

large sample sizes.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT02117089.

Keywords: chronic stroke, clinical assessment, surface electromyography, data-driven model, upper limb

INTRODUCTION

Stroke is one of the leading causes of upper limb disability
and affects about 15 million individuals worldwide annually
(Langhorne et al., 2011). Around 65 percent of survivors with
chronic stroke, i.e., 6 months after the onset of a stroke,
are not able to use their affected hands for daily tasks
(Dobkin, 2005). Repetitive voluntary, high-intensity practice
with the paretic upper limb could accelerate the recovery of
motor function after stroke (Harris and Eng, 2010). However,
conventional rehabilitation services are usually “one-to-one”

manual operations, which are not able to cope with the rapidly
growing chronic stroke population (Woo et al., 2008).

Robot-assisted rehabilitation systems could reduce the
manpower requirement for professional therapists by providing
repetitive and intensive training and services for the growing

stroke population in the long term (Norouzi-Gheidari et al.,
2012). Many robotic systems for upper limb rehabilitation have
been developed and proven feasible and effective for restoring
upper limb functions, e.g., HapticKnob (Lambercy et al., 2011),
Haptic Master (Timmermans et al., 2014), and Robotic hands
(Nam et al., 2017). Voluntary effort-based robot-assisted stroke
rehabilitation systems recruit the active movement from residual
neuromuscular pathways and lead to better motor recovery

and longer sustainability than passive robot-assisted systems
without voluntary efforts (Volpe et al., 2005; Hu et al., 2009b).
Surface electromyography (sEMG) can represent voluntary effort
with a resolution of individual muscular activities; thus, sEMG-
triggered control has been widely adopted in stroke rehabilitation
robots, to maximize the involvement of voluntary efforts during
post-stroke training (Hu et al., 2012; Basteris et al., 2014). In our
previous studies, a series of sEMG-driven robot-assisted systems
have been developed for chronic stroke rehabilitation, which
significantly improved motor recovery of the upper limb (Hu
et al., 2013; Nam et al., 2017).

To evaluate rehabilitation training effects, clinical assessments
must be performed before and after rehabilitation interventions.
For example, the Fugl–Meyer Assessment (FMA) (Fugl-Meyer
et al., 1975), the Motors Status Scale (MSS) (Aisen et al.,
1995), the Action Research Arm Test (ARAT) (Lyle, 1981), and
the Modified Ashworth Scale (MAS) (Ashworth, 1964) were
frequently used for activity or body function evaluation in
upper limb rehabilitation training (Wei et al., 2011). Among
them, FMA and MAS have been widely adopted as the clinical
assessments of motor functional improvement and muscular
spasticity changes (Coote et al., 2008; Hu et al., 2009a; Wei et al.,
2011). The clinical assessments are still the “golden standards”
for measuring the effects of stroke rehabilitation interventions
(Simbaña et al., 2019). However, most clinical assessments are

still manually conducted by therapists and rely heavily on
manual operations. Manual clinical assessments not only require
considerable manpower but are also time-consuming and costly.
An automated rehabilitation process based on a robotic system
also offers a feasible solution to the increased need for clinical
assessments to control the quality of rehabilitation. Taking
these factors into account, there is a demand for quantitative
assessments to evaluate the efficacy of long-term robot-assisted
rehabilitation for chronic stroke survivors.

Quantitative assessment using sEMG data emerged as a
novel approach to monitoring motor recovery. sEMG has been
widely used for investigating pathophysiology (Li et al., 2006),
monitoring neuromuscular progressive change (Hu et al., 2009a;
Li et al., 2014), estimating muscle force (Xu et al., 2018), and
detectingmuscle fatigue (Campanini et al., 2020). In our previous
studies, motor recovery during sEMG-driven robot-assisted
rehabilitation was evaluated according to the quantitative sEMG
parameters, i.e., the activation level and co-contraction index
(CI), which corresponded to muscle spasticity and co-activation
patterns, respectively (Hu et al., 2009a, 2012, 2013; Nam et al.,
2017; Qian et al., 2017; Huang et al., 2020). Another study
proposed the use of fuzzy approximate entropy to investigate
the complexity of sEMG signals to monitor the motor recovery
during the robot-assisted rehabilitation (Sun et al., 2013). These
studies indicated that sEMG data could be employed for
quantitative and automated assessment of rehabilitation effects
during sEMG-driven robot-assisted rehabilitation intervention
for chronic stroke survivors. However, these studies only
calculated the mathematical parameters from sEMG data to
assess motor recovery and did not map sEMG data to clinical
scales, which were largely confined to clinical applications for
therapists. Moreover, interpretation of sEMG data has been
identified as a technical barrier for both clinical professionals and
technologists to use sEMG in automated assessments (Merletti
et al., 2021).

Alternatively, automated assessments can reduce manpower
requirements, produce fast measures of motor recovery
automatically, assist in diagnosis, and enable customization of
therapies. One promising technique for automated assessment
is machine learning, which has been applied to determine the
relationship between biomarkers extracted from bioinformatics
data and the corresponding clinical scales (Otten et al., 2015;
Yu et al., 2016; Wang C. et al., 2020). In the previous studies,
multi-modality fusion systems were developed to combine
both kinematic data and muscular characteristic data, i.e.,
sEMG data, to quantitatively assess upper limb motor function
for post-stroke rehabilitation, and they revealed significant
correlations between the automated assessment results and the
standard clinical scores (Zhang et al., 2019; Wang C. et al., 2020).
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However, the results of the multi-modality fusion systems used
a modified outcome scale, which was different from FMA
scores and not accepted by clinicians without further clinical
validation (Simbaña et al., 2019). Furthermore, the kinematic
data-driven automated assessments required extra devices for
recording kinematic data in human movement, which were
complicated for therapists to operate (Otten et al., 2015; Yu
et al., 2016; Wang C. et al., 2020). As a result, they did not
save much manpower, cost, and time, compared to manual
assessments. Recently, a novel spasticity evaluation method has
been proposed to map sEMG data to the MAS with an adaptive
neuro fuzzy inference system, which achieved a high accuracy
between the regression results and manual MAS scores (Yu et al.,
2020). However, this automated assessment only focused on
the quantitative evaluation of spasticity without investigating
voluntary functional recovery, which was usually evaluated
by FMA in clinical assessments. In addition, this quantitative
spasticity evaluation approach required repetitive passive
stretches conducted by therapists to acquire sEMG data, which
meant that it was not suitable for automated assessment of motor
recovery. For mapping sEMG data to clinical scales, although
multiple linear regression model is explainable for multi-factor
regression analysis, backpropagation neural network (BPNN) is
more suitable for analyzing sEMG signals because of a higher
compatibility than the linear regression analysis when input data
have large varieties, e.g., normality, linearity, extremities, and
missing values (Uyanik and Güler, 2013). Moreover, the BPNN
has been found to outperform the multiple regression model
in the non-linear regression tasks (Tu, 1996). Specifically, the
BPNN has been employed to work out regression mapping issues
related to sEMG data, e.g., estimation of the joint angle (Aung
and Al-Jumaily, 2013; Yang et al., 2019) and sketching pattern
recognition (Yang and Chen, 2016). These studies indicated
that the BPNN had the potential to map sEMG data to clinical
scales. To the best of our knowledge, no research has investigated
the problem of mapping sEMG data to the clinical scales of
both FMA and MAS for automated assessment in sEMG-driven
robot-assisted rehabilitation.

In summary, the purpose of this study was to design a novel
sEMG data-driven model for mapping sEMG data to two widely
used clinical scales, i.e., FMA and MAS, during a robot-assisted
rehabilitation for chronic stroke survivors. The rest of the paper
is organized as follows. In Methodology, the framework and
configurations of the data-driven model are introduced. The
experimental results are described in results, and discussions are
presented in discussion. Finally, conclusion concludes the work.

METHODOLOGY

In this work, participants with chronic stroke were recruited
to receive a 20-session sEMG-driven robotic-hand-assisted
intervention in a neurorehabilitation laboratory at Hong Kong
Polytechnic University. Evaluations by sEMG and clinical
assessments were conducted before and after the intervention. A
data-drivenmodel was established by using the sEMG signals and

clinical scales as datasets to investigate the mapping relationship
between the sEMG signals and the clinical scales.

Subject Recruitment
After this work obtained ethical approval from the Human
Subjects Ethics Committee of Hong Kong Polytechnic University
(HSEARS20130306005-04 and CRE-2013.283-T), 29 hemiplegic
participants with chronic stroke were recruited from local
districts according to the following inclusion criteria: (1) ages
ranging from 18 to 78 years, (2) at least 6 months after the
diagnosis of a singular and unilateral brain lesion due to stroke,
(3) able to extend the metacarpophalangeal and interphalangeal
joints of the fingers to 170◦ passively, (4)MAS≤ 3 for spasticity at
the finger, wrist, and elbow joints during extension, (5) moderate
to severe motor impairments in the affected upper limb as
assessed by the FMA (15 < FMA < 45), (6) without cognition
impairments as assessed by the Mini-Mental State Examination
(MMSE) > 21 (Folstein et al., 1975), and (7) detectable voluntary
sEMG signals (three times of the standard deviations (SD)
above the sEMG baseline) from the target muscles of extensor
digitorum (ED), flexor digitorum (FD), biceps brachii (BIC)
and triceps brachii (TRI) on the affected side. The demographic
data of the participants are shown in Table 1. Written informed
consents had been signed by participants prior to the inclusion in
this study.

sEMG-Driven Robotic-Hand-Assisted
Intervention
The sEMG-driven robotic-hand system used in this study is
shown in Figure 1A. This robotic hand can provide mechanical
assistance to finger extension and flexion of the affected upper
limb for stroke survivors. sEMG-triggered control was used in
this study. The sEMG signals from the abductor pollicis brevis
(APB) and ED muscles were used as voluntary neural drivers
to initiate the robot assistance for phasic and sequential limb
tasks, i.e., hand closing and hand opening. Once the robotic
assistance was started, no muscular effort was required of the
user, i.e., sEMG-triggered mode. Three times of the SD above
the sEMG baseline during the resting state was preset as the
threshold level to trigger themechanical assistance.More detailed
information about the control mechanism can be found in our
previous studies (Hu et al., 2013; Nam et al., 2017; Huang et al.,
2020). All participants received the sEMG-driven robotic-hand-
assisted intervention, consisting of 20 intervention sessions at a
frequency of 3–5 sessions per week within 7 consecutive weeks.
During each intervention session, participants were required to
perform 30-min lateral and 30-min vertical arm reaching and
grasping tasks, with a 10-min interval between the two tasks to
avoid muscle fatigue, as described elsewhere (Nam et al., 2017).
All sEMG signals were captured by sEMG electrodes (Blue Sensor
N, Ambu Inc. with a contact size of 20 × 30mm) at a sampling
rate of 1000Hz (DAQ, 6218 NI DAQ card; National Instruments
Corp.) Then, they were amplified 1000-fold using a preamplifier
(INA 333; Texas Instruments Inc., Dallas, TX, USA) to calculate
the real-time sEMG levels of the driving muscles for triggering
the mechanical assistance of the robotic hand (Hu et al., 2013).
As shown in Figure 1A, sEMG electrode pairs (inter distance of
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TABLE 1 | Demographic characteristics of the participants with chronic stroke.

Participant no. Gender

(female/male)

Stroke type

(hemorrhagic/Ischemia)

Side of hemiparesis

(left/right)

Age (years)

mean±SD

Years after onset of stroke

mean ± SD

29 6/23 12/17 17/12 58.7 ± 8.3 7.1 ± 4.0

FIGURE 1 | The experimental setup and representative sEMG signals. (A) The sEMG-driven robotic hand system. (B) The setup for data acquisition during the vertical

bare hand evaluation task. (C) The representative raw sEMG trials for the four muscles of TRI, BIC, ED, and FD in a vertical bare hand evaluation task. Each movement

during the evaluation task was manually marked by the experiment operator.

20mm) were attached to the skin with the orientation parallel
to the muscle fibers, according to the configuration specified in
SENIAM guideline (Hermens et al., 1999).

Clinical Assessment
Each participant was clinically assessed with the FMA and
MAS, before and after the 20-session interventions, i.e., pre-
intervention and post-intervention sessions. FMA was treated
as the primary outcome and MAS was regarded as a secondary
outcome in this work, as practiced in the literatures (Krebs and
Volpe, 2013; Otten et al., 2015). The FMA was widely adopted
as the primary assessment measure in clinical trials of stroke
rehabilitation, because of its high responsiveness in capturing
levels of motor functional impairment in the upper limb (Fugl-
Meyer et al., 1975; Wei et al., 2011). The FMA upper limb
assessment had a total score of 66, which could be further divided
into shoulder/elbow scores (i.e., FMA-SE, 42/66) and wrist/hand
scores (i.e., FMA-WH, 24/66) (Krebs and Volpe, 2013) for
more detailed measures of distal and proximal paretic upper

extremity movement (Page et al., 2012). Meanwhile, MAS was
used as an assessment independent from the FMA, to measure
muscular spasticity related to involuntary muscle contraction
after stroke (Wei et al., 2011). MASs for the finger, wrist, and
elbow were measured in passive joint extension and flexion
manually by a professional clinically, grading at 0, 1, 1+, 2, 3,
and 4, where 1+ was numerically represented as 1.4 in this study,
as practiced previously (Wei et al., 2011; Qian et al., 2019). The
two clinical assessments were measured manually by a blinded
assessor without knowledge of the research purpose and details
of the study.

sEMG Assessments in Reaching Tasks
Besides the FMA and MAS clinical assessments, sEMG signals
in reaching tasks, i.e., the bare hand evaluation tasks of the
paretic upper limb, were captured as the objective assessment
before and after the 20-session intervention (Hu et al., 2013).
Four target muscles related to the bare hand evaluation task were
investigated, i.e., ED, FD, BIC, and TRI, which corresponded
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to finger extension, finger flexion, elbow flexion, and elbow
extension, respectively, during the reaching task. Compensatory
muscular activities among the four target muscles were expected
during the bare hand evaluation task for stroke survivors, since
proximal compensation is commonly observed in chronic stroke
(Levin et al., 2009; Bakhti et al., 2018; Qian et al., 2019). The
sEMG signals of the four muscles were used as the inputs to the
data-driven model through supervised machine learning, which
built the mapping relationship between the sEMG signals and
clinical scales.

In each sEMG assessment session, the participant was seated
in front of a table with a vertical distance of 30–40 cm
between the surface of the table and the participant’s shoulder
(Figure 1B). Then, the participant was instructed to perform a
bare hand evaluation task while voluntary muscle contraction
was monitored. In the real-time recording, an active bandpass
filter circuit was designed with the center frequency of 118Hz,
the high-pass cutoff frequency at 2Hz, and the low-pass cutoff
frequency at 7k Hz (Nam et al., 2017). sEMG signals were
collected from the target muscles (ED, FD, BIC, and TRI) of
the affected upper limb during the motion, with a sampling
frequency of 1000Hz (DAQ USB-6009), and the sampling
accuracy of the DAQ was 14 bits. In the evaluation task, each
participant was instructed to grasp a sponge, with a thickness of
5 cm and a weight of 30 g, place it at the midline of the lower
layer of a shelf, lift it through a vertical distance of 17 cm, and
put it on the midline of the upper layer of the shelf. Then, the
participant was required to release the sponge, grasp it again,
and put it back in the initial location. The bare hand evaluation
task was conducted at the natural speed of the participant and
was repeated three times with a 2-min break to avoid muscle
fatigue. The sEMG signal in a trial was recorded when the
participant began to grasp the sponge, i.e., once their fingers
touched the sponge, and was stopped when the participant
released the sponge at the initial point, i.e., all fingers left the
sponge, all while being monitored by an experimental operator.
Early studies showed that most people with chronic stroke could
grasp the sponge but could not release it because of muscle
spasticity (Hu et al., 2013). Thus, a maximum time limit of
10 s was set, i.e., participants were allowed to use the unaffected
hand to take off the sponge if their paretic hand could not
release it within 10 s. Pauses and repetitions during the evaluation
were allowed, particularly for the pre-intervention assessment,
since most of the participants had weakness and muscular
discoordination in the affected upper limb. The pauses in the
trials were marked by the operator during the recording, and
the sEMG episodes associated with the pauses were removed in
offline processing. Once the participant’s fingers left the sponge,
the operator marked the pause. When the participant grasped the
sponge again, the operator marked the end of pause. Figure 1C
shows the representative sEMG signals in the vertical bare hand
evaluation task.

Data Preparation
After the removal of the pauses in the evaluation, the average
duration of the sEMG trials was 30.92 s (±9.93 s, standard
deviation), with a minimum of 9.8 s and a maximum of 51.8 s.

The reason for the relatively large variation in the signal lengths
was that some participants (n = 9) took less time to perform
the evaluation task after receiving the intervention, while some
participants did not improve the speed of movements.

Before feeding the sEMG signals into the data-driven
model, the digitized sEMG signals were filtered by a 4th-order
Butterworth band-pass filter of 10–500Hz and a notch filter of
50Hz in offline processing (Matlab 2017b, MathWorks Inc.). The
sEMG signals were subjected to the investigation of the mapping
relationship with (1) the FMA subscores of the shoulder/elbow
(FMA-SE) and the wrist/hand (FMA-WH), and (2) MASs for
the elbow, wrist, and finger joints. For the mapping to MAS
scores, the sEMG signals were further low-pass filtered (4th-order
Butterworth filter) with different cutoff frequencies of 80, 150,
200, 300, 400, and 500Hz. This was done in order to evaluate the
mapping performance with an effective frequency domain, which
would capture the features mainly related to slow involuntary
contractures in a spastic muscle after stroke (Dromerick, 2002).

In the offline sEMG processing, a trial of sEMG was
segmented into epochs, with a length of 400ms overlapped by
200ms as in (Atzori and Müller, 2019), to achieve a balance
between the necessary sEMG information for analysis of the
myo-states and stationarity of the signal epochs. Each 400-
ms sEMG epoch was verified to be wide-sense stationary,
i.e., its mean and autocorrelation function were time-invariant
(Yates and Goodman, 1999). Subsequent feature extraction and
investigation of the mapping relationship between the sEMG
signals and clinical scales, i.e., FMA-WH, FMA-SE, and MASs
for the finger, wrist, and elbow, were based on the segmented
sEMG signals.

Then, eighty percent of the sEMG epochs in a trial were used
as the training data and the remaining 20% were adopted as
the testing data, according to the Pareto principle (Dobbin and
Simon, 2011; Ramesh et al., 2019). The sEMG epochs from the
same sEMG trial of a participant would be mapped to the clinical
scores collected from the participant in the related evaluation
session, i.e., either pre- or post-intervention. Five-fold cross
validation was used to ensure that each sEMG epoch in a trial
was fully utilized in the testing stage and the average of the
performance of the testing data over the 5 folds represented the
overall model performance (Mostafavi et al., 2015). The overall
flowchart of the sEMG signal preparation with the data-driven
model is shown in Figure 2A.

The sEMG Based Data-Driven Model
An sEMG based data-driven model was established based on
the BPNN according to the following steps: (1) sEMG feature
extraction, (2) setup of the BPNNmodel, (3) configuration of the
hidden layer, and (4) sEMG feature selection.

sEMG Feature Extraction
Abstracted features of sEMG signals in the time domain have
been adopted for the recognition of dynamic myo-activities (Tsai
et al., 2014; Nazmi et al., 2016). There were five widely adopted
features, i.e., root mean square (RMS), slope sign change (SSC),
mean absolute value (MAV), zero crossing (ZC), and wavelength
(WL) (Hudgins et al., 1993). MAV, RMS, and WL were related
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FIGURE 2 | (A) The procedure of sEMG signal processing. (B) The structure of the three-layer backpropagation neural network (BPNN) data-driven model.

mainly to the intensity of sEMG magnitude. The magnitude
of sEMG signals changed as muscle contraction levels vary in
real time (Tsai et al., 2014), and was commonly assumed to be
proportional to muscle force (Hof and Van Den Berg, 1981).
SSC and ZC mainly reflected the neuromuscular dynamics in the
frequency domain and were related to motor unit (MU) firing
properties (Nazmi et al., 2016; Wang K. L. et al., 2020). The
mathematical expressions for the features are described by the
following formulas, where x(t) is the time series in one epoch,
and T is the number of samples in one epoch (i.e., T= 400).

RMS mainly reflects the absolute magnitude of the signal,
given as:

RMS (x) =

√

1

T

∑T

t=1
x2(t). (1)

MAV is calculated by taking the average of the absolute value of
sEMG signals x(t), as follows:

MAV (x) =
1

T

∑T

t=1

∣

∣x(t)
∣

∣ . (2)

ZC is the number of times that the amplitude value of sEMG
signals crosses the zero axis, formulated as:







ZC (x) =
∑T−1

t=1 (sign (x (t + 1) × x (t)) ∩ |x (t) − x (t + 1) ≥ 0|)

sign (x) =

{

1, if x ≥ 0

0, else

(3)

SSC measures the number of times the sign changes in the slope
of the sEMG signals, as follows:







SSC (x) =
∑T−1

t=2 f ((x (t) − x (t − 1)) × (x (t) − x (t + 1)))

f (x) =

{

1, if x ≥ 0
0, else

(4)

WL is the cumulative measure of the length of the signal, given as:

WL =
1

T

∑T−1

t=1

∣

∣x (t + 1) − x(t)
∣

∣ . (5)

The five features extracted from the segmented sEMG signals of
the target muscles formed the input vectors to the BPNN whose
output would be the mapped scores.

Setup of the BPNN Model
A three-layer, i.e., one input layer, one hidden layer, and one
output layer, BPNN was established as the data-driven model
to investigate the mapping relationship between the extracted
sEMG features and the clinical scales (Figure 2B).

The essence of BPNN was to minimize the error of the
network outputs with the derivatives of the error function
(Hecht-Nielsen, 1992), where the weight factors were updated
by iterative backpropagation. In each iteration, the sEMG

input vectors were arranged for the network, i.e.,
⇀

Xk =
[

⇀

X ED, k,
⇀

X FD, k,
⇀

X BIC,k,
⇀

X TRI, k

]

, where k represented the

kth sEMG epoch from the four muscles, and
⇀

X m,k was the sEMG
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feature vector with the elements obtained from Equation 1–5 for
the muscle m. The projection for the mapping from the feature
vectors to the output clinical scales can be described by

f (x) = W �

⇀

Xk + b, (6)

whereW is the respective weight matrix and b is the bias vector of
the network.W and b were updated iteratively by the calculation
of the error function with the BP algorithm (Lecun et al., 1998).
In this work, the sigmoid function was used as the activation
function, and Bayesian regularization was employed to train the
network. The outputs, i.e., the mapped scores, of the BPNN are
continuous values with decimals, while the manual measurement
scores are integral numbers, because of the adopted sigmoid
function and gradient correction of the BP algorithm. The mean
value of the outputs for all sEMG epochs in the testing set from
a participant was regarded as a final mapped score. The accuracy
of the mapped results was assessed by the Pearson correlation of
the results with the manual clinical scales. The significance level
of the correlation was set at 0.05. The significance at levels 0.01
and 0.001 are also indicated.

Configuration of the Hidden Layer
In the configuration of the hidden layer structure, the correlation
strength between the mapped scores and the manual clinical
scales, as indicated by the Pearson correlation coefficient, r, were
evaluated with different numbers of neurons, or nodes in the
hidden layer according to the two-phase method (Karsoliya,
2012). A very strong correlation (Evans, 1996), i.e., r > 0.9,
with a concise number of hidden nodes was adopted in the
configuration. The input layer contained 20 nodes from the 4-
channel muscles (i.e., 5 parameters were extracted from sEMG
signals of each muscle channel). Then, the BPNN models with
10, 15, 20, 30, 40, 50, 100, 150, and 200 nodes in the hidden layer
were trained by the 80% sEMG epochs and the corresponding
FMA-WH and FMA-SE manual scores, both pre- and post-
intervention sessions. The models were fed with the remaining
20% sEMG epochs during the testing stage, whose outputs were
assessed for correlation performance with the manual scores in
the testing set. FMA was employed in the model configuration
because it was the primary outcome of the sEMG-driven robot-
assisted intervention in this work. Table 2 shows the correlation
coefficients, r, between the FMA scores and the mapped scores
obtained using the BPNN model with different numbers of
nodes in the hidden layer. A three-layer BPNN with 15 nodes
in the hidden layer was used in this study, yielding strong
correlations above 0.9 for both FMA-SE and FMA-WH (see
Table 2 for a detailed description in the Results section). Bayesian
regularization was employed in the training stage to avoid the
overfitting problem (Burden and Winkler, 2008), which could be
caused by the redundant hidden nodes.

sEMG Feature Selection
Then, based on the developed BPNN stated above, a selection
of optimal feature vectors was performed after the sEMG
feature extraction, with the purpose of reducing the dimensions
of the input to the BPNN model (Phinyomark et al., 2012).

TABLE 2 | The correlation coefficients, r, between the mapped and manual FMA

scores obtained by the BPNN model with different numbers of nodes in the

hidden layer.

Number of nodes in hidden layer r with FMA-SE r with FMA-WH

10 0.89*** 0.91***

15 0.90*** 0.93***

20 0.88*** 0.91***

30 0.86*** 0.89***

40 0.88*** 0.87***

50 0.89*** 0.86***

100 0.85*** 0.86***

150 0.84*** 0.85***

200 0.82*** 0.90***

Significance levels are indicated as * for P ≤ 0.05, ** for P ≤ 0.01, and ***for P ≤ 0.001.

The bold values are the highest correlation coefficients achieved.

The five features, i.e., MAV, RMS, WL, SSC, and ZC, were
divided into two groups. Group I included MAV, RMS, and
WL, which were related to the magnitude of the sEMG signals;
group II included ZC and SSC, which mainly reflected the MU
firing statistics. Different combinations of the features from
the respective two groups, i.e., at least one feature from each
group, were selected according to Table 3 as the input vectors
to the BPNN, to investigate the correlation between the mapped
scores and the manual FMA-WH and FMA-SE scores. The
combination, including both the time domain magnitude-related
and the MU-firing-related sEMG features, was to search for
a set of relatively complete neuromuscular features with low
redundancy. Bayesian regularization was employed to avoid the
overfitting problem (Burden and Winkler, 2008), in case of
the potential redundancy introduced by the reduction of input
nodes. The feature combination of MAV, SSC, RMS, and ZC was
selected, because this had the highest correlation coefficients with
both FMA-WH and FMA-SE, as shown in Table 3. A detailed
description of Table 3 is given in the Results section.

Performance Metrics
After the model configuration and feature selection, the mapping
performances of the data-driven model were evaluated for both
FMAs and MASs. The FMAs were further investigated with
the sub-data sets for the pre-intervention and post-intervention
sessions, respectively, since the sEMG patterns vary after the
robot-assisted rehabilitation, as demonstrated in our previous
clinical trials (Hu et al., 2013; Nam et al., 2017). It was possible
that the performances for the two sub-sets of the data could differ;
80% of the sEMG epochs in a sub-set of data were assigned to
the training set, and the rest were used as the testing set in the 5-
fold cross validation. Moreover, mismatched tests (Li and Huang,
2010) were also investigated, i.e., using the post-intervention data
sub-sets as the testing set for the BPNN trained by the pre-
intervention data sub-sets, to further evaluate the heterogeneity
between the two sub-sets of the data and the generalization of the
data-driven model (Xu et al., 2013). The mismatched test might
also have potential prognostic applications in the prediction of
post-intervention effects based on pre-intervention status. We
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TABLE 3 | The correlation coefficients, r, between the mapped and manual FMA scores obtained by different sEMG feature combinations.

Feature

combinations

r with FMA-SE r with FMA-WH Feature

combinations

r with FMA-SE r with FMA-WH

MAV 0.80*** 0.61*** MAV+WL+SSC 0.86*** 0.65**

ZC 0.78*** 0.82*** MAV+WL+ZC 0.79*** 0.88***

SSC 0.73*** 0.73*** RMS+WL+SSC 0.88*** 0.86***

RMS 0.71*** 0.59** RMS+WL+ZC 0.85*** 0.66***

WL 0.54** 0.60*** MAV+SSC+ZC 0.82*** 0.87***

MAV+SSC 0.84*** 0.81*** RMS+SSC+ZC 0.62*** 0.89***

MAV+ZC 0.84*** 0.79*** WL+SSC+ZC 0.88*** 0.76***

RMS+SSC 0.65*** 0.78*** RMS+WL+SSC+ZC 0.85*** 0.90***

RMS+ZC 0.83*** 0.84*** MAV+WL+SSC+ZC 0.91*** 0.89***

WL+SSC 0.81*** 0.84*** MAV+RMS+SSC+ZC 0.93*** 0.92***

WL+ZC 0.80*** 0.83*** MAV+RMS+WL+SSC 0.89*** 0.82***

MAV+RMS+SSC 0.77*** 0.74*** MAV+RMS+WL+ZC 0.89*** 0.88***

MAV+RMS+ZC 0.87*** 0.88*** MAV+ZC+SSC+RMS+WL 0.90*** 0.93***

Significance levels are indicated as * for P ≤ 0.05, ** for P ≤ 0.01, and *** for P ≤ 0.001.

The bold values are the highest correlation coefficients achieved.

further evaluated the internal generalization (Brewer and Crano,
2000) with different proportions (i.e., 50%, 60%, 70%, 80%, and
90%) of the sEMG epochs from the post-intervention session as
the training data, and then used the remained 50%, 40%, 30%,
20%, and 10% of the sEMG epochs as the respective testing data.
Five-fold cross validation was used to train the data-drivenmodel
(i.e., 16 input nodes and 15 hidden nodes).

Additionally, the mapping performances were evaluated using
sEMGs only from the proximal muscles, i.e., BIC and TRI, and
the sEMGs only from the distal muscles, i.e., ED and FD, for
the respective FMA-SE and FMA-WH. It was because that for
unimpaired persons, the FMA-SE was mainly related to the
function of the proximal muscles, e.g., BIC and TRI; while the
FMA-WH was commonly associated with the function of the
distal muscles, e.g., ED and FD (Fugl-Meyer et al., 1975; Qian
et al., 2019). The BPNNwas retrained when signals from only two
muscles were used, and the number of input nodes was eight for
the two sEMG channels. Bayesian regularization was employed
to avoid the overfitting problem (Burden and Winkler, 2008),
in case of the potential redundancy introduced by the reduction
of input.

The mapping performance of the data-driven model from
sEMG signals to the mapped MASs was first investigated by the
correlation with different low-pass cutoff frequencies, i.e., 80, 150,
200, 300, 400, and 500Hz, based on the MAS elbow scores for
both the pre- and post-intervention datasets. Then, the cutoff
frequencies that achieved the strongest correlation between the
mapped MAS and the manual score were selected for further
analysis of the mapping performances to the MAS elbow, wrist,
and finger scores, using the data for the respective pre- and
post-intervention sessions.

In our previous studies on robot-assisted upper limb
rehabilitation (Hu et al., 2013; Nam et al., 2017; Qian
et al., 2017; Huang et al., 2020), the sEMG parameters
during the bare hand evaluation could reveal rehabilitative

effects as observed in the clinical assessments, e.g., MAS
and FMA. The sEMG parameters, i.e., activation level and
CI, quantified the sEMG amplitude of a muscle and the
timing of contraction between related muscle pairs. To
compare the pre- and post-intervention sEMG patterns,
sEMG activation level and CI, between a pair of muscles
(Hu et al., 2009a), were further analyzed to quantify the
variations in the sEMG patterns before and after the robot-
assisted intervention.

The sEMG activation level for a muscle during the evaluation
task was calculated as follows [and as defined previously (Hu
et al., 2009a)]:

EMG =
1

T

∫ T

0
EMGi (t) dt, (7)

where EMG refers to the average sEMG envelope value of
muscle i. EMGi (t) is the sEMG envelope signal obtained
after normalization with respect to the maximal value
of the muscle in the session, and T is the length of the
signal trial. A decrease in the sEMG amplitude measured
by the activation level of a muscle after rehabilitation
could indicate the release of muscular spasticity (Hu et al.,
2009a).

The CI between a pair of muscles is expressed as follows:

CI =
1

T

∫ T

0
Aij (t) dt, (8)

where Aij(t) is the overlapping activity of sEMG linear envelopes
for muscles i and j, and T is the length of the signal. An increase
in the CI value represented increased co-contraction of a muscle
pair (broadened overlapping area), and a decrease in the CI value
indicated decreased co-contraction of a muscle pair (reduced
overlapping area), i.e., better co-ordination (Hu et al., 2009a).

Frontiers in Neurorobotics | www.frontiersin.org 8 July 2021 | Volume 15 | Article 648855

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Ye et al. sEMG Data-Driven Assessment After Stroke

The sEMG activation level and CI were adopted as secondary
outcomes in the work.

The normalized sEMG parameters (Nam et al., 2017) for
the pre- and post-intervention sessions were compared by the
paired t-test, after the normality tests on the sEMG samples
by the Shapiro–Wilk test, with a significance level of 0.05. All
sEMG parameters satisfied the normal distribution. The same
normality tests on the clinical scales for the pre- and post-
intervention sessions were also performed. The FMA-WH and
FMA-SE data followed normal distributions (P > 0.05), while
the MASs did not. The comparisons between pre- and post-
intervention sessions of the FMAs and MASs were evaluated by
the paired t-test and Wilcoxon test, respectively. The level of
statistical significance was set at 0.05, and significance levels at
0.01 and 0.001 were also indicated in the Results section.

RESULTS

Model Configuration and Feature Selection
Table 2 summarizes the significant correlation coefficients

between the manual FMA subscores and the mapped scores

obtained by BPNN with different numbers of hidden nodes.

The strongest correlation was found with the hidden layer of

15 nodes (r = 0.90 for FMA-SE and r = 0.93 for FMA-

WH, P < 0.001), and the correlation coefficients decreased

with the number of hidden nodes exceeding or less than
15. Table 3 shows the mapping performance of the model

with different input feature vectors by the combinations

of the sEMG amplitude features and those related to the
MU firing. The highest correlation between the mapped

scores and the manual scores, i.e., r = 0.93 for FMA-SE

FIGURE 3 | Significant correlations yielded by the four-channel sEMG signals, i.e., ED, FD, BIC, and TRI, before the 20-session intervention. Correlations between the

mapped scores and manual (A) Fugl–Meyer Assessment shoulder/elbow (FMA-SE) scores and (B) Fugl–Meyer Assessment wrist/hand (FMA-WH) scores.

FIGURE 4 | Significant correlations yielded by the four-channel sEMG, i.e., ED, FD, BIC, and TRI, after the 20-session intervention. Correlations between the mapped

scores and manual (A) Fugl–Meyer Assessment shoulder/elbow (FMA-SE) scores and (B) Fugl–Meyer Assessment wrist/hand (FMA-WH) scores.
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and r = 0.92 for FMA-WH, P < 0.001, was observed in
the combination of MAV, SSC, RMS, and ZC. All feature
combinations produced significant correlations (P < 0.01)
between the mapped and the manual FMA subscores, and
the minimum r was 0.54 (for FMA-SE, P < 0.01) when
using only WL as the input feature. As the number of
features in a combination increased, the correlation between
the mapped and the manual FMA subscores was also
enhanced. However, the combination of all five features led
to a decrement of 0.3 and an increment of 0.1 on the
correlation coefficient between the mapped and the manual
FMA-SE and FMA-WH scores, respectively, compared to the
maximum coefficient achieved by the combination of MAV, SSC,
RMS, and ZC.

Mapping Performance for FMA and MAS
Figure 3 shows the correlations between the mapped scores with
the manual FMA subscores before the 20-session intervention.
Significant correlations between the mapped and the manual
scores were observed (r = 0.92 for FMA-SE, and r = 0.93 for
FMA-WH, P < 0.001). The mapped FMA-SE scores ranged from
6.65 to 32.80 when the manual scores ranged from 5 to 30; the
mapped FMA-WH scores ranged from 2.57 to 17.25 when the
manual scores ranged from 2 to 20. The mapped scores were
closer to the manual ones when the manual FMA-SE and FMA-
WH scores were 11–24 and 2–9, respectively, than within other
manual FMA-SE and FMA-WH score distributions. Figure 4
shows the correlations between the mapped and the manual
FMA subscores after the 20-session intervention. The resultant

FIGURE 5 | Significant correlations yielded by the two-channel sEMG signals after the 20-session intervention. Correlation between the mapped scores and manual

(A) Fugl–Meyer Assessment shoulder/elbow (FMA-SE) scores, from muscles pair of BIC and TRI, (B) Fugl–Meyer Assessment wrist/hand (FMA-WH) scores, from

muscle pair of ED and FD.

FIGURE 6 | Correlations yielded by the mismatched testing condition with the four-channel sEMG signals, i.e., ED, FD, BIC, and TRI. Correlation between the

mapped scores and manual (A) Fugl–Meyer Assessment shoulder/elbow (FMA-SE) scores and (B) Fugl–Meyer Assessment wrist/hand (FMA-WH) scores.
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TABLE 4 | The correlation coefficients, r, between the mapped and manual FMA

scores, obtained by the BPNN model trained with different distributed proportions

of the training and testing data.

Proportion of training data r with FMA-SE r with FMA-WH

50% 0.89*** 0.88***

60% 0.91*** 0.90***

70% 0.89*** 0.92***

80% 0.93*** 0.92***

90% 0.87*** 0.88***

Significance levels are indicated as* for P ≤ 0.05, ** for P ≤ 0.01, and *** for P ≤ 0.001.

mapped scores were positively correlated with the manual FMA-
SE (r = 0.93, P < 0.001) and FMA-WH scores (r = 0.92, P
< 0.001). The mapped FMA-SE scores ranged from 12.84 to
39 when the manual scores ranged from 10 to 41; the mapped
FMA-WH scores ranged from 6.22 to 21 when the manual scores
ranged from 5 to 22. The mapped scores were the closest to the
manual ones for manual FMA-SE and FMA-WH scores between
15–24 and 9–15 points, respectively. For both the pre- and post-
intervention datasets, the correlation between the mapped FMA
subscores and the manual scores were numerically high.

Figure 5 shows the correlations between the manual FMA
subscores and the mapped scores using sEMG signals from
the two corresponding muscles, i.e., BIC and TRI for FMA-
SE; ED and FD for FMA-WH, after the 20-session intervention.
The correlation coefficients between the mapped scores and the
manual scores were 0.79 for FMA-SE (P < 0.001) and 0.58
for FMA-WH (P < 0.001), respectively. The mapped FMA-SE
and FMA-WH scores ranged from 13.37 to 35.85 and from
6.67 to 22.87, respectively. The distributions of manual scores
were the same as those in Figure 4. The correlation coefficient
between themapped andmanual FMA-SE scores was higher than
that of the FMA-WH scores. Figure 6 shows the correlations
between the manual and mapped FMA subscores obtained under
the mismatched testing condition after the intervention. No
significant correlation was found between the mapped scores and
the manual scores of FMA-SE and FMA-WH. Themapped FMA-
SE and FMA-WH scores ranged from 5.38 to 21.62 and from
1.55 to 14.29, respectively; the manual FMA-SE and FMA-WH
scores ranged from 10 to 41 and from 5 to 22, respectively. For
both FMA-SE and FMA-WH, the mapped scores were generally
lower than the manual scores under the mismatched testing
condition after the intervention. Table 4 shows the correlation
between the mapped and manual FMA subscores, by the BPNN
model with different proportions of the training data in the
internal generalization evaluation. The correlation maintained
above 0.88 when the proportion of training data reduced to 50%,
i.e., split-half method (Steyerberg et al., 2001).

Table 5 shows the correlation coefficients between the
manual and the mapped MAS-elbow scores obtained using
the sEMG signals with different lowpass cutoff frequencies.
All correlations were statistically significant (P < 0.05). The
correlation coefficient increased with increasing lowpass cutoff
frequency and reached a maximum of 0.92 (P < 0.001) when

TABLE 5 | The correlation coefficients, r, between the mapped and manual

MAS-elbow scores and the scores obtained by the sEMG signals with different

lowpass cutoff frequencies.

Cutoff frequency (Hz) r with MAS-elbow

80 0.76***

150 0.89***

200 0.92***

300 0.81***

400 0.75***

500 0.42***

Significance levels are indicated as* for P ≤ 0.05, ** for P ≤ 0.01, and *** for P ≤ 0.001.

the cutoff frequency was 200Hz. The correlation decreased
when the cutoff frequency was greater than 200Hz. Figure 7
shows the correlations between the manual and mapped MAS
scores obtained for the 10–200Hz band-pass filtered sEMG
data. Significant correlations were observed between the mapped
scores and the manual MASs for both the pre- and post-
intervention datasets. For the pre-intervention dataset, the
correlations between the mapped and manual scores were 0.91
(P < 0.001, MAS-elbow), 0.88 (P < 0.001, MAS-wrist), and 0.91
(P < 0.001, MAS-finger). For the post-intervention dataset, the
correlations between the mapped and manual scores were 0.92
(P < 0.001, MAS-elbow), 0.80 (P < 0.001, MAS-wrist), and 0.90
(P < 0.001, MAS-finger). The correlation coefficient between the
mapped and the manual MAS-wrist scores observed in the pre-
intervention data was larger than that of the post-intervention
data. For the pre-intervention dataset, the distances between the
mapped and manual MAS scores exceeded 0.5 when the manual
MASs were graded at 0 and 3. For the post-intervention data, the
distances between the mapped and manual MAS scores exceeded
0.5 when the manual MASs were graded at 0, 2, and 3.

sEMG Parameters and Clinical Scales
Before and After the Intervention
Figure 8 shows the comparisons between the two sEMG
parameters, i.e., the normalized sEMG activation level and the
normalized CI, for the pre- and post-intervention sessions.
Significant differences in sEMG activation level were observed
at the BIC and FD (paired t-test, P < 0.05) muscles, and
the activation levels of the BIC and FD muscles before the
intervention were higher than those after the intervention. There
were significant differences in the CI of the FD-BIC, FD-TRI,
and BIC-TRI muscle pairs (paired t-test, P < 0.05) before
and after the interventions. The CI values detected before the
intervention were higher than those after the interventions. No
significant difference was observed in the sEMG parameters
of other target muscles and muscle pairs. Table 6A presents
the differences in the sEMG parameters between the pre-
and post-intervention sessions. Figure 9 shows the pre- and
post-intervention comparisons of the clinical scales. Significant
differences in the FMA subscores, i.e., FMA-SE and FMA-WH
(paired t-test, P < 0.05), and MAS scores, i.e., MAS-elbow,
MAS-wrist, and MAS-finger (Wilcoxon test, P < 0.05), were
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FIGURE 7 | Significant correlations between the mapped scores and MASs scales yielded by the bandpass filtered (10–200Hz) four-channel sEMG signals, i.e., ED,

FD, BIC, and TRI. The correlations between the mapped scores and MASs (A) at elbow for the pre-intervention dataset, (B) at elbow for the post-intervention dataset,

(C) at wrist for the pre-intervention dataset, (D) at wrist for the post-intervention dataset, (E) at fingers for the pre-intervention dataset, and (F) at fingers for the

post-intervention dataset.

observed between the pre- and post-intervention sessions. The
pre-intervention FMA-WH and FMA-SE scores were lower than
the post-intervention scores. The MAS-elbow, MAS-wrist, and

MAS-finger scores before the intervention were higher than those
obtained after the intervention. The differences in clinical scales
before and after intervention are shown in Table 6B.
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FIGURE 8 | The differences of sEMG parameters between the pre- and post-intervention sessions. The x-axis indicates the target muscles (BIC and FD) and muscle

pairs (FD-BIC, FD-TRI, and BIC-TRI). The y-axis indicates the corresponding CI of the muscle pairs and the normalized sEMG activation level at the target muscles.

The significant differences are indicated as * for P ≤ 0.05, ** for P ≤ 0.01, and ***for P ≤ 0.001, using the paired t-test.

TABLE 6A | The differences in the sEMG parameters between the pre- and

post-intervention sessions.

Pre-intervention Post-intervention P

Mean(± std) Mean(± std)

BIC 0.86 (± 0.14) 0.36 (± 0.19) 0.000***

FD 0.93 (± 0.07) 0.37 (± 0.13) 0.000***

FD-BIC 0.83 (± 0.18) 0.47 (± 0.21) 0.000***

FD-TRI 0.85 (± 0.15) 0.39 (± 0.21) 0.000***

BIC-TRI 0.85 (± 0.16) 0.32 (± 0.13) 0.000***

BIC and FD indicate the normalized sEMG activation level at the target muscles. FD-BIC,

FD-TRI, and BIC-TRI indicate the normalized CI of the muscle pairs. Significance levels of

the paired t-test are indicated as * for P ≤ 0.05, ** for P ≤ 0.01, and *** for P ≤ 0.001.

DISCUSSION

This study developed an sEMG data-driven BPNN model for
mapping sEMG signals to two clinical scales, FMA subscores
(FMA-SE and FMA-WH) and MAS, that have been widely
adopted in clinical practices in post-stroke rehabilitation. The
model was optimized by changing the number of the nodes in
the hidden layer of the BPNN and the input feature vectors. The
mapped FMA subscores and MAS scores generated by the data-
driven model were strongly correlated with the manual scores
(r > 0.9, Figures 3, 4, 7) (Evans, 1996) for both the pre- and
post-intervention datasets.

Model Configuration
In this work, the sEMG data-driven model was established
based on a three-layer BPNN. Using the two-phase method to
determine the number of hidden layer neurons, the performances
of the models with different numbers of nodes (10, 15, 20, 30,
40, 50, 100, and 200) in the hidden layer were evaluated. All
models yielded high (i.e., r > 0.8, Table 2) correlation coefficients
between the mapped scores and the manual scores, which
demonstrates the three-layer BPNN is feasible and sufficient for
continuous mapping of the sEMG data to the clinical scales of

FMA subscores (De Villiers and Barnard, 1993; Freedman, 2009).
The BPNN with 15 nodes in the hidden layer performed the
best when mapping sEMG data to the clinical scales of FMA
subscores, generating the highest correlation coefficient between
themapped and themanual scores. The number of hidden nodes,
i.e., 15, was 75 percent of the dimensionality of the input layer i.e.,
20, according to the rule of the thumb method, which suggested
using 70% to 90% of the size of the input layer as the number of
hidden nodes (Boger and Guterman, 1997). The relatively poor
performances of models with more than 15 hidden nodes were
caused by model overfitting. The overfitting BPNN model with
excessive hidden nodes could create complex fitting between the
unrepresentative characteristics of the sEMG training dataset and
the manual scores, which reduced the generalization accuracy
in the testing dataset (Sheela and Deepa, 2013). On the other
hand, the relatively poor performance of models with less than
15 hidden nodes could be due to model underfitting. The model
containing insufficient hidden nodes lacked flexibility in terms of
linear regression, decreasing its accuracy for the testing dataset
(Mitchell, 1997).

Input Feature Selection
Different combinations of the five features of the sEMG signals
(MAV, SSC, RMS, ZC, and WL) served as the input vectors to
the BPNN model (Table 3). All features alone could produce
moderate or higher correlations (Evans, 1996), i.e., r ≥ 0.54,
between the mapped scores and the manual FMA subscores.
This indicated that these features contained the representative
neuromuscular information of motor functional recovery during
robot-assisted rehabilitation, which could be recognized by the
BPNN data-driven model of this work. The performance of
the models improved if the feature contained both magnitude-
related features (MAV, RMS, and WL) and MU-firing-related
features (ZC and SSC), which demonstrates that both the
magnitude and MU firing information of the sEMG signals are
essential for mapping performance. In addition, the performance
of the models improved as the number of features in a
combination increased. However, instead of the full combination

Frontiers in Neurorobotics | www.frontiersin.org 13 July 2021 | Volume 15 | Article 648855

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Ye et al. sEMG Data-Driven Assessment After Stroke

FIGURE 9 | The differences of clinical scales between the pre- and post-intervention sessions. (A) Sub-FMA scores, (B) MASs. The significant differences are

indicated as * for P ≤ 0.05, ** for P ≤ 0.01, and ***for P ≤ 0.001, using the paired t-test for the FMA and the Wilcoxon test for the MAS.

of all five features, the combination of MAV, SSC, RMS, and ZC
withoutWL produced the highest correlation coefficient between
the mapped and manual scores, suggesting that WL might
be a redundant feature that weakened mapping performance.
Furthermore, WL alone yielded the poorest performance (r =

0.54) among all the combinations, also indicating that WL was
not an effective feature for mapping the sEMG signals to the
clinical scales of FMA. Therefore, in this work, the combination
of MAV, SSC, RMS, and ZC was selected as the input vector for
the BPNN. This optimized feature combination was consistent
with a previous study of feature reduction and selection for sEMG
signal classification (Phinyomark et al., 2012).

Mapping the sEMG Data to FMA Subscores
In this study, the sEMG signals from four muscles, i.e., BIC, TRI,
ED, and FD, were mapped to FMA-SE and FMA-WH subscores.
Significant correlations (r > 0.90) were observed between the
mapped and manual FMA subscores, i.e., the FMA-SE and FMA-
WH, before and after the intervention (Figures 3, 4). Therefore,
the mapped scores were highly consistent with the manual
scores of FMA for both the pre- and post-intervention sessions.
Furthermore, the best regression performance occurred when
the manual scores were around their mean values (e.g., 17.76 in
Figure 3A). This was because the manual FMA subscores in the
training dataset followed a normal distribution (e.g., µ = 17.76,
σ = 3.03 in Figure 3A) and the training data were concentrated
around the mean values. When the manual scores were far away
from the mean value, there were insufficient training data for the
model to learn the mapping relationship between the sEMG data
and the FMA subscores.

In addition, the sEMG from two corresponding muscle
pairs, i.e., BIC and TRI for proximal movements; ED and
FD for distal movements, were mapped to manual scores
of FMA-SE and FMA-WH, respectively. The correlations
between the mapped and manual scores produced by the
muscle pairs were lower than those produced by the four
muscles (Figure 5). This demonstrates that the compensatory
muscular activities, especially proximal compensations, play a
critical role in the bare hand evaluation task during robot-
assisted rehabilitation in chronic stroke. Proximal muscular

TABLE 6B | The differences in the clinical scales between the pre- and

post-intervention sessions.

Pre-intervention Post-intervention P

Mean(±std) Mean(±std)

FMA-WH 8.86 (± 2.49) 12.90 (± 2.45) 0.000***

FMA-SE 17.76 (± 3.03) 25.21 (± 4.37) 0.000***

MAS-elbow 1.52 (± 0.42) 0.97 (± 0.39) 0.001***

MAS-wrist 1.66 (± 0.48) 0.83 (± 0.41) 0.000***

MAS-finger 1.63 (± 0.55) 0.67 (± 0.35) 0.000***

The FMA-WH and FMA-SE are compared by using the paired t-test. The MAS-elbow,

MAS-wrist, and MAS-finger scores are compared by using the Wilcoxon test. Significance

levels of the paired t-test and Wilcoxon test are indicated as * for P≤ 0.05, ** for P≤ 0.01,

and *** for P ≤ 0.001.

compensation was observed more frequently than distal
compensation during the evaluation of motor functional
recovery. Therefore, the correlation between the mapped and
manual FMA-WH scores produced by the distal muscle
pair was much lower than that between the mapped and
manual FMA-SE scores produced by the proximal muscle pair
(Figure 4).

Generalization of the Model
The performance of generalization of the data-driven model was
tested under the mismatched testing condition, where the model
was trained by the dataset before the intervention and tested
by the dataset after the intervention. No significant correlations
were observed between the mapped and the manual scores
of FMA-SE and FMA-WH (Figure 6), demonstrating that the
model learned from the training data before the intervention and
could not map the sEMG data to the manual FMA subscores
after the intervention. Table 6A; Figure 8 show the differences
between the analyzed sEMG parameters, i.e., the normalized
sEMG activation level and CI, before and after the intervention,
which explained the results of the mismatched testing condition.
In addition, the correlation maintained above 0.88 even when
the proportion of training data reduced to 50% (Table 4), which
suggested that the model demonstrated a satisfying internal
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generalization with limited samples, i.e., half of the limited
training sets (Steyerberg and Harrell, 2016).

For both the FMA-WH and FMA-SE, the mapped scores
were generally lower than the manual scores (Figure 6),
which indicated that the model underestimated motor function
recovery after the intervention. This was because the model
was trained by the data obtained before the intervention, when
the manual FMA subscores were significantly lower than those
after the intervention (Table 6B; Figure 9). This suggested that
although the current data-driven model could map the sEMG
data to the manual FMA subscores either before or after
intervention in chronic stroke with stable muscular activities
pattern, it was not able to predict themanual FMA subscores after
the intervention in a prognostic way.

Mapping the sEMG Data to MAS
Besides mapping to the FMA scores, the data-driven model was
also used to map the sEMG data to clinical scales of the MAS. For
mapping to the MAS, sEMG signals were low-pass filtered and
the cutoff frequency was set according to the characteristics of
sEMG and previous studies on involuntary contractions related
to spasticity (Sahrmann and Norton, 1977; Van Boxtel, 2001).
The best mapping performance occurred when the sEMG signals
were low-pass filtered at 200Hz (Table 5), demonstrating that the
low-frequency component of sEMG signals effectively reflected
the slow involuntary contractures in the spastic muscle after
stroke (Dromerick, 2002). Compared to the cutoff frequencies
of 150 and 300Hz, the correlation reached a peak value when
the low-pass cutoff frequency was 200Hz. This suggested that
the most effective sEMG frequency in the spastic muscle exists
around 200Hz. This result further suggested that the motor units
in the spastic muscles mainly show low-frequency firing, which
was consistent with previous findings (Sahrmann and Norton,
1977). Further, the correlation between the mapped and manual
MAS-elbow scores decreased when the sEMG was filtered at
frequencies lower than 200Hz (Table 5), indicating that the
much lower-frequency sEMG signals lost bio-information related
to muscle spasticity.

Significant correlations between the mapped and manual
MASs (Figure 7) indicated that the sEMG data-driven model
can map the sEMG data to MAS, and the high consistency
of the mapped scores could aid in the diagnosis of muscle
spasticity among chronic stroke survivors. However, this data-
driven model did not perform well when the MAS grades at 0
and 3, i.e., the distances between the mapped and manual scores
exceeded 0.5. This was because the recruitment criteria required
the MASs of participants to be lower than 3 and above zero and
restricted the model to learning from the limited training data to
the mappedMAS of 0 and 3. This phenomenon was also noted in
previous studies (Zhang et al., 2019; Yu et al., 2020). Moreover,
the correlation between the mapped and manual MAS-wrist
scores observed in the dataset before the intervention was higher
than those observed after the intervention. This was because
a more scattered distribution of the training data produced
better mapping from the sEMG data to the clinical scales of
MAS, while the manual MASs decreased significantly after the

intervention (Table 6B; Figure 9) and were concentrated among
the low scores.

There were limitations in this study. The generalization
was unsatisfied under the mismatched testing condition. The
possible reasons were as follows: (1) The limited sample size of
the recruited subjects (n = 29) hindered the model’s effective
generalization, i.e., recognizing completely new inputs, compared
to those achieved this in the literatures usually with larger sample
sizes (e.g., n > 100) (Kim et al., 2020; Scrutinio et al., 2020).
2) There were significant variations in sEMG properties and
clinical scores after the 20-session robot-assisted rehabilitation
for the participants, as shown in Tables 6A,B; Figures 8, 9.
The sEMG patterns and the clinical scores after the robot-
assisted intervention could be regarded as new inputs to the
data-driven model, as revealed by the insignificant correlations
in the mismatched test. In our future work, more participants
will be recruited for the collection of independent clinical scores
and sEMG trials, to achieve better generalization, not only on
the post-training data, but also on data of new participants. In
addition, sEMG parameters (e.g., the CI and activation level)
and clinical diagnostic information will be involved to improve
the robustness of the features in the future work. In order
to facilitate the clinical translation in the future, explanation
to clinical practitioners would be carried out on the working
principle of the BPNN, i.e., non-linear mapping, in contrast to
the linear regressions, i.e., linear mapping, in the traditional
explainable methods.

CONCLUSION

This study presented an sEMG data-driven BPNN model for
mapping sEMG data in bare hand daily tasks to two widely used
clinical scales, the FMA and the MAS. The combination of four
features of sEMG (MAV, RMS, SSC, and ZC) as the input vector
into the BPNNmodel optimized the mapping accuracy. The high
correlations between the mapped scores and the manual MAS
and FMA subscores suggested that the sEMG data-driven BPNN
model could evaluate upper limb motor functions based on
sEMG signals. The results demonstrated the potential application
in automated assessment without close professional operation, or
supervision, by a clinician as in the evaluation of FMA and MAS
for chronic stroke, once the external generalization of the model
could be validated with large sample sizes.
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