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During motor learning, people often practice reaching in variety of movement directions in

a randomized sequence. Such training has been shown to enhance retention and transfer

capability of the acquired skill compared to the blocked repetition of the same movement

direction. The learning system must accommodate such randomized order either by

having a memory for each movement direction, or by being able to generalize what

was learned in one movement direction to the controls of nearby directions. While our

preliminary study used a comprehensive dataset from visuomotor learning experiments

and evaluated the first-order model candidates that considered the memory of error

and generalization across movement directions, here we expanded our list of candidate

models that considered the higher-order effects and error-dependent learning rates. We

also employed cross-validation to select the leading models. We found that the first-

order model with a constant learning rate was the best at predicting learning curves.

This model revealed an interaction between the learning and forgetting processes using

the direction-specific memory of error. As expected, learning effects were observed at

the practiced movement direction on a given trial. Forgetting effects (error increasing)

were observed at the unpracticed movement directions with learning effects from

generalization from the practiced movement direction. Our study provides insights that

guide optimal training using the machine-learning algorithms in areas such as sports

coaching, neurorehabilitation, and human-machine interactions.

Keywords: novel motor skill learning, internal model, error-feedback, visuomotor adaptation, error-augmentation,

generalization, randomized training

INTRODUCTION

Motor skill learning requires both movement repetition as well as variation. Repeating the same
action provides certainty but practicing different actions can yield better performance through
properly assigning credit to relevant factors (Cothros et al., 2006; Berniker and Kording, 2008;
Kluzik et al., 2008). However, repetition leads to bias, where the more practiced motions are
emphasized in learning, and variation allows for generalization across related motor actions.
Consequently, single task repetition may lead to poor transfer to other motor actions (such as
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forehand to backhand in tennis) (Atkeson et al., 1997; Schaal and
Atkeson, 1998). It is unclear how action repetition and action
variation are optimally incorporated during learning, and it may
be that a model is needed to best describe this process.

Experimental training schedules can mediate how much
repetition and variation of actions are exercised that determine
the extent of learning (Shea and Kohl, 1990; Memmert, 2006).
While a constant training schedule that requires repetition of
a single motor action may lead to better performance during
the training phase, transfer to novel motor actions is limited.
On the other hand, a variable training schedule that provides
exposure to several differentmotor actions can lead to an increase
in the transfer capability (Wulf and Schmidt, 1997; Lee et al.,
2016). Researchers have further shown that randomized-variable
training (vs. blocked) enhances skill retention and generalization
because it demands greater cognitive effort and ensues higher
activation of neural structures involved in the planning and
execution of motor skills (Lage et al., 2015). However, during
the randomized training, different motor actions are practiced
consecutively across trials that can have either constructive or
destructive interference (Sing and Smith, 2010), and the same
motor action might not be repeated until several other motor
actions are completed. Iterative updates of an internal model
(Kawato, 1990, 1999; Jordan and Rumelhart, 1991) from the
non-consecutive repetitive movements with interferences across
consecutive trials have not been well-studied.

Error produced during practice plays an important role in
the iterative update of motor commands. Motor learning is
often characterized as a first-order linear process, where the
amount of change in performance is proportional to error
using a constant learning rate (Kawato et al., 1987; Wolpert
and Kawato, 1998; Thoroughman and Shadmehr, 2000; Scheidt
et al., 2001). However, recent studies have shown that the
proportional amount of learning from error decreases and
saturates toward large error magnitudes, indicating an error-
dependent learning rate (Robinson et al., 2003; Fine and
Thoroughman, 2007; Wei and Kording, 2009; Marko et al., 2012;
Herzfeld et al., 2014). Such non-linearity was observed during
learning through the blocked practice of single motor action
(e.g., single movement direction). Models that can describe
learning in a more real-life scenario through randomized
practice (across different movement directions) remain to
be identified.

For non-consecutive repetitive movements (i.e., different
actions each trial), the motor systemmight either keep a memory
specific to each action, or generalize what was learned to
related actions, or both. For memory, somemodeling approaches
have characterized the learning system as a higher-order linear
process, consisting of fast and slow processes (Smith et al.,
2006; Kording et al., 2007; Joiner and Smith, 2008; Lee and
Schweighofer, 2009). The fast process learns from rapid trial-to-
trial changes in error, and the slow processes learn from error
components that are consistent across multiple trials. It is then
foreseeable that such a learning system could incorporate past
movement performance across non-consecutive repetition of
actions using the higher-order process. As the repetitive practice
is often discrete, a history of errors from at least the past n-trials is

necessary to fully realize the nth-order linear process of learning.
However, the memory capacity (n) can limit the number of past
experiences that are utilized for updating the internal model.
It remains to be identified to what extent the error history is
involved in motor learning.

The memory may also be susceptible to dynamic changes
during the trial gaps between the repetition of the same
movement. Phenomena associated with memory dynamics such
as consolidation, interference, saving, washout, and forgetting
have been widely reported that influence the extent of learning
and retention (Brashers-Krug et al., 1996; Caithness et al., 2004;
Krakauer et al., 2005; Smith et al., 2006; Krakauer, 2009; Huang
et al., 2011). Our earlier work (Parmar and Patton, 2019) tested
memory update using the momentum method (Rutishauser,
1959; Polyak, 1964; Sutskever et al., 2013) vs. static memory
during the trials when movements specific to the memory are
not practiced, and we found that the momentum method was
superior at predicting changes in reaching movements during
learning visuomotor skills.

Beyond memory for each movement direction, learning can
also generalize to solve the non-consecutive action problem.
Generalization of learned skill has been observed across
arms, across sensory systems, and across arm configurations
(Shadmehr and Mussa-Ivaldi, 1994; Dizio and Lackner, 1995;
Krakauer et al., 2000; Shadmehr and Moussavi, 2000; Malfait
et al., 2002; Criscimagna-Hemminger et al., 2003; Parmar et al.,
2015; Bittmann and Patton, 2017). Researchers have found that
the internal model generalizes to nearby movement directions
or arm configurations (Gandolfo et al., 1996; Sainburg et al.,
1999; Thoroughman and Shadmehr, 2000; Donchin et al.,
2003; Witney and Wolpert, 2003; Malfait et al., 2005; Berniker
et al., 2014). The breadth of generalization is often not known
across various tasks, movement directions, and other contexts.
Donchin et al. (2003) first defined a model that accounted
for the important aspects of generalization of skill learning
across movement directions through trial-to-trial performances
during the force-field learning. However, they did not test for
the momentum effects (memory dynamics) in addition to the
generalization effects.

In summary, we must consider higher-order models with
multiple time constants, error-dependent learning rates,
generalization, and momentum effects. In a preliminary
study (Parmar and Patton, 2018), we evaluated the first-order
model candidates that considered the memory of error with
momentum and generalization. Here, we expanded our list
of candidate models that include the higher-order effects and
error-dependent learning rates and employed cross-validation
to select the leading models. We used a specialized dataset
from our earlier study (Parmar and Patton, 2018, 2019) that
randomized movement directions across trials, augmented
visual error (Patton et al., 2013), and blocked eight distinct
visuomotor distortions to obtain multiple learning curves from
each subject. We specifically tested how the nervous system
updates the initial ballistic launch to reaching targets (first
submovement) in response to a visual error. By fitting various
models to the learning data, we tested whether the motor system
exhibits: (1) constant vs. error-dependent learning rates, (2)
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first-order vs. higher-order processes, and (3) generalization
across movement directions.

MATERIALS AND METHODS

Subjects
Fifteen right-handed healthy human subjects (6M, 9F; within
21–40 years of age) were recruited in this study. These
subjects had no history of neurological, shoulder, or elbow
disorders. We excluded subjects with ambidexterity. The
experimental procedures involving human subjects described in
this study were approved by the Institutional Review Boards at
Northwestern University (IRB ID: STU00202566) and University
of Illinois at Chicago (Protocol # 2016-0911). Human subjects
were recruited in this study after obtaining written informed
consent approved by the local ethics committee.

Experimental Setup
Subjects sat in front of a manipulandum robot, and we strapped
their right arm wrist to the end effector, the handle, using a wrist
brace. We supported their elbow using a multi-link arm support
[Basic Mobile Arm Support (MAS) Kit by North Coast] so that
their arm movements were planar. The arm support had three
degrees of rotational freedom in a plane and had significantly
lower inertia compared to a human arm.

The manipulandum was a lightweight, low friction,
two degrees of rotational freedom robot (Fayé, 1986). The
manipulandum was designed for clinical and neurorehabilitation
research applications and was configured through impedance
control for safe, stable, and compliant operation. Two low-inertia
direct current torque motors (PMI Corp. model JR24M4CH,
KolmorgenMotion Technologies, Commack, NY) weremounted
on the base of the robot and were connected independently to
each joint using a parallelogram arrangement. The robot’s handle
position measurements (400Hz) were taken using two optical
encoders (model 25/054-NB17-TA-PPA-QARIS, Teledyne
Gurley, Troy, NY, USA).

An opaque, rectangular white screen was positioned
horizontally above the robot to block subjects’ view of their arm
when interacting with the robot. The subjects were seated such
that this horizontal screen did not allow them to lean forward.
In addition, they were instructed not to lean sideways. We
used a 40-inch display to show the position of the handle (as a
cursor) and visual targets for reaching. The display was mounted
directly above the robot, approximately centered at eye level. We
calibrated the display to represent the absolute spatial workspace
of the handle (from−44.5 to+44.5 cm in x and from 22 to 72 cm
in y of the robot coordinate).

Experimental Procedure
We seated the subjects such that their right shoulder was directly
in front of the robot’s shoulder. We measured the subjects’
upper arm length, forearm length, and the distance between their
shoulder and the robot’s shoulder. These measurements were
used for the visuomotor distortions (explained below).

Each subject was instructed to move the handle of the robot
to bring the cursor toward the center of a target by making a

single, quick straight-line reach. The cursor was 2.5mm diameter
white circle, and the targets were 4.5 cm yellow “+” signs.
The reaching task included moving the cursor from one target
to the next (target-to-target reaching). Only the destination
target for a trial was shown at a time on the display. Targets
were placed at the vertices of a 15 cm equilateral triangle. The
visual location of these targets on the display was fixed for
all phases and all non-linear visuomotor distortions. For some
positions and orientations of this target set, their corresponding
locations in the movement space (the robot’s handle space)
can be outside the subject’s reachable workspace due to a non-
linear visuomotor transformation. Therefore, we performed an
optimization that minimized the distance between the target
locations in the movement space and the center of a typical
subject’s reachable workspace and maximized the difference in
hand-to-vision distortion among all eight non-linear visuomotor
distortions. Using the result of this optimization, the center of
the triangle was placed in the robot coordinate at 0 cm in x and
47 cm in y and was oriented 75.243 degrees from the x-axis. We
confirmed that this set of visual targets was adequately within the
reachable workspace for all recruited subjects.

For each target reach, the initial launch of movement was
detected based on distance and speed thresholds (>1 cm away
from the start position and > 20 cm/s), and the end of the initial
launch of movement was detected based on speed threshold
(<5 cm/s). All the thresholds were calculated in the cursor
space. Once the end of the initial launch of movement was
detected, the “+” sign for a target was changed to the 4.5 cm “x”
sign. At this point, the trial was marked completed, and if the
subjects had missed the target (>0.5 cm away from the target
position), they were asked to navigate the cursor to the target
to begin the next trial. Throughout this navigation phase of the
movement, the cursor trace for the initial launch of movement
was displayed.

In addition, we provided average-speed feedback of the initial
launch of movement using a visual bar at the bottom of the
display. The subjects were instructed to match their launch speed
with a reference speed bar (indicating 30 cm/s), which was drawn
underneath their speed feedback bar. The initial average launch
speed within 24–36 cm/s was marked satisfactory with a change
in target color and speed feedback bar color to green. Blue
represented slower speeds, and red represented faster speeds.

The cursor position was removed for some trials (no-vision
trials) during the entire initial launch of the movement. Also, the
cursor trace for the initial launch of movement was not displayed
for these no-vision trials.

During the learning phases, cursor represented the subject’s
shoulder angle vs. elbow angle, instead of hand position. Similar
adaptation to a non-linear visuomotor transformation was
studied previously by Flanagan and Rao (1995). Here, we could
either map shoulder angle along the horizontal dimension (+x)
of the display and elbow angle along the vertical dimension (+y)
of the display or vice versa. We could also multiply shoulder and
elbow angles with −1 to show their mirror transformations on
the display. As shown in Figure 1A, we changed how shoulder
and elbow angles mapped on the display. This resulted in eight
distinct non-linear visuomotor transformations (learning tasks).
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FIGURE 1 | Experimental setup. Participants reached for visual targets using a cursor by moving the handle of a manipulandum robot. (A) Their learning tasks were to

adapt to various visuomotor distortions by practicing target reaching. (B) Subjects received augmented visual feedback based on error (error-augmentation or EA)

during the training phases. We administered two types of EA: augmentation of the current level of error (EA-gain; K1; levels = 0, 1, 2, 3) and augmentation of the

error-offset (EA-offset; K2; levels = 0, 1, 2). The error-offset was the error subjects produced during initial exposure to the learning tasks. (C) The experiment consisted

of several distinct phases that included a brief familiarization phase (30 vision trials), a baseline phase (30 no-vision trials), and eight blocks of training phases (250

trials each). Each training phase was followed by a washout phase (30 vision trials). Subjects reached for visual targets at randomly chosen 6 movement directions

across trials throughout the experiment. Five subjects received the normal error-feedback (EA{gain 1, offset 0}) throughout the whole experiment, and ten other

subjects received randomly chosen EA{gain, offset} feedback from the given levels for each learning task (represented as dashed lines within the training phases).

Shoulder and elbow angles were calculated using inverse
kinematics (Spong et al., 2006):

D
def= x2 + y2 − L21 − L22

2 L1 L2
, (1)

θE = tan−1

(√
1− D2

D

)

, (2)

θS = tan−1
( y

x

)

− tan−1

(

L2 sin θE

L1 + L2 cos θE

)

, (3)

where x and y are the subjects’ right arm wrist positions in
their shoulder-centered coordinate system. L1 and L2 are the
subjects’ upper and forearm lengths in meters. θS and θE are the
subjects’ shoulder and elbow joint angles, respectively. Distance
between the subjects’ shoulder and the robot’s shoulder was used
to calculate x and y in the subjects’ shoulder-centered coordinate
system from the robot’s handle position using a homogeneous
transformation. For visual calibration, 11 degrees of joint angles
represented 5 cm on the display. Furthermore, θS = 24◦ and
θE = 111◦ were fixed at the center of the display (at 0 cm in x
and 47 cm in y of the robot coordinate).

The experiment consisted of several distinct phases
(Figure 1C). After a brief familiarization (30 vision trials in
the null visual environment, where 1 cm of handle movement
represented 1 cm of cursor movement), we assessed baseline
performance with 30 no-vision trials in the null environment.
Next, all subjects experienced eight different learning tasks
(250 trials each): task # 1, 2, 3, 4, 5, 6, 7, and 8 in order. Each
learning phase was followed by a washout phase (30 trials). All
subjects experienced the same random sequence of reaching
targets chosen from the set of 6 movement directions (3 targets).
Furthermore, the number of different movement directions
experienced by the subjects within a phase was nearly equal. The
subjects experienced no-vision trials intermittently (one in four;
never two in succession; randomly distributed throughout the
total number of trials).

From the first six trials of each learning phase, we assessed
initial exposure to a new visuomotor distortion. Each of these six
trials was a new direction of reach and a no-vision trial. In order
to record a proper initial exposure to the visual distortion, we
needed the cursor to be at a specific start position for a particular
direction of reach when the visual distortion was applied.We pre-
calculated corresponding start positions in the movement space
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for all directions of reach and for all eight visual distortions.
These start positions represented locations of the visual target
set in the movement space the subjects would have reached
had they learned the visuomotor distortions. At the beginning
of these trials, subjects navigated the cursor in the null visual
environment to a visual target presented at the location of a start
position in the movement space. Once they were at the start, the
cursor jumped to its corresponding location in the joint space.
Such discontinuity in cursor feedback was unavoidable due to
the nature of the visuomotor distortions, and any continuous
feedback during the transition from movement space to visual
distortion space would have provided learning opportunity for
subjects. Next, the target at the start position was blanked, and
the target at the end position for that trial was presented. The
subjects were then asked to reach. Once the end of the initial
launch of movement was detected for these initial exposure
trials, we immediately changed the cursor feedback to the null
visual environment so that subjects can navigate to start position
of a next trial. These initial exposure trials were the no-vision
trials and did not provide visual feedback about the visuomotor
distortions, and thus we assume in our analysis that the subjects
did not learn from these trials.

Our main goal was to identify the best model structure that
relates updates to the initial ballistic launch to reaching targets in
response to a visual error. Here, we used the error-augmentation
(EA) paradigm (Patton et al., 2013), which augments visual
feedback based on error. The error-augmentation excites the
nervous system with a broad range of sensory stimuli than
typical normal feedback, allowing us to better model the learning
process (Narendra and Annaswamy, 1987). To span a broad
range of errors, we administered two types of EA (Figure 1B):
augmentation of the current level of error (EA-gain; gain
levels = 0, 1, 2, 3) and augmentation of the error-offset (EA-
offset; gain levels= 0, 1, 2). Wide variety of EA gain and EA offset
conditions enabled us to acquire a rich set of learning responses
to visual error than a typical motor learning experiment. The
cursor position was augmented using the following equation
when error-augmentation was applied:

[

xaugmented cursor

yaugmented cursor

]

=
[

xideal
yideal

]

+ EA-gain∗
[

xcursor − xideal
ycursor − yideal

]

+EA-offset∗
[

xIE − xideal
yIE − yideal

]

(4)

where
(

xideal, yideal
)

is the straight-line path between starting
position and target position formovements, and (xcursor , ycursor) is
the cursor position on the display, representing subjects’ shoulder
and elbow angles (θS and θE). The final term in the Equation
(4) is the error-offset, which was simply a playback of error
(distance from ideal straight-line) that the subjects produced
during the initial exposure (IE) to the learning tasks. The error-
offset provided persistent error throughout training to allow
greater error reduction and even overcompensation where there
is continued learning beyond the goal (Patton et al., 2013).
All x-y positions in the Equation (4) were indexed using the

path-length from staring position of movements because time
samples of x-y positions for the ideal straight-line path were
unknown. The error-augmentation was applied only during the
initial launch of the movement. Once the end of the initial
launch of movement was detected, the augmented error-feedback
transitioned smoothly to the normal error-feedback, EA{gain 1,
offset 0}, within 50ms using a sigmoid.

On the error-feedback gain space, there were 12 possible
combinations of EA{gain, offset}, which we denote as a set of
EA Coordinates. Five subjects received normal error-feedback,
EA{gain 1, offset 0} for all eight learning tasks. Other ten subjects
received the error-augmentation, where EA Coordinate was
randomly chosen from the set per learning task (EA coordinate
was never repeated within a subject and EA{gain 1, offset 0} was
excluded). We repeated the same random order of EA coordinate
per task for every two subjects. Note that the order in which the
learning task was presented was kept the same across subjects,
and only the order in which the error-augmentation applied
was randomized.

Data Analysis
The handle positions were transformed to the objective space
(visual display space) by first converting them to the joint
angles and then to their corresponding positions on the display
{joint space trajectory; [xcursor (t) , ycursor(t)]; using the calibration
methods provided above}. For the data analysis, we did not
further transform these joint space trajectories using EA-gain and
EA-offset, which the subjects saw during the experiment.

Next, we calculated the maximum L2-norm error between
time samples of the first submovement of the joint space
trajectory and an ideal straight-line path between the start and
goal positions. The first submovement was identified by the first
speed hump > 14 cm/s speed that drops more than 2 cm/s on
either side. The onset and termination of the first submovement
were marked at the lowest speed < 5 cm/s. The straight-line
path was the minimum jerk profile (Flash and Hogan, 1985).
The initial launch of movement (the first submovement) could
be to the left or to the right of the ideal straight-line. Thus, we
assigned a positive sign to the error if the initial launch direction
(calculated at the maximum error) for the performed movement
was toward the same side as the initial exposure movement and
a negative sign for the opposite case. We used the following
equations to calculate the maximum L2-norm error:

‖error (t)‖2 =
√

(

xcursor (t) − xideal (t)
)2 +

(

ycursor (t) − yideal (t)
)2
, (5)

max error = error Sign ∗ max(‖error (t)‖2), (6)

We also approximated number of segmented movements within
each trial (throughout whole movement from start to end
target) by measuring number of prominent humps in speed
profiles. Each speed hump was identified by finding peak (local
maxima) > 14 cm/s that drops more than 2 cm/s on either side.
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FIGURE 2 | Three model schemes to assess how the initial ballistic launch to the target is shaped by the visually perceived error. The direction-specific model

assumes that the learning is independent for each movement direction. The generalizing model assumes that the learning for all movement directions is dependent on

the visual error perceived at the practiced movement direction. The mixed model is the weighted sum of previous two models. Dark and white circles depict practiced

and unpracticed movement directions, respectively. Ring-shaped markers at trial zero represent initial condition for the models that was based initial exposure to the

learning task. Arrows represent update to the model state based on the model structure. Note that the direction-specific model allowed for updates to the model state

during the trial gaps between the practiced trials using momentum method. Also note that only three movement directions are shown here for brevity, but there were

six movement directions in the experiment.
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Estimation of Learning From the Initial
Launch
We assessed how the initial ballistic launch to the target (the first
submovement of trial) is shaped by the visually perceived error.
We tested three model schemes (Figure 2): direction-specific,
generalizing, and mixed. While the preliminary study (Parmar
and Patton, 2018) introduced these different modeling schemes,
it only examined linear and affine model structures without
any cross-validation. Furthermore, to evaluate learning, the
preliminary study used average error as the metric that seemed
to bias the metric toward zero error (root-mean-squared error
from the first 150ms of movement). Here, we usedmaximum L2-
norm error between time samples of the first submovement of the
joint space trajectory and the straight-line path between start and
goal positions.

In the direction-specific model, learning is independent for
each movement direction. Here, we assessed how the visually
perceived error at trial n (ên) affects the movement error at trial
n+ 1 (en+ 1):

en+1,d = en,d + fd
(

ên,d
)

. (7)

Here, the visually perceived error was estimated as

ên,d = EA-gain ∗ en,d + EA-offset ∗ e0,d, (8)

where EA-gain, EA-offset were augmentation levels that the
subjects experienced, and the error offset, e0, was the error during
the initial exposure. Subscript d represents movement direction.
This direction-specific model was updated every trial regardless
of whether the movement direction was experienced. This is to
allow for any dynamic changes during the trial gaps between the
repetition of the same movement direction. For the practiced
movement direction, EA-gain and EA-offset were set to the
values subjects experienced, and for the unpracticed movement
direction, EA-gain and EA-offset were set to the normal feedback
condition (EA{gain 1, offset 0}).

The generalizing model assumes that the learning for all
movement directions is dependent on the visual error perceived
at the practiced movement direction. We define the generalized
perceived error as:

ĝn,d = W
(

θd,p
)

∗ ên,p, (9)

where W is generalization weight between two movement
directions with separation of θ degrees. Subscript p is the
practiced movement direction. W was constrained between−1
and 1. In this experiment, there were six movement directions
and possible angular separations among them include θ =
[−120, −60, 0, 60, 120, 180] . W (0) was fixed at 1 and others
were free parameters in the optimization. Here, we used Equation
(7) where we had fd

(

ĝn,d
)

instead of fd
(

ên,d
)

. This generalizing
model is similar to the model first defined by Donchin et al.
(2003) that accounted for the important aspects of generalization
of skill learning across movement directions through trial-to-trial
performances during the force-field learning.

Finally, the mixed model included the memory dynamics
in addition to the generalization effects. We assessed how the

perceived error (ên) and generalized perceived error (ĝn) at
trial n affect the movement error at trial n + 1 (en+1) across
movement directions:

en+1,d = en,d + fd
(

ên,d
)

+ Zd ĝn,d. (10)

We first tested whether the learning rate associated with the
amount of learning from the visually perceived error was
constant vs. error magnitude dependent. The following first-
order models captured the effects associated with constant
learning rates:

Linear :(1.1L) fd
(

ên,d
)

= Bd ên,d (11)

Affine :(1.1) fd
(

ên,d
)

= Ad + Bd ên,d (12)

We then considered learning rate as linear and quadratic
functions of error, which led us to the following quadratic and
cubic polynomial functions of inter-trial change:

Quadratic :(1.2) fd
(

ên,d
)

= Ad +
(

Bd + Cd ên,d
)

ên,d

= Ad + Bd ên,d + Cd ê
2
n,d (13)

Cubic :(1.3) fd
(

ên,d
)

= Ad +
(

Bd + Cd ên,d + Dd ê
2
n,d

)

ên,d

= Ad + Bd ên,d + Cd ê
2
n,d + Dd ê

3
n,d

(14)

We also considered Gaussian-weighted learning rate:

Gaussian :(1.1G) fd
(

ên,d
)

= Ad + Bd exp

(

−
(

ên,d

Hd

)2
)

ên,d

(15)

We also considered linear higher-order processes that included
error history from the past 2 to 8 trials:

kth-order(k > 1) :(k.1) fd
(

ên,d
)

= Ad + B1,d ên,d + . . .

+ Bk,d ên−k+1,d (16)

We also tested higher-order process with quadratic non-linearity:

kth-order(k > 1) :(k.2) fd
(

ên,d
)

= Ad + B1,d ên,d + . . .

+ Bk,d ên−k+1,d + Cd ê
2
n,d.

(17)

We relabeled the coefficients B, C, D to Z, Y , X, respectively,
to indicate learning from the generalized error, Equation (9).
We assigned each model a unique set of identifiers as labeled in
Figure 4 and Supplementary Figures 1, 3, 4. The first identifier
indicates whether the model is direction-specific, generalizing,
or mixed (ds, g, m), the second identifier indicates whether the
model is first-order, second-order, or higher-order process (1,
2, etc.), and the third identifier indicates whether the model
has non-linearity using first-order, second-order, or third-order
polynomials (1, 2, 3). 1L represents linear polynomial without an
offset term, and 1G represents Gaussian-weighted learning rate.
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Because of the sparse observation data across trials for each
movement direction, we could not perform a typical regression
analysis by correlating movement errors from one trial to the
next. Here we used a simulation-based approach to fitting
models. Given the subjects’ initial exposure errors (e0), the
model structure and the model parameters, the model iteratively
generated a sequence of movement errors across all trials for
each movement direction (using the model generated movement
error from a trial to generate movement error for the next trial).
Then, using non-linear least squares (1,000-fold GlobalSearch
method with interior-point algorithm, MathWorks MATLAB
R2017b), we tuned the model parameters to best match the
generated movement errors to the observed movement errors
from the subjects at the practiced movement direction trials.
During the initialization of the simulation for the higher-order
model structures, the model states required for the trials earlier
than 0th trial (initial exposure trial) were set to zero. We used the
movement error from both the vision and no-vision trials of the
learning phases, and the visually perceived error (Equation 8) was
set to zero for the no-vision trials. We removed the observations
where EA-gain was zero because this condition did not allow any
variation in the visually perceived error to identify its relationship
to the inter-trial change in error.

During the simulation for a movement direction, the model
allowed update to the direction-specific model state (movement
error) on the trials that were not experienced by the subjects
for that particular movement direction. This update is similar
to the momentum method used with the gradient descent
algorithm during optimization routines where a state change
from a previous step is repeated for the current step (Rutishauser,
1959; Polyak, 1964; Sutskever et al., 2013). Our earlier work
(Parmar and Patton, 2019) tested the momentum-based update
rule against a static update rule (no change to the direction-
specific model state) during the trial gaps when a particular
movement direction is not practiced, and we found that the
momentum method was superior at predicting changes in
reaching movements during the learning of visuomotor skills.

The number of free parameters for each model for fitting each
learning phase data were as follows. For the direction-specific
model, the number of free parameters were equal to the number
of model structure parameters times six movement directions:
ds.1.1G = 18, ds.1.3 = 24, ds.1.2 = 18, ds.1.1 = 12, ds.1.1L = 6,
ds.2.1 = 18, ds.3.1 = 24, ds.4.1 = 30, ds.5.1 = 36, ds.6.1 = 42,
ds.7.1= 48, ds.8.1= 54, ds.2.2= 24, ds.3.2= 30, ds.4.2= 36. For
the generalizingmodel, the number of free parameters were equal
to the number ofmodel structure parameters times sixmovement
directions plus five generalization weights: g.1.3= 29, g.1.2= 23,
g.1.1 = 17, g.1.1L = 11, g.2.1 = 23, g.3.1 = 29. For the mixed
model, the number of free parameters were equal to the number
of model structure parameters times six movement directions
plus five generalization weights: m.1.3 = 35, m.1.2 = 29,
m.1.1= 23, m.1.1L= 17, m.2.1= 29, m.3.1= 35, m.4.1= 41.

Statistical Analysis
We fitted the above models per movement direction per learning
task and per subject. During the model regressions, we used all
250 trials of the training phases. However, during the analysis

of test set partitions for the cross-validation, we only used the
first 50 trials of training phases. This is because the learning
measurements across trials are often decaying transient signals,
fromwhich the learning signals are prominently detectable above
a noise level in the earlier epoch of training phases. As the
transient signals decay, the component of noise becomes more
dominant in the steady state. Therefore, when predicting the
test set partition dataset using the best fit models, the earlier
observations of the training phases provide greater distinction
among the model structures. Also note that noise in the steady
state would not affect the model regressions because the least-
squares optimization would find the best tuning for the model
parameters across all trials.

We calculated the coefficient of determination (R2 and R2
adj

)

for each regression fit (102 estimates from 8 learning tasks x
15 subjects minus learning tasks where EA-gain = 0). In order
to mitigate overfitting, these models were exhaustively cross-
validated across subjects and across tasks within subject. For
the cross-validation across subjects, we partitioned 15 subjects
into the training and test sets (4/5 and 1/5, respectively; 455
total independent partitions). For the cross-validation across
tasks within subject, we partitioned 8 learning tasks into the
training and test sets (4/5 and 1/5, respectively; 28 total
independent partitions for each subject; 28∗15 total independent
partitions across all subjects). We exhaustively tested all possible
permutations of partitioning the training and test sets, and we
assessed the accuracy of the average and median models from
the training set onto the test set using the root-mean-square
error (RMSE). For each test set partition, the distribution of
RMSE was not normal, and thus we calculated the maximum
likelihood estimate (MLE) of RMSE from their kernel density
estimates. Such an exhaustive cross-validation analysis enabled
us to avoid overfitting.

We performed pairwise comparisons among the models for
the MLE of RMSE from all test set partitions using the left-
tailed Wilcoxon signed rank test with 0.01 alpha level, corrected
using Bonferroni method. All reported p-values are multiplied
with the appropriate correction factors. We then computed the
model score as the number of times a particular model had
significantly lower RMSE compared to other models minus the
number of times other models had significantly lower RMSE
compared to a particular model. For the best cross-validated
models, we performed the sign test (alpha 0.05) to identify the
model parameters that have non-zero median across all subjects
and learning tasks. We also performed Kruskal-Wallis one-way
ANOVA tests (alpha 0.05) with learning task as amajor factor and
movement direction as a major factor for each model parameters
to identify learning task dependent effects on the learning trends.

RESULTS

Typical of any reaching study, all subjects reached for the
visual targets in straight-lines with nearly symmetric and smooth
velocity profiles during the baseline phase (no-vision trials) with
the absolute error of 7.2 ± 3.1 mm (mean±95% confidence
interval). The subjects also reached in straight lines toward the
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FIGURE 3 | Representative examples of movement paths from a subject practicing the learning task 3 with EA{gain 1, offset 0}. Green and red circles represent the

start and target positions for the movements (15 cm apart). The dotted black line is the ideal straight line. Blue segment is the initial launch of the movement, and red

segment is the first 150ms of the initial launch. Solid Black line is the feedback correction phase of the movement where the subject navigated to the target after the

initial launch. Note that the feedback correction phase is highly random during the early training and is greatly reduced and systematic during the late training.

targets by the end of the washout phases (last six vision trials)
with an absolute error of 4.5± 1.8mm.

During the initial exposure to the learning tasks (first 6
trials), the subjects produced a substantial error (absolute
error of 20.19 ± 0.92 cm, no-vision trials), which were
characteristically distinct based on the learning tasks and
movement directions. As depicted by the examples in Figure 3

and Supplementary Figure 6, reaching movements early in
the training phase were highly variable across subsequent
trials, and the corrective actions after the initial launch
were seemingly random. Note in these examples that the
direction of the initial launch varied more during the early
training but became consistent by the end of the training.
As seen in an example learning curve from a subject
(Supplementary Figure 5), the movement errors from the initial
launches to the targets reduced as training progressed. Also,
the length of the corrective actions became smaller and
systematic toward the end of the training phases as the
subjects practiced. We measured 16.8± 6 segmented movements
(approximated by the number of prominent humps in speed
profiles; averaged across the subjects who received normal
feedback) during early training (first 5 trials) and 3.5 ±
0.6 segmented movements during late training (last 5 trials).
We measured 2.5 ± 0.6 segmented movements during the
baseline phase.

We exhaustively cross-validated several model structures that
assessed how the initial launch to the targets (first submovement
of the trials) are shaped by visually perceived error. The
model structures included the learning rates that were either
constant, error magnitude dependent (linear and quadratic
functions of error), or Gaussian-weighted. The models also used
the error history from past 2 to 8 trials. Furthermore, the
models considered generalization across movement directions.
The regression statistics are shown in Supplementary Figure 1.

When cross-validating across subjects, we found that the
median models from the training set predicted systematic
changes in the movement errors from the test set significantly
better than the average models (p < 0.01; with Bonferroni
correction). The cross-validations identified two models that
had the significantly lowest RMSE (p < 0.01; with Bonferroni
correction) in the test-set partitions across subjects (Figure 4;
Supplementary Figure 3). These models were the first- and
third-order mixed models with constant learning rates (m.1.1
and m.3.1), which had RMSE significantly lower than 23 out
of 28 total model candidates. The first-order mixed model with
learning rates that were quadratic functions of error magnitude
(m.1.3) was the second-best that had RMSE significantly lower
than 22 out of 28 total model structures. Among these, the
first-order mixed model (m.1.1) had the lowest number of
model parameters.
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FIGURE 4 | Accuracy between model predictions and observations during the cross-validation across subjects, indicating the superiority of the first-order mixed

model (m.1.1). (A) Left-tailed paired Wilcoxon tests are shown on a matrix, where a green square indicates significantly lower RMSE in the cross-validation test set

partitions (p < 0.01; with Bonferroni correction; toward lower RMSE) for the model listed along its row compared to the model listed along its column. No statistical

tests were performed along the diagonal of the matrix as indicated by dark gray squares. The histogram next to the matrix shows the model score as the number of

times a particular model had significantly lower RMSE compare to other models minus the number of times other models had significantly lower RMSE compare to a

particular model (number of green squares across a model’s row number of green squares across a model’s column). (B) Each dot represents a paired difference

between its respective model’s and the first-order mixed model’s (m.1.1) MLE of RMSE for a cross-validation test set partition. Horizontal white bars and vertical black

bars represent inter-quartile range and median of the paired differences of RMSE across all cross-validation test set partitions. Shaded regions show kernel density

estimates for the distribution. The first- and third-order mixed models with constant learning rates (m.1.1 and m.3.1) had significantly lowest RMSE (p < 0.01) and

performed equally best in the cross-validation test set partitions across subjects. The first-order mixed model (m.1.1) was clearly the winner since it had the lowest

number of model parameters.

While the cross-validation analysis across subjects identified
the model structure (i.e., m.1.1) that is consistently able to
predict the learning trends for new subjects, we wanted to
further test whether the same model structure is also able
to predict the learning trends for new learning tasks within
subject. When cross-validating across tasks within subject, we
again found that the median models from the training set
predicted systematic changes in the movement errors from the
test set significantly better than the average models (p < 0.01;
with Bonferroni correction). This cross-validation across tasks
identified the first-order direction-specific model with constant
learning rates (ds.1.1) that had the significantly lowest RMSE
(p < 0.01, with Bonferroni correction) in the test-set partitions
(Supplementary Figure 4). This model (ds.1.1) had RMSE
significantly lower than 22 out of 28 total model candidates.

The effective learning rates for the first-order affine models
are shown in Figure 5. The offset parameters (A value) for both
the direction-specific (ds.1.1) and mixed models (m.1.1) were
significantly positive (p < 0.05; sign-test across subjects and
learning tasks) and were also learning task dependent (p < 0.05;

Kruskal-Wallis test with learning task as a factor). Furthermore,
the offset parameters (A value) for the direction-specific model
(ds.1.1) were movement direction dependent (p < 0.05; Kruskal-
Wallis test with movement direction as a factor). The learning
rates associated with the direction-specific error (B value) for
the direction-specific model (ds.1.1) were significantly negative
(p < 0.05; sign-test across subjects and learning tasks) and were
also learning task dependent (p < 0.05; Kruskal-Wallis test with
learning task as a factor).

For the mixed model (m.1.1), there were instances when
variance was shared between the learning rates (B and Z values)
that were associated with the direction-specific error (ê) and
with the generalized error (ĝ). When memory for a movement
direction could update for the mixed model (m.1.1) during the
trial when that particular movement direction was practiced
[i.e., W = 1 and θ = 0, see Equations (9) and (10)], the
effective learning rates (Z + B value) were significantly negative
(p < 0.05; sign-test across subjects and learning tasks). However,
when memory for a movement direction could update using the
momentum method for the mixed model (m.1.1) during the trial
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FIGURE 5 | Median parameter values for the first-order affine models. (A) The model offsets (A value). (B) The learning rates associated with the direction-specific error

(B value). (C) The effective learning rates associated with generalization across movement directions, Z*W(θ ), see Equation (9) and (10). Markers (circles and triangles)

indicate median values and error bars indicate IQR across all subjects and directions. A set of eight error bars (in all subplots and lines in C) for each model represents

eight learning tasks. The offset parameters (A value) for both the direction-specific (ds.1.1) and mixed models (m.1.1) were significantly positive (p < 0.05; sign-test)

and were also learning task dependent (p < 0.05; Kruskal-Wallis test). The learning rates associated with the direction-specific error (B value) for the direction-specific

model (ds.1.1) were significantly negative (p < 0.05; sign-test) and were also learning task dependent (p < 0.05; Kruskal-Wallis test). When memory for a movement

direction could update for the mixed model (m.1.1) during the trial when that particular movement direction was practiced (i.e.,W = 1 and θ = 0), the effective learning

rates (Z + B value; triangles) were significantly negative (p < 0.05; sign-test). However, when memory for a movement direction could update using the momentum

method for the mixed model (m.1.1) during the trial when that particular movement direction was not practiced (i.e., W 6= 1 and θ 6= 0; open red circle), the learning

rates (B value) were significantly positive (p < 0.05; sign-test). The presence of these positive learning rates indicates that there were error increasing processes (e.g.,

forgetting or unlearning). For the mixed models (m.1.1), the effective learning rates associated with the generalized error (Z*W) were more negative at zero degrees of

angular separation between movement directions but became less negative as the angular separation increased to 60 degrees or more. These learning rates were

symmetric across positive and negative (clockwise and counterclockwise) angular distances. All effective learning rates associated with the generalized error (Z*W)

were significantly negative (p < 0.05; sign-test) and were learning task dependent at 120 and 180 degrees of angular distances (p < 0.05; Kruskal-Wallis test).

when that particular movement direction was not practiced (i.e.,
W 6= 1 and θ 6= 0), the learning rates (B value) were significantly
positive (p < 0.05; sign-test across subjects and learning tasks).
The presence of these positive learning rates indicates that there
were error increasing processes, such as forgetting or unlearning.

For the mixed models (m.1.1), the effective learning rates
associated with the generalized error (Z∗W) were more negative
at zero degrees of angular separation between movement
directions but became less negative as the angular separation
increased to 60 degrees or more. These learning rates
were symmetric across positive and negative (clockwise and
counterclockwise) angular distances. All effective learning rates
associated with the generalized error (Z∗W) were significantly
negative (p < 0.05; sign-test across subjects and learning tasks),
and these learning rates were learning task dependent at 120
and 180 degrees of angular distances (p < 0.05; Kruskal-
Wallis test with learning task as a factor performed at each
angular separation).

DISCUSSION

We investigated how the neuromotor system may incorporate
randomly perceived visual error across movement directions to
update its trial-to-trial initial launch to reaching targets. We used
computational models to test whether the learning rates were
constant, error magnitude dependent, or Gaussian-weighted. We

also tested whether error history from past 2 to 8 trials are used
and whether errors are generalized across movement directions.
Our cross-validation analysis identified the first-order mixed
model with constant learning rates (m.1.1) that is consistently
able to predict the learning trends for new subjects across all
learning tasks (Figure 4; Supplementary Figure 3). We further
tested whether the same model structure is also able to predict
the learning trends for new learning tasks within each subject,
and this cross-validation analysis identified the first-order
direction-specific model with constant learning rates (ds.1.1;
Supplementary Figure 4). The mixed model structure (m.1.1)
allowed for the generalization of learning across movement
direction, whereas the direction-specific model (ds.1.1) did

not. This difference in the model structures indicated that the

generalization of learned skill across movement direction was not

consistent across different leaning tasks. We did in fact find that
the subjects learned different generalization patterns for at least

some of the learning tasks (Figure 5).
The first-order mixed model (m.1.1) revealed an interaction

between the learning and forgetting processes. This model
exhibited learning at the practiced movement direction on a
given trial as expected (negative Z + B value at zero degrees
in Figure 5C). The forgetting process (error increasing positive
learning rates; B value in Figure 5B) was observed at the
unpracticed movement directions (with learning effects from
generalization from the practiced movement direction, Z∗W).
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Donchin et al. (2003) first defined a model that accounted for
the generalization of skill learning across movement directions
through trial-to-trial performances, but their model did not
include any dynamics associated with memory. Our list of
candidate model structures also included the generalizing models
(e.g., model g.1.1) that were similar to theirs (Donchin et al.,
2003). However, our cross-validation analysis indicated that
both the direction-specific memory dynamics (decay of learning
effects or unlearning) and the generalization should be accounted
for (e.g., using model m.1.1) to predict trial-to-trial changes in
the initial launch to reaching targets during learning. Trial-to-
trial unlearning has been observed earlier (Scheidt et al., 2000,
2001; Thoroughman and Shadmehr, 2000), and researchers have
posited that there might be a distinct neural system that allows
for rapid unlearning (Smith et al., 2006; Hirashima and Nozaki,
2012). Here, our first-order mixed model (m.1.1) incorporates
learning, forgetting and generalization effects across movement
directions during randomized training.

Variety of results about the shape of the generalization curves
that span across movement directions have been observed. Some
studies found asymmetric transfer of learning to the clockwise
and counterclockwise side from the trained direction (Darainy
et al., 2009; Gonzalez Castro et al., 2011). A recent study
further found inconsistent asymmetries that depended on the
trained movement directions (Rezazadeh and Berniker, 2019).
Other studies did not find such asymmetries (Mattar and Ostry,
2007). In this study, while we also failed to detect asymmetric
generalization of the learning across movement directions, the
pattern of generalization was learning task dependent. The
determinant factors for the shape of the generalization curves
that span across movement directions are not well-understood.
Some studies report that limb stiffness can account for the
varying generalization curves (Darainy et al., 2009; Rezazadeh
and Berniker, 2019). Limb stiffness can change either due to
change in reach direction or due to newly learned motor
commands (Burdet et al., 2001; Franklin et al., 2003). Here, it
could have been that limb stiffness varied across at least some of
the eight learning tasks of this study. However, our models did
not account for limb stiffness. It remains to be seen whether the
mixed model (m.1.1) that accounts for limb stiffness can predict
learning trends for a new learning task (within subject) better
than the direction-specific model (ds.1.1).

Consistent with prior work (Gandolfo et al., 1996; Sainburg
et al., 1999; Donchin et al., 2003; Witney and Wolpert, 2003;
Malfait et al., 2005; Berniker et al., 2014), we also found
that the transfer of the learning effects was local (within 60
degrees) from where movement errors were perceived. This
narrowly generalizing learning provides evidence for a modular
structure of the motor learning system (Ghahramani and
Wolpert, 1997; Wolpert and Kawato, 1998; Flanagan et al., 1999;
Kawato, 1999). Some researchers estimated the shape of the
generalization function to be bimodal (Donchin et al., 2003;
Wainscott et al., 2005), where they estimated larger effects of
generalization at 0 and 180 degrees than intermediate degrees
of angular distance between movement directions. Here, we did
not find the larger effects of generalization at 180 degrees than
intermediate angles.

We foundweak indications for the sub-linear error-dependent
learning rates (using model m.1.3). This has been shown in
other studies that proportionate amount of learning from error
at higher error magnitude is reduced (Robinson et al., 2003;
Fine and Thoroughman, 2007; Wei and Kording, 2009; Marko
et al., 2012). Recently, a theoretical framework was proposed to
describe how the memory of error experienced over multiple
sessions (or blocks) may give rise to the error-dependent learning
rate (Herzfeld et al., 2014). In their study, the learning task was
one dimensional (one target) and simple, i.e., the perturbations
were a linear function of hand position or velocity, where the
subjects presumably could have a so-called informative prior
(Bolstad and Curran, 2017) that resulted in the systematic
corrective movements and guided learning. So, for example,
when forces pushed the hand to the left, subjects knew how
to readily correct by moving to the right. Furthermore, their
theoretical framework used error-dependent learning rate to
explain the phenomenon of “savings” and “meta-learning,” where
prior experience can facilitate re-adaptation (Kojima et al., 2004;
Braun et al., 2009; Malone et al., 2011; Turnham et al., 2012;
Sarwary et al., 2013; Herzfeld et al., 2014). In our experiment, the
learning tasks were non-linear hand-to-vision mappings where
the subjects seemed to have an uninformative prior that did not
prescribe proper actions, resulting in almost random corrective
search in the early training (Figure 3; Supplementary Figure 6).
Furthermore, while the subjects had eight blocks of training in
our study, each learning task was novel (possibly interfering);
subjects never experienced the same error across different
training blocks. Thus, our weak detection for an error-dependent
learning rate should also be considered as a model candidate to
be tested on a different dataset.

When the motor system is lacking in prior knowledge of what
perceptual changes accompany the motor outputs, movements
are likely to be more variable as a consequence (Figure 3;
Supplementary Figure 6). Moreover, EA-gain enlarges not only
the magnitude of error but also the variability associated with
the error. While such variation is argued to be both useful
for a breadth of experience, it might also be destructive due
to perceived uncertainty (Takiyama et al., 2015). Researchers
have shown that the brain can actively regulate motor variability
(Mandelblat-Cerf et al., 2009), and these highly variable
movements have the potential to facilitate error-based motor
learning (Wu et al., 2014). However, the heightened motor
variability leads to inconsistent feedback, and how the error in
this type of feedback is evaluated by the motor system to update
its feedforward plan remained unexplained. Our results (using
model m.3.1) provide the possibility of a higher-order learning
process that can incorporate such variable errors from the history
of past errors.

Variability in experiences is not to be confused with
unpredictability in the environment. Variability in feedback
can be due to random environmental disturbances, natural
physiological (signal-dependent) noise (Schmidt et al., 1979;
Harris and Wolpert, 1998; Jones et al., 2002; van Beers et al.,
2002; Todorov, 2004; Osborne et al., 2005; O’Sullivan et al., 2009;
Shmuelof et al., 2012), and other active sources (Mandelblat-Cerf
et al., 2009; Wu et al., 2014). Learning is less effective unless

Frontiers in Neurorobotics | www.frontiersin.org 12 October 2021 | Volume 15 | Article 651214

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Parmar and Patton Direction-Specific Tuning With Local Generalization

perceived errors have some form of consistency across multiple
trials. Thus, the motor systemmust have mechanisms to properly
assign credit to the sources of error (Berniker and Kording,
2008; Wei and Kording, 2009) to keep track of consistent error.
Researchers have shown that the motor system can reduce the
learning rate in a rapidly changing environment (Herzfeld et al.,
2014), and the motor system is most likely to learn only from
the latest error in the stochastic non-stationary environment,
rather than from error history (Scheidt et al., 2001). In our study,
because sources of variation came more from the intention and
enlarged due to EA, learning may depend on error history. The
nature of the variability of error as seen by the subjects was
different in our study compared to other studies (Scheidt et al.,
2001; Herzfeld et al., 2014). In their study, the perturbations
were random or rapidly changing trial-to-trial, so the same
two motor outputs can result in different feedback. In our
study, however, visual distortions did not change, and the same
two motor outputs produced the same feedback. Furthermore,
any variability in the visual feedback our subjects perceived
was the augmented version of their motor variability under
the EA paradigm, and there was no external source of the
random disturbance.

It would be interesting to further investigate whether
the current results about the motor learning obtained for
the right-handed individuals with the right arm training
is also corroborated with the left-arm training. However,
handedness is an important topic in the control of arm
movements, and researchers have reported lateralization of
motor performance and inter-limb asymmetries in goal-directed
control of arm movements (Sainburg and Kalakanis, 2000;
Wang and Sainburg, 2007). Under the dynamic-dominance
hypothesis, researchers have demonstrated that the control of
right arm for the right-handed individual is optimized for
limb coordination or dynamics while the control of non-
dominant left arm is optimized for the end-point positional
accuracy (Sainburg, 2002, 2005; Yadav and Sainburg, 2014).
Such hemispheric specialization of motor control can influence
adaptation of movement skills (McGrath and Kantak, 2016).
The role of handedness during adaptation of movement
skills through randomized training schedule across multiple
movement directions remains to be further studied.

While the model structure identified in the current study
(model m.1.1) matched previous results (Parmar and Patton,
2018), its parameter values differed. Differences from previous
work here could be because of methodological changes. The
current study used a different error metric (maximum error
from the whole initial launch to the target vs. root-mean-square
error from the first 150ms of movement we used in Parmar and
Patton, 2018). Furthermore, the current study presented median
parameter values since median models performed superior
under cross-validation. Whereas the preliminary results of the
parameter values were based on average models, which were not
cross-validated. In this study, we used cross-validation to evaluate
the quality of and select the best model. Cross-validation helps
prevent idiosyncratic fitting and accommodate latent variables.

Many confounding factors might have led to poor model
fits (Supplementary Figure 1). For example, we found only

about 41.11, 39.49, 39.14, and 29.39% of variance accounted (R2

MLE) by the models that performed best under cross-validations
(m.1.3, m.1.1, m.3.1, and ds.1.1, respectively). The poor R2 may
be attributed to a low SNR, arising from the error-augmentation
experimental conditions, the difficult learning tasks, and the
randomized experiment design. For the first-order mixed model
(m.1.1), we found a negative correlation between R2 and
standard deviation of residual error (Supplementary Figure 2).
This indicated that low SNR (approximated as high standard
deviation of residual error) deteriorated the model fit quality
(R2). Furthermore, in a separate analysis, we found that the
standard deviation of residual error increased with EA-gain.
Such an effect was expected because EA-gain condition amplifies
the variability associated with the movement error. Also, the
visuomotor distortions used in this study were non-linear and
highly difficult to learn. This can be seen in the movement traces
of the early training trials (Figure 3; Supplementary Figure 6)
where the corrective actions post the initial launch were
seemingly random and lengthy. Other studies that used this
type of visuomotor distortion (Flanagan and Rao, 1995) also
reported the similar results for the early training trials. Also,
the experiment design in this study used randomized trial
sequence across movement directions. Such sequences can have
either constructive or destructive interference (Sing and Smith,
2010) in learning across consecutive trials. Also, it is well-
known that exposure to conflicting visuomotor rotations or
force fields is very hard if not impossible to learn. While here
the different visuomotor distortions were not intermixed, they
followed closely (with a short washout after each). Thus, the
previous exposure might have interfered with learning in the
next exposure. However, since the order in which the different
visuomotor distortions presented was kept the same for all
subjects, any such interference may have been comparable across
subjects. Furthermore, the models tested in this study only
used the initial launch movements and did not account for
any learning that might have taken place during the feedback
correction phase of movements when the subjects navigated to
the target after the initial launch. All these factors may have
led to a low SNR. We changed our error metric from the
preliminary analysis (maximum error from the whole initial
launch to the target vs. root-mean-square error from the first
150ms of the movement that we used in Parmar and Patton,
2018), but the model R2 remained similar. Despite poor R2, the
cross-validation analysis provides indications about the model
structures of learning that remain consistent across subjects.

There are several different methods for model selections,
but the forward stepwise regression was the best suitable
method for our dataset. To select the best model structure, we
incrementally added a term to the model and evaluated the
model to see whether the additional terms yield statistically
better prediction error for new subjects or new learning tasks
(cross-validation test sets). In this ground up approach, we fitted
candidate model structures for each subject and each learning
task separately within a training set partition, and we evaluated
the median model on the test set partition. Alternatively, we
could have applied machine learning methods (such as LASSO
regularization) on our most complex model to select the best
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predictor terms. However, when using the LASSO method with
our dataset, handling of inter-subject variations and intra-subject
variations (variations across learning tasks) poses a challenge.
Model fitting with LASSO for each subject and each learning
task separately may not select the same predictor terms for each
case, and thus, deriving some average model out of models with
different predictors may not be feasible for the cross-validation.
Furthermore, fitting a model with LASSO on the whole training
set partition would disregard both inter-subject and intra-subject
variations. It remains to be seen whether the LASSO method
yields the same results as our ground-up approach.

Our study provides insights into how visually perceived error
from sparse repetitive movements across trials while practicing
reaching to several different movement directions shape motor
learning of visuomotor skills. Randomized-variable training
schedules that require practicing several different movement
directions consecutively can enhance the acquisition of skills
through a robust internal model. This suggests that the machine-
learning algorithms used for developing optimal training
for neurorehabilitation, sports coaching, and human-machine
interactions should include direction-specific specific models
with narrow generalization to neighboring movement directions.
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Supplementary Figure 1 | Summary of regression statistics using the coefficient

of determination (R2 and R2
adj ). The model structures listed on the left represent the

inter-trial change in movement error in response to the visually perceived error

during the initial launch of movement. Each colored circle represents its respective

statistics for a particular learning task for subjects (102 estimates from 8 learning

tasks x 15 subjects minus learning tasks with EA-gain = 0). Shaded colored

regions show kernel density estimates for the distribution. Horizontal white bars

and vertical black bars represent inter-quartile range and median across all

subjects and learning tasks (blue = direction-specific model; green = generalizing

model; red = mixed model).

Supplementary Figure 2 | Relationship between R2 and standard deviation of

residual error for the first-order mixed model (m.1.1). White circles represent

learning tasks for subjects. Shaded colored region represents the kernel density

estimate of the data. Red curve represents the linear regression between R2 and

standard deviation of residual error (F-test on the linear regression model against

constant model yielded p = 2.64∗10−8). Low SNR (approximated as high

standard deviation of residual error) deteriorated the fit quality (R2) for the

first-order mixed model (m.1.1).

Supplementary Figure 3 | Accuracy between model predictions and

observations during the cross-validation across subjects, indicating the superiority

of the first-order mixed model (m.1.1). (A) Left-tailed paired Wilcoxon tests are

shown on a matrix, where a green square indicates significantly lower RMSE in the

cross-validation test set partitions (p < 0.01; with Bonferroni correction; toward

lower RMSE) for the model listed along its row compared to the model listed along

its column. No statistical tests were performed along the diagonal of the matrix as

indicated by dark gray squares. The histogram next to the matrix shows the model

score as the number of times a particular model had significantly lower RMSE

compared to other models minus the number of times other models had

significantly lower RMSE compared to a particular model (number of green

squares across a model’s row number of green squares across a model’s column).

(B) Each dot represents the MLE of RMSE for a cross-validation test set partition.

Horizontal white bars and vertical black bars represent inter-quartile range and

median across all subjects, directions, and learning tasks. Shaded regions show

kernel density estimates for the RMSE distribution. The first- and third-order mixed

models with constant learning rates (m.1.1 and m.3.1) had significantly lowest

RMSE (p < 0.01) and performed equally best in the cross-validation test set

partitions across subjects. The first-order mixed model (m.1.1) was clearly the

winner since it had the lowest number of model parameters.

Supplementary Figure 4 | Accuracy between model predictions and

observations during the cross-validation across tasks, indicating the superiority of

the first-order direction-specific model (ds.1.1). (A) Left-tailed paired Wilcoxon

tests are shown on a matrix, where a green square indicates significantly lower

RMSE in the cross-validation test set partitions (p < 0.01; with Bonferroni

correction; toward lower RMSE) for the model listed along its row compared to the

model listed along its column. No statistical tests were performed along the

diagonal of the matrix as indicated by dark gray squares. The histogram next to

the matrix shows the model score as the number of times a particular model had

significantly lower RMSE compared to other models minus the number of times

other models had significantly lower RMSE compared to a particular model

(number of green squares across a model’s row number of green squares across

a model’s column). (B) Each dot represents the MLE of RMSE for a

cross-validation test set partition. Horizontal white bars and vertical black bars

represent inter-quartile range and median across all subjects, directions, and

learning tasks. Shaded regions show kernel density estimates for the RMSE

distribution. The first-order direction-specific model with constant learning rates

(ds.1.1) had significantly lowest RMSE (p < 0.01) in the cross-validation test set

partitions across tasks.

Supplementary Figure 5 | An example of the best model fit to learning data from

a subject. Circles are the errors performed by a subject during the learning task 4
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with EA{gain 1, offset 0}, and red curve is the fit of the affine mixed model (m.1.1).

This richness of behavior, such as the oscillation about zero, is possible due to the

multiple factors, a signed error metric, and iterative incremental learning

considered in the model.

Supplementary Figure 6 | Representative examples of movement paths from a

subject practicing the learning task 3 with EA{gain 1,offset 1}. Green and red

circles represent the start and target positions for the movements (15 cm apart).

The dotted black line is the ideal straight line. Blue segment is the initial launch of

the movement, and red segment is the first 150ms of the initial launch. Solid

Black line is the feedback correction phase of the movement where the subject

navigated to the target after the initial launch. Note that the feedback correction

phase is highly random during the early training and is greatly reduced and

systematic during the late training.
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