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Long-term human-robot interaction requires the continuous acquisition of knowledge.

This ability is referred to as lifelong learning (LL). LL is a long-standing challenge in

machine learning due to catastrophic forgetting, which states that continuously learning

from novel experiences leads to a decrease in the performance of previously acquired

knowledge. Two recently published LL approaches are the Growing Dual-Memory (GDM)

and the Self-organizing Incremental Neural Network+ (SOINN+). Both are growing neural

networks that create new neurons in response to novel sensory experiences. The latter

approach shows state-of-the-art clustering performance on sequentially available data

with low memory requirements regarding the number of nodes. However, classification

capabilities are not investigated. Two novel contributions are made in our research

paper: (I) An extended SOINN+ approach, called associative SOINN+ (A-SOINN+), is

proposed. It adopts two main properties of the GDM model to facilitate classification.

(II) A new LL object recognition dataset (v-NICO-World-LL) is presented. It is recorded in a

nearly photorealistic virtual environment, where a virtual humanoid robot manipulates 100

different objects belonging to 10 classes. Real-world and artificially created background

images, grouped into four different complexity levels, are utilized. The A-SOINN+ reaches

similar state-of-the-art classification accuracy results as the best GDM architecture

of this work and consists of 30 to 350 times fewer neurons, evaluated on two LL

object recognition datasets, the novel v-NICO-World-LL and the well-known CORe50.

Furthermore, we observe an approximately 268 times lower training time. These reduced

numbers result in lower memory and computational requirements, indicating higher

suitability for autonomous social robots with low computational resources to facilitate

a more efficient LL during long-term human-robot interactions.

Keywords: lifelong learning, self-organizing incremental neural network, growing dual-memory, lifelong learning

dataset, simulated humanoid robot, long-term human-robot interaction

1. INTRODUCTION

Social robots that interact with humans in their everyday lives are exposed to a dynamic
and challenging environment. This dynamic environment provides continuous data streams
(Parisi et al., 2019) that are potentially infinite and non-stationary (Ghesmoune et al., 2016;
Wiwatcharakoses and Berrar, 2019). Humans can continuously learn throughout their lifespan
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(Parisi et al., 2019). Hence, to realize an intelligent behavior
for long-term human-robot interaction (long-term HRI) in such
a complex environment, robots are required to continually
acquire new knowledge and adapt to unpredictable changes
over time (Dautenhahn, 2004; Parisi et al., 2018; Lomonaco
et al., 2019), e.g., by remembering aspects of past interactions
with humans (Leite et al., 2013). Current deep learning (DL)
approaches, especially convolutional neural networks (CNNs),
succeed in manymachine learning applications (Najafabadi et al.,
2015; Guo et al., 2016). Nevertheless, CNNs rely on a large
dataset of (partially) labeled training samples, assuming that all
samples are available during training (LeCun et al., 2015; Guo
et al., 2016; Parisi et al., 2019). Information that was never
seen before is frequently observed in a dynamic environment,
requiring a conventional DL approach to be retrained on new
and previous observations (Parisi et al., 2018, 2019). This can
lead to infeasible memory requirements since all previously
observed training samples need to be explicitly stored. The
ability to acquire new knowledge over time while preserving
previously learned tasks without retraining an architecture from
scratch is referred to as lifelong learning (LL) (Parisi et al.,
2019). LL is a long-standing challenge in machine learning
due to catastrophic forgetting, which states that continually
learning from non-stationary data distributions generally leads
to a decrease in the performance of previously learned
tasks (Parisi et al., 2019).

Two recently published LL approaches are the Growing
Dual-Memory (GDM), proposed by Parisi et al. (2018), and
the Self-organizing Incremental Neural Network+ (SOINN+),
proposed by Wiwatcharakoses and Berrar (2019). Both are
growing neural networks that create new neurons in response
to novel sensory experiences. The former model shows state-
of-the-art classification and the latter state-of-the-art clustering
results on sequentially available data. One of the main differences
between these approaches is the utilization of different forgetting
strategies. The GDM uses a predefined threshold that defines
the maximal age that edges in the network can have before
being pruned. If this threshold is too low, catastrophic forgetting
can occur since critical units of previously learned tasks can be
deleted due to their age (Liew et al., 2019). A too high maximal
age can lead to an infeasible amount of neurons. Therefore, an
appropriate maximal age must be determined [e.g., by cross-
validation (Wiwatcharakoses and Berrar, 2019)], which may not
be possible in the real world, with no fixed training data size
(Liew et al., 2019). Even though Parisi et al. (2018) state that
the periodic replay of neural activation trajectories could be
used to prevent the deletion of previously learned knowledge,
there was no investigation made concerning the interplay of the
maximum age and replay in terms of forgetting. On the other
hand, the SOINN+ does not require a predefined maximum age
threshold. It calculates this value during the learning process
itself. Wiwatcharakoses and Berrar (2019) showed that this
forgetting strategy leads to a higher clustering performance and
a lower amount of neurons than other growing neural networks.
Nevertheless, the authors neither investigated the classification
capabilities nor examined the model’s behavior on higher than
10-dimensional data.

The promising results of Wiwatcharakoses and Berrar (2019)
are the motivation for the development of an extended version
of the SOINN+ approach for classification tasks. We make
two main contributions. First, we propose two extensions to
the SOINN+, adopted from the GDM architecture. (1) An
associative matrix is utilized, which stores how often a neuron
observed a particular input label, enabling classification. (2)
Two additional constraints are introduced that regulate node
creation and node adaptation. A new neuron is only created
if the input label is unequal to the network’s predicted label.
On the other hand, nodes are only updated if the input label
is equal to the network prediction. We call this extended
version associative SOINN+ (A-SOINN+). Second, we present a
novel LL object recognition dataset, called v-NICO-World-LL.
It exhibits three novelties, to the best of our knowledge, not yet
realized in combination by other LL object recognition datasets.
(1) The background images are grouped into four different
complexity groups, enabling the evaluation of LL models in
environments of different levels of complexity. (2) A virtual
robot is manipulating objects instead of a human to simulate
a long-term HRI scenario where the robot receives different
objects over time. (3) It is highly controlled and reproducible,
mainly because it is recorded in a nearly photorealistic virtual
environment. The dataset consists of 100 different objects, split
into 10 categories. Twenty real-world and artificial images are
used for the background to simulate different environments. We
compare the A-SOINN+ to a conceptually similar state-of-the-
art LL approach, the GDM on two LL datasets, the v-NICO-
World-LL and the CORe50 (Lomonaco and Maltoni, 2017).
Furthermore, we investigate whether the A-SOINN+ can reach
state-of-the-art classification accuracy results compared to the
GDM while showing fewer memory requirements in terms of
created neurons which would be desirable for robots with low
computational resources. The A-SOINN+ shows similar high
accuracy results as the best GDM model. Simultaneously, a
lower amount of units is created, resulting in fewer memory
and computational requirements. A further ablation study shows
that the new node creation constraint extension leads to the
generation of fewer neurons.

Our paper is organized as follows. The following section
(Section 2) gives a brief overview of the related work and
focuses on the GDM, the SOINN+, and different LL benchmark
datasets. The A-SOINN+ approach and the new LL dataset
are presented in Section 3. Section 4 shows the experimental
setup and the results. The discussion of these results is
presented in Section 5. A conclusion and future work are given
in Section 6.

2. RELATED WORK

2.1. Lifelong Learning Approaches
Different approaches try to mitigate catastrophic forgetting in
different ways. According to Parisi et al. (2019) and Lesort
et al. (2020), those approaches can conceptually be grouped into
different categories. This section describes the four categories
presented in the work of Lesort et al. (2020), together with
example approaches.
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Dynamic Architecture
Approaches belonging to this category modify the model’s
architecture dynamically, either explicitly or implicitly.
Approaches with explicit architectural modifications create
either new models as soon as a new task occurs and connect
those models [e.g., Progressive Neural Networks (PNN) (Rusu
et al., 2016)] or create new neurons inside the model for each
new task, like the Self-organizing Incremental Neural Network+
(SOINN+) (Wiwatcharakoses and Berrar, 2019) (Subsection 2.3).
Approaches that make implicit modifications are not directly
changing the architecture. Instead, either a part of the model is
deactivated (e.g., freezing weights during backpropagation), or
the forward pass paths are modified while learning a new task.
Freezing weight approaches are, for example, the hard attention
to the task (HAT) (Serrà et al., 2018), the PackNet (Mallya and
Lazebnik, 2017), or the Piggyback (PB) (Mallya et al., 2018)
approach. The adaptation of the forward pass path is realized in
PathNet (Fernando et al., 2017).

Regularization
Lesort et al. (2020) present two types of regularization
approaches, penalty computing and knowledge distillation.
Penalty computing approaches regulate how strong weights
are updated while learning a task. Approaches like elastic
weight consolidation (EWC) (Kirkpatrick et al., 2016), Synaptic
Intelligence (SI) (Zenke et al., 2017), and Memory Aware
Synapses (MAS) (Aljundi et al., 2018) search for important
weights inside the model and penalize substantial changes to
them (Parisi et al., 2019). Hence, the weights are protected from
being modified if they are crucial for previously learned tasks
(Lesort et al., 2020). Knowledge distillation in a LL context is
realized by training a model A on task ti. After A learned to solve
the task, a model B is trained to solve a new task ti+1 and to
generate the same output asA. Hence, knowledge is distilled from
A to B. In the end, B is required to solve both tasks. The learning
without forgetting (LWF) approach of Li and Hoiem (2018) is an
example of a knowledge distillation technique (Parisi et al., 2019).

Rehearsal
Rehearsal approaches save raw data samples of previous tasks
and incorporate them into the new task’s training set. These
samples can either be randomly or carefully chosen to save
representatives of past tasks. The Incremental Classifier and
Representation Learning (iCaRL) (Rebuffi et al., 2016) is an
example rehearsal approach that keeps the most representative
samples of previous tasks for future learning. This strategy allows
weight strengthening for already learned memories.

Generative Replay
Compared to rehearsal approaches, generative replay (or pseudo-
rehearsal) algorithms learn to artificially generate data samples
for past tasks instead of saving raw data of previously seen
tasks. Generative models learn the distribution of data previously
encountered to replay past experiences when learning on new
data. These models are often generative adversarial networks or
auto-encoders (Lesort et al., 2020). An example is the generative
replay approach (GR) proposed by Shin et al. (2017).

Hybrid
According to Lesort et al. (2020), most LL approaches rely on
more than one of the four mentioned strategies, often leading to
better solutions. One example is the previously mentioned iCaRL
approach of Rebuffi et al. (2016). Additionally to the usage of raw
data of past tasks, iCaRL uses knowledge distillation. Instead of
transferring information between different neural networks, this
knowledge is transferred within a single model between different
time steps, similarly to the LWF (Li and Hoiem, 2018) approach.
The Learning a Unified Classifier Incrementally via Rebalancing
(LUCIR) (Hou et al., 2019) is similar to iCaRL. However,
they introduce three new components to mitigate catastrophic
forgetting caused by the imbalance between new and old data.
This imbalance is also tackled by the Bias Correction (BiC)
approach (Wu et al., 2019). The authors show evidence that the
last fully connected layer of a CNN has a strong bias toward new
classes, which they corrected by utilizing a bias correction layer
after the last network layer. A further rehearsal and distillation
regularization approach is the Pooled Outputs Distillation for
Small-Task Incremental Learning (PODNet) (Douillard et al.,
2020). The authors introduce a novel distillation-loss to ensure
a balance between reducing forgetting and learning new tasks
for long-term incremental learning, as well as a multi-mode
similarity classifier that is more robust to data distribution
shifts. The Dynamic Expandable Network (DEN) of Yoon et al.
(2018) is a regularization and an architectural approach. It
identifies neurons in a deep neural network relevant for a new
task and selectively retrains them. However, if this selective
retraining fails to achieve a desired loss, the network is expanded
with additional neurons while unnecessary units are eliminated.
Catastrophic forgetting is mitigated by duplicating neurons
that drifted too much from their original values. Hou et al.
(2018) proposed the Adaptation by Distillation approach, which
combines knowledge distillation from an intermediate Expert
CNN to learn new tasks with caching of small data subsets
of previous tasks to preserve old knowledge during training a
CNN. Therefore, it is a regularization and a rehearsal approach.
The Dynamic Generative Memory (DGM), a combination of
generative replay and dynamic architecture model, is presented
by Ostapenko et al. (2019). A generative model is trained
incrementally to learn task distributions over time. Samples of
the current task and synthesized samples of all previous tasks
are used to train a task solver. Additionally, the generative
model can be expanded to ensure constant expressive power and
sufficient capacity. The Riemannian Walk (RWalk) approach of
Chaudhry et al. (2018) is a rehearsal and penalty computing
regularization technique based on Kullback–Leibler-divergence
(between output distributions) for parameter importance score
computation. Representative samples of previous tasks are
stored for replay to improve performance. A combination
of regularization and implicit dynamic architecture approach,
called Continual Learning with Adaptive Weights (CLAW), is
presented by Adel et al. (2020). The architecture adaptation
is data-driven by learning which neurons need to be trained
and what is the maximum adaptation applied to these neurons
using variational inference. The Incremental LearningWith Dual
Memory (IL2M) (Belouadah and Popescu, 2019) consists of two
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parts: (1) a deep learning model that is incrementally trained on
new samples and a constant number of previous representative
samples, and (2) an additional memory that stores previous
task statistics which are periodically used to rectify the network.
The Growing Dual Memory (GDM) approach of Parisi et al.
(2018) is an architectural and a generative replay approach. In
Subsection 2.2, it is described in more detail.

2.2. Growing Dual-Memory
The Growing Dual-Memory consists of two interconnected
recurrent Growing When Required (GWR) (Marsland et al.,
2002) models called growing episodic memory (G-EM) and
growing semantic memory (G-SM), where both are extended
versions of the Gamma-GWR model proposed by Parisi et al.
(2017). Depending on the similarity between the input and the
nearest neighbor in the network, i.e., the best-matching unit
(BMU), new neurons are created or existing neurons trained.
This similarity (or activation) is computed using the exponential
function of the negative Euclidean distance. If the similarity is
too low, compared to a fixed predefined activation threshold, a
new neuron is created. Otherwise, the BMU and its neighbors
are trained toward the input. Additional context vectors are used
for each neuron. These context vectors are integrated into the
similarity computation, allowing the utilization of past network
activations to learn the input’s temporal structure (Parisi et al.,
2018). In both G-EM and G-SM, edges that exceed a predefined
maximum age threshold are considered to be “too old” and are,
therefore, removed. Isolated nodes are deleted. In the G-EM
layer, temporal connections between neurons are introduced
where consecutively activated units show a stronger temporal
link. Given a neuron s(i − 1), the temporal connections allow
the determination of the most probable next neuron s(i) of a
prototype trajectory. These trajectories are replayed to G-EM
and G-SM in the absence of external input. The weights of the
BMU inside the G-EM and its temporal information are used
to train the G-SM layer. In G-SM, Parisi et al. (2018) equipped
the Gamma-GWR network with two additional constraints. It
will only create new nodes if it cannot predict the current
input correctly, and it will only update nodes if the input label
can be adequately predicted. Both constraints are realized by
maintaining an associative matrix H(j, l) for label predictions. It
stores a histogram of input labels for each node j. The prediction
of the GDM network is the label the BMU most frequently
observed in the past. Additionally, Parisi et al. (2018) used a pre-
trained and fine-tuned VGG-16 CNN (Simonyan and Zisserman,
2014) as a feature extractor to create 256-dimensional feature
vectors for each input image. Transfer learning was performed
using the CORe50 dataset (Subsection 2.4). These feature vectors
are then used as the input for the G-EM layer.

2.3. Self-Organizing Incremental Neural
Network+
The Self-organizing Incremental Neural Network+ approach
of Wiwatcharakoses and Berrar (2019) has similarities to
the Gamma-GWR architecture. Nevertheless, it differs
fundamentally in how the deletion and creation of nodes
or edges take place. The SOINN+ approach considers the

deletion of edges and nodes as an intrinsic part of the learning
itself. It deletes edges and nodes only if they are not relevant
enough for the learning task (Wiwatcharakoses and Berrar,
2019). The key aspects of the SOINN+ approach are the lifetime
of an edge as well as the trustworthiness, idle time, and (un-)utility
of a node. Trustworthiness is used to determine whether to link
two nodes with an edge or not. Particularly, the more trust there
is in these nodes, the more likely they are connected. The more
often a node was chosen as the BMU, the higher is the trust in
it. This technique tries to avoid connecting nodes that represent
noise. The lifetime/age of already deleted edges and the lifetime
of all edges reachable from the BMU are used to calculate an
edge pruning threshold. If the lifetime of an edge exceeds this
threshold, it is removed. This technique enables the deletion of
edges that connect nodes of different clusters to isolate these.
The unutility is the ratio between the idle time and the winning
time of a node. The former represents the number of iterations
passed since the node was a BMU, and the latter the number of
times it was chosen as the BMU. A node pruning threshold is
calculated using the unutilities of deleted and existing nodes. If
the unutility of a node exceeds this threshold, it is a candidate
for deletion.

2.4. Benchmark Datasets
Most LL benchmark datasets are adopted from other fields
not explicitly created for LL (Lesort et al., 2020). The
samples of these datasets are split, artificially modified (e.g.,
rotation or permutation), or concatenated to create a sequence
of tasks (Lesort et al., 2020). Examples are the permuted
MNIST used by Kirkpatrick et al. (2016), the rotated MNIST
(Lopez-Paz and Ranzato, 2017), or the incremental CIFAR100
(Rebuffi et al., 2016). Real-world datasets suitable for LL are
the iCubWorld28 (Pasquale et al., 2015) or the iCubWorld
Transformations (Pasquale et al., 2016; Pasquale et al., 2017).
In these datasets, a human operator manipulates different
objects in front of the iCub (Metta et al., 2008) robot’s
cameras. A tracking routine is used to move the robot’s
gaze toward the object and extract a bounding box around
it. Lomonaco and Maltoni (2017) proposed the CORe50, a
dataset specially designed for continuous object recognition.
Fifty different objects belonging to 10 object categories are
recorded. Each category consists of five instances. In contrast
to the iCubWorld datasets, each object is recorded in front
of 11 different real-world environments, both outdoor and
indoor. In each video (15 s, 20 fps), a human hand moves and
rotates the object smoothly in front of a camera. A motion-
based tracker is used to create images with a resolution of
128 × 128 pixels by cutting out a bounding box around
the object. However, both dataset acquisition processes are
not controlled enough for perfect reproducibility. Besides,
the ability to change individual aspects in the scenario (e.g.,
the background) without changing others in any way is not
given. Nevertheless, this is desirable to analyze the behavior
of LL models on particular environmental changes. The Toys-
200 dataset of Stojanov et al. (2019) is recorded in a 3D
virtual environment and consists of 200 toy-like objects. These
are translated and scaled in front of a moving camera. The
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A

B

FIGURE 1 | This figure shows an illustration of the A-SOINN+ (A) and the feature extractor (B). Over time, different frames become available. These are fed into the

feature extractor, illustrated by the thick, black arrow. The feature extractor creates feature vectors representing the image frames. These feature vectors are fed into

the A-SOINN+ model afterward, illustrated by the thin, yellow arrow. The proposed model stores a histogram of input labels for each node to facilitate classification,

shown for one node in the top right corner. This figure is inspired by the GDM illustration of Parisi et al. (2018). The 3D object is a derivative of “Antique Pocket Watch”

by “michael_grodkowski” licensed under CC BY 4.0.

background contains further objects of the dataset distributed
over a floor. In contrast to the CORe50 and the iCubWorld
datasets, it is highly reproducible. However, it contains no
operator (human or robot) who manipulates the objects, which
would be the case in a long-term HRI. Such manipulation can
lead to occlusion, making the task more difficult. Furthermore,
except for the floor scenario, no real-world background images
are considered.

3. METHODOLOGY

3.1. Associative SOINN+
The associative SOINN+ (A-SOINN+) extends the SOINN+ of
Wiwatcharakoses and Berrar (2019) in two points. Both are
adopted from the GDM approach. (1) An associative matrix
H(j, l) is maintained, which stores how often a neuron observed a
particular input label. This point gives this extension its name and
enables classification, which was previously not possible in the
SOINN+. (2) Top-down cues to regulate the network’s structural
plasticity are introduced in the form of additional constraints
for node creation and weight adaptation. Additionally, inspired
by Parisi et al. (2018), a pre-trained and fine-tuned VGG-16
(Simonyan and Zisserman, 2014) CNN architecture is used as
a feature extractor to extract the most relevant features out of
images and reduce the dimensionality. The A-SOINN+ is an
architectural LL approach as it adapts its shape in response to
novel input. In contrast to GDM, it does not perform memory
replay and is, therefore, no hybrid approach. The architecture

of the A-SOINN+ and the feature extractor are illustrated in
Figure 1.

Furthermore, the (associative) SOINN+ algorithm1 is shown
in algorithms 1–6. The adaptations made in this work have the
prefix: (A-SOINN+).

Main Routine
The network is initialized with three random, unconnected
neurons with a winning time of one and an idle time of zero
(Algorithm 1, steps 1–4). The associative matrix is initially
empty (Algorithm 1, Step 5). As soon as a new training
sample x(t) becomes available, the BMU b and sBMU s
are computed using the Euclidean distance (Algorithm 1,
step 7). Furthermore, the associative matrix entries of the
BMU b are updated, such that H(b, l(t)) is increased by a
predefined δ+ and H(b, k) decreased by δ− for all k 6=

l(t) (Algorithm 1, steps 8 and 9) (Parisi et al., 2017). The
similarity thresholds of b and s are calculated afterward
(Algorithm 2) using:

τ (i) =

{

maxj∈Ni ||wi − wj||, if Ni 6= ∅

minj∈A\{i} ||wi − wj||, otherwise
, (1)

for i ∈ [b, s]. The weight vector is denoted by wi and the
neighbors of i by Ni. Hence, the similarity threshold of a node
i is the maximum distance from i to all of its neighbors.

1The Algorithm and all subroutines are created by following the explanations and

notations of Wiwatcharakoses and Berrar (2019) and Parisi et al. (2017).
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Algorithm 1. (Associative) Self-Organizing Incremental Neural
Network +
1: A← Set of neurons with random weight vectors.
2: WT(i)← 1,∀i ∈ [1, 2, 3] // Set the winning time to one.
3: IT(i)← 0,∀i ∈ [1, 2, 3] // Set the idle time to zero.
4: E← ∅ // Initialize an empty set of connections.
5: (A-SOINN+): H(i, ·) ← ∅,∀i ∈ [1, 2, 3] // Initialize an

associative matrix with no labels
6: for each input x(t) with label l(t) do
7: b← arg minj∈A ||x(t)− wj||

2, // Find the BMU

s← arg minj∈A\{b} ||x(t)− wj||
2 // Find the (s)BMU.

8: (A-SOINN+): 1H(b, l(t)) = δ+,
1H(b, k) = −δ−, ∀k ∈ L \ {l(t)} // Update associative
matrix

9: Nb,Ns ← neighbors of b, s
10: τ (b), τ (s) ← Calculation of similarity thresholds

(Algorithm 2)
11: (A-SOINN+): ξb ← arg maxl∈LH(b, l) // Get

prediction (Equation 2).
12: (A-SOINN+): creation_condition← ξb 6= l(t)
13: (A-SOINN+): adaptation_condition← ξb = l(t)
14: if (||x(t) − wb|| ≥ τ (b) or ||x(t) − ws|| ≥ τ (s)) and

creation_condition then

15: wr ← x(t), A← A∪ {r}, WT(r)← 1, IT(r)← 0
// Create a new node.

16: else if adaptation_condition then

17: Node merging (Algorithm 3)
18: Node linking (Algorithm 4)
19: Edge deletion (Algorithm 5)
20: end if

21: Node deletion (Algorithm 6)
22: end for

If i has no neighbors, τ (i) is the distance between i and
its closest node. The prediction (Algorithm 1, Step 11) of
the network is the label the BMU observed most frequently,
computed with:

ξb = arg max
l∈L

H(b, l). (2)

Suppose the Euclidean distance between the input x(t) and
b or between x(t) and s is larger than the corresponding
similarity threshold, and simultaneously the prediction ξb
of b is unequal to the input label l (i.e., creation condition
is true). In that case, a new node is created (Algorithm 1,
Step 15). The input x(t) is used as the weight vector of
the new node. Winning time and idle time are initiated
with one and zero, respectively. If, on the other hand,
no neuron is created, three subroutines are executed,
namely node merging, node linking, and edge deletion
(Algorithm 1, steps 16–19), but only if the input label
is unequal to the prediction (i.e., adaptation condition is
true). The node deletion subroutine is performed at the end
(Algorithm 1, Step 21).

Algorithm 2 . (Associative) SOINN+ Calculation of similarity
thresholds
1: for i in [b, s] do
2: if Ni 6= ∅ then

3: τ (i)← maxj∈Ni ||wi − wj|| // (Equation 1)
4: else

5: τ (i)← minj∈A\{i} ||wi − wj|| // (Equation 1)
6: end if

7: end for

Node Merging
In the node merging subroutine (Algorithm 3), the weights of b
and its neighbors i ∈ Nb are adapted toward the input with:

1wb = ǫb ·
x(t)− wb

WT(b)
, (3)

1wi = ǫn ·
x(t)− wi

WT(i)
. (4)

While Wiwatcharakoses and Berrar (2019) present a pull factor
η to regulate the neighboring neurons’ inertia, we use the
learning rate ǫn to resemble the GDM approach better. It can
be considered as the inverse pull factor ǫn =

1
η
. A further

learning rate ǫb is introduced to facilitate a more controlled
weight adaptation of the BMU. The amount of learning is also
modulated by the winning time to avoid strong adaptations of
well-trained units.

Node Linking
The node linking subroutine determines whether the BMU b and
the sBMU s are connected (Algorithm 4). Here, no modifications
are made compared to the original approach. A connection
between b and s is created if at least one of three conditions
(Algorithm 4, Step 9) is true. The first is that the number of edges
in the network is lower than three to ensure edge creation in the
initial training steps. The second and third conditions depend on
the trustworthiness T(i) of a node i, which is defined as:

T(a) =
WT(i)− 1

max(WT)− 1
, (5)

with the maximum winning time of all nodes max(WT).
Furthermore, the values τ̄b, τ̄s, σb, and σs are required. Let τb
be the set of similarity thresholds of each connected BMU (i.e.,
having at least one edge) ever encountered. τ̄b is the arithmetic
mean of τb and σb the corresponding standard deviation. τ̄s and
σs are analogously defined for the sBMUs. The two additional
conditions for node linking are defined as:

τ (b) · (1− T(b)) < τ̄b + 2 · σb, (6)

τ (s) · (1− T(s)) < τ̄s + 2 · σs. (7)

Hence, the more trust there is in b or s, the more likely they
are linked. Using this conditional connection technique tries to
connect nodes that do not represent noise (Wiwatcharakoses and
Berrar, 2019).
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Algorithm 3. (Associative) SOINN+ Node Merging

1: WT(b)←WT(b)+ 1
2: (A-SOINN+): wb ← wb + ǫb ·

x(t)−wb
WT(b)

// Update BMU’s

weight vector (Equation 3).
3: for i in Nb do

4: wi ← wi + ǫn ·
x(t)−wi
WT(i)

// Update the neighbors of b

(Equation 4).
5: end for

6: IT(b)← 0 // Set the idle time of the BMU to zero.

Edge Deletion
The lifetime (or age) LT(i, j) of an edge e = (i, j) plays a
crucial role in the edge deletion subroutine (Algorithm 5). If e
is connected to the BMU b and the sBMU s, its lifetime is reset
to one (Algorithm 4, Step 16). If it is connected to b but not
to s, it is increased by one (Algorithm 4, Step 19). First, the
lifetimes of all edges that can be reached from b are computed
(Lb) (Algorithm 5, Step 1). Edges with an exceptionally high
lifetime (i.e., outliers) are detected using the threshold:

ωedge = L0.75 + 2 · IQR(Lb). (8)

L0.75 represents the 75th percentile of the lifetimes in Lb and
IQR(Lb) = L0.75−L0.25 the interquartile range (Upton and Cook,
1996). Additionally, the average lifetime of all deleted edges L̄del,
as well as the number of deleted edges |Ldel|, are considered,
resulting in the final threshold:

λedge = L̄del ·
|Ldel|

|Ldel| + |Lb|
+ ωedge · (1−

|Ldel|

|Ldel| + |Lb|
). (9)

Edges connected to bwith a higher lifetime than λedge are deleted.
This deletion technique removes edges that connect nodes of
different clusters to isolate those (Wiwatcharakoses and Berrar,
2019).

Node Deletion
The node deletion subroutine is executed independently
of whether a node was added or merged
(Algorithm 1, Step 21). The unutility of a node i is
defined as:

U(i) =
IT(i)

WT(i)
. (10)

If a node was rarely chosen as the BMU, its unutility is high.
On the other hand, it is low if the node was relatively often a
BMU. Let U be the set of unutilities of not isolated nodes in
the network. The threshold for the outlierness of an unutility is
defined as:

ωnode = median(U )+ 2 · sMAD(U ), (11)

with the scaled median absolute deviation (sMAD) (Leys et al.,
2013) of the elements in U . Wiwatcharakoses and Berrar
(2019) do not explain why the sMAD is used here and
the IQR in the edge deletion subroutine. We assume that

Algorithm 4. (Associative) SOINN+ Node linking

1: for i in A do

2: max(WT)←Maximum winning time of all nodes

3: T(i) ← WT(i)−1
max(WT)−1

// Update trustworthiness of each

node (Equation 5).
4: end for

5: τ̄b, σb ← mean and standard deviation of the similarity
thresholds of all BMUs with an edge to sBMU

6: τ̄s, σs ← mean and standard deviation of the similarity
thresholds of all sBMUs with an edge to BMU

7: condition1← τ (b) · (1−T(b)) < τ̄b+ 2 · σb // (Equation 6)
8: condition2← τ (s) · (1− T(s)) < τ̄s + 2 · σs // (Equation 7)
9: if (|E| < 3) or condition1 or condition2 then
10: if (b, s) /∈ E then

11: E ← E ∪ {(b, s)} // Create an edge between the BMU
and the sBMU.

12: Update τ̄b, τ̄s, σb, σs
13: end if

14: end if

15: if (b, s) ∈ E then

16: LT(b, s)← 0 // Set the lifetime of the BMU, sBMU edge
to zero.

17: end if

18: for all i in Nb do

19: LT(b, i) ← LT(b, i) + 1 // Update the lifetime of all
neighbors of the BMU.

20: end for

they achieved a higher performance with this configuration.
Let |U del| be the number of deleted nodes and Ū del the
average unutility of these deleted nodes. Furthermore, let

Rnoise =
|I |
|A| be the ratio between the unconnected nodes

I and all nodes A. The threshold for node deletion is then
defined as:

λnode = Ūdel ·
|Udel|

|Udel| + |A \ I |
+ωnode · (1−

|Udel|

|Udel| + |A \ I |
) · (1−Rnoise).

(12)

Three conditions are required to be fulfilled for a node i to
be deleted: (1) at least one edge exists in the network, (2) the
unutility of i is larger than λnode, and (3) i is unconnected.

Further Adaptations
For efficiency reasons, further adaptations to the original
algorithm are performed. Instead of maintaining three sets of
deleted parts of the network, i.e., the set of all deleted nodes Adel,
the set of all deleted unutilities U del, and the set of lifetimes of
deleted edges Ldel, the A-SOINN+ approach only maintains the
properties of those sets. Notably, by continuously updating the
sizes |U del| = |Adel| and |Ldel|, the sums U sum

del
and L sum

del
, as

well as the mean values Ū del and L̄del (Algorithm 5, Step 8 and
Algorithm 6, Step 12). Thus, three sets are replaced by six values,
reducing the memory requirements, especially for large numbers
of deleted nodes and edges. We utilized context learning for the
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Algorithm 5. (Associative) SOINN+ Edge deletion

1: Lb ← set of lifetimes of edges through which the BMU can
be reached

2: L0.75 ← 75th percentile of elements in Lb
3: ωedge← L0.75 + 2 · IQR(Lb) // (Equation 8)

4: λedge ← L̄del ·
|Ldel|

|Ldel|+|Lb|
+ ωedge · (1 −

|Ldel|
|Ldel|+|Lb|

) //

(Equation 9)
5: for all i in Nb do

6: if LT(b, i) > λedge then

7: E← E \ {(b, i)} // Remove the edge.
8: (A-SOINN+): Update |Ldel|, L

sum
del

, and L̄del
9: end if

10: end for

Algorithm 6. (Associative) SOINN+ Node deletion

1: for i in A do

2: U(i) ← IT(i)
WT(i)

// Update unutilities of all nodes

(Equation 10).
3: end for

4: U ← Set of unutilities of all nodes with edges
5: I ← Set of unconnected nodes
6: ωnode ← median(U )+ 2 · sMAD(U ) // (Equation 11)
7: Rnoise ←

|I |
|A|

8: λnode ← Ū del ·
|U del|

|U del|+|A\I |
+ωnode ·(1−

|U del|
|U del|+|A\I |

)·(1−Rnoise)

// (Equation 12)
9: for i in A do

10: if |E| > 1 and U(i) > λnode and i has no edges then
11: A← A \ {i} // Delete the node.
12: (A-SOINN+): Update |U del|, U

sum
del

, and Ū del
13: end if

14: end for

15: for i in A do

16: IT(i) ← IT(i) + 1 // Increment the idle time of each
node.

17: end for

A-SOINN+ in the first place. However, preliminary tests showed
no improvements if doing so. Hence, we do not consider context
learning in the description of the algorithm.

3.2. v-NICO-World-LL, a New LL Dataset
In long-term HRI, robots are required to actively explore and
learn about their environment while interacting with a human.
Part of this is grasping items and viewing them from different
angles (along with collecting other multi-modal data, like tactile
information). We make a step toward this behavior with our
proposed LL dataset, the “virtual NICO World for Lifelong
Learning”(v-NICO-World-LL). It is inspired by the CORe50
of Lomonaco and Maltoni (2017) but exhibits three novel
features currently not considered by other object recognition
LL datasets:

1. The environments are grouped into different levels
of complexity.

2. A robot is manipulating the objects.
3. The dataset is recorded in a nearly photorealistic controlled

virtual environment.

The proposed dataset is recorded in a controlled virtual
environment in Blender (Blender Foundation, 2020) with a 3D
model of the humanoid robot NICO (Kerzel et al., 2017; Kerzel
et al., 2020) developed by the Knowledge Technology Group at
the Universität Hamburg. Using a virtual environment facilitates
a controlled and reproducible data acquisition process. In the
CORe50 and the iCubWorld datasets, a human operator is
holding the objects. However, in a long-term HRI scenario, a
robot needs to recognize objects in its hand as well. We fill
this gap by placing objects in the robot’s left hand. This aspect
leads to a different perspective on the object. Furthermore,

the robot hand differs from a human hand due to its shape

and color (e.g., it has only three fingers and is white-colored).
This results in different occlusions and contrasts compared to

a human hand. The fingers are positioned so that it looks as

if the robot is holding the object. Figure 2A shows the general
scenario. NICO starts with an outstretched arm in front of
a background panel. The black lines demonstrate the field of

vision of the main camera placed at the right eye and filling the
entire background panel. The same scenario but from the main
camera’s perspective is shown in Figure 2B. Since only a fraction

of the frames contains the object of interest, cropped images
focusing on the object are created using a second camera (orange

lines). This camera moves in two dimensions (i.e., left/right
and up/down) to follow the robot’s hand. The robot’s arm
is moving smoothly in a 10-s animation by manipulating an
elbow, a wrist, and a palm joint, as well as three shoulder joints.
RGB images are rendered with 24 fps from the perspective of
both cameras. The image resolutions are 512 × 512 pixels and
256 × 256 pixels for the main and moving camera, respectively.
The dataset consists of 100 objects belonging to 10 categories:
ball, book, bottle, cup, doughnut, glasses, pen, pocket watch,
present, and vase. These objects are chosen such that they could
appear in a long-term HRI scenario. The 10 instances of a
category C are denoted with I0 to I9 throughout this work.
All objects are downloaded from the four websites: https://
www.turbosquid.com, https://sketchfab.com, https://free3d.com,
and https://www.cgtrader.com in the period from April 26,
2020, to June 6, 2020. They are slightly modified in Blender
to fit into the scenario. The objects are manipulated in front
of 20 different backgrounds, divided into four background
complexities, each with five different background instances.
These different background complexities allow the controlled
evaluation of how LL models respond to different degrees of
environmental conditions. Figure 3 shows all backgrounds. Each
row represents a background complexity, and each column
an instance of this complexity. Background complexity 1 (B1),
shown in the first row of Figure 3, is composed of five plain
colored images. Real-world background images are used in B2
and B3 (second and third row, respectively) to simulate different
environments where long-termHRI can occur.While complexity
B2 consists of images with low variability (i.e., simple walls
with little content), B3 contains more complex indoor and
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FIGURE 2 | The Blender scenario from two different perspectives. (A) shows the robot, the plane, and the two fields of vision as black and orange lines. While the

former lines represent the fixed main camera positioned at the right eye, the latter represent the moving camera focused on the robot’s hand. (B) is showing the

perspective of the main camera.

outdoor scenes with different visible objects, like furniture or
plants. The real robot’s total height is 101 cm (Kerzel et al.,
2017), such that the cameras of NICO are approximately 89 cm
above the ground. Hence, each background image of B2 and
B3 is captured from a height of 89 cm to create more realistic
recordings. B4 (fourth row) comprises artificial images with a
cluttered dynamic structure where drawn objects move in the
background. Each instance of B2, B3, and B4 has a different
lighting condition in the virtual environment. In B2 and B3,
the real-world lighting conditions are tried to be reproduced. By
grouping the background images into different complexity levels,
the influence of different degrees of environmental conditions
on a model can be investigated, making it the key feature
of the v-NICO-World-LL dataset. Ten example images of the
dataset captured from themoving camera’s perspective are shown
in Figure 4. It illustrates the dataset’s diversity regarding the
background, lighting condition, and NICO’s hand position. In
total, the dataset consists of two times 2,000 videos (cropped and
non-cropped), each having 240 frames, resulting in two times
480,000 RGB images.2

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup
Five different experiments, organized into two parts, are
conducted. Each experiment considers different data samples.
The background complexities B1, B2, B3, and B4, are utilized in

2The dataset is available at https://www.inf.uni-hamburg.de/en/inst/ab/wtm/

research/corpora.html.

the first four experiments. In the last experiment, the CORe50
is used to determine the robustness of the A-SOINN+ against
a different and well-known dataset. In each experiment, three
GDM models with different maximal ages are compared to two
versions of the A-SOINN+. The considered maximal ages are
6,000, 12,000, and 28,000. These models are referred to as GDM
6,000, GDM 12,000, and GDM 28,000, respectively. Empirical
tests have shown that these maximal age values exhibit a good
trade-off between accuracy and neuron number. Additionally,
we investigate the performance of the A-SOINN+ with and
without the node creation constraint to examine this constraint’s
influence on neuron number and accuracy. The A-SOINN+
without creation constraint is referred to as (ncc)A-SOINN+.
We focus on analyzing this constraint as it is directly linked
to the two criteria, which we apply to evaluate the different
approaches: the task performance and the number of created
nodes. In each experiment, the models are required to learn 10
different tasks. A task ti of time step i refers to learning to classify
a particular category of the v-NICO-World-LL or the CORe50
dataset. We compare the A-SOINN+ only to the GDMdue to two
reasons. First, the GDM shows state-of-the-art LL performance
compared to other LL approaches (Parisi et al., 2018). Second,
both A-SOINN+ and GDM show a strong architectural
resemblance as they are based on the GWR (Marsland et al.,
2002) approach. In future work, further comparisons can
be examined.

v-NICO-World-LL Experiments
For the first four experiments, each frame is transformed into a
feature vector using a VGG-16 (Simonyan and Zisserman, 2014)
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FIGURE 3 | The 20 different backgrounds of the dataset. The images are split into four complexity groups (B1, B2, B3, and B4), each shown in one row with

increasing complexity from top to bottom. The first row shows the plain colored background images of B1. B2 and B3 (second and third row, respectively) are

showing real-world backgrounds. A camera captured the B2 and B3 examples from a height of 89 cm. B4 (fourth row) consists of artificial background images with

different colors and drawn objects.

feature extractor. It is pre-trained on the ImageNet (Russakovsky
et al., 2015) dataset and fine-tuned using the v-NICO-World-LL.
The original VGG-16 is adapted to have two 2048-dimensional
and one 128-dimensional fully connected hidden layers after
the last pooling layer. The output layer is 10-dimensional (one
for each category). Each frame is transformed using the third
hidden layer’s 128-dimensional output. In contrast to Parisi
et al. (2018), we use 128-dimensional vectors instead of 256-
dimensional to reduce the training time. The first three instances
(I0-I2) of each category are used to train the four mentioned
fully connected layers. Instances I3 to I7 are used to validate
the model and I8 and I9 to test it. Five runs are performed
with a particular hyperparameter assignment, resulting in a
test accuracy of 84.2 ± 0.32% averaged across these runs. No
hyperparameter optimization is done here since it is not essential
to find an optimal accuracy in this work. Instead, sufficiently
high accuracy results for reliable feature vector creation are

required. A video is represented by a feature vector sequence
(FVS) of the corresponding frames. Only each second frame
of a video is considered for training to reduce the training
time further.

At each iteration i, a task-dependent training set Tr′i is used to
train the models. It contains the FVS of the training instances Ii,3
to Ii,7 of the category Ci. The first three instances of each category
(I0-I2) are not considered in the LL experiments since the feature
extractor is trained on these. This strategy avoids that the feature
extractor learns “future” objects on which the LL models are
later trained. This contrasts with the work of Parisi et al. (2018),
where the feature extractor was trained on all object instances.
After each learned task, task-dependent test sets are used to
measure the performance of each model. Single-head evaluation
(Chaudhry et al., 2018) is performed, i.e., a task-dependent test
set Tei contains the instances Ii,8 and Ii,9, as well as Ij,8 and Ij,9 of
all previous tasks tj, with j < i. Hence, the models are required to
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FIGURE 4 | This figure presents 10 example images of the dataset captured from the moving camera’s perspective. Ten objects are shown in front of different

backgrounds with different lighting conditions. Additionally, NICO is holding the objects in different positions. (A) 3D model of “Tennis ball” by “tr3vinj”, (B) “Metal Cup”

by “Warkarma”, (C) “Mug” by “Kristijan Zecevic”, (D) “Beach Ball” by “Tommyleenev”, (E) “3D Wine Bottle Model” by “Johana-PS”, (F) “Glass Bottle” by “Aullwen”, (G)

“Gift - 3December” by “zhixson”, (H) Derivative of “Coffee and donuts” by “Ivan Dnistrian”, (I) Derivative of “Antique Pocket Watch” by “michael_grodkowski”, and (J)

Derivative of “Fountain Pen” by “Etherlyte”. All 10 models are used under CC BY 4.0 and also licensed under CC BY 4.0.

predict the category of the current task and the previous tasks.
Additionally, the networks are not only tested on the test set
Tei after learning ti but also all previous Tej, with j < i. Three
metrics are investigated: the average accuracy (Definition 1), the
average forgetting (Definition 2), and the number of neurons. For
the GDM models, the units of the G-EM and G-SM layers are
summed up.

Definition 1. (Average Accuracy Chaudhry et al., 2018)
Let ak,j ∈ [0, 1] be the accuracy evaluated on the test set Tej of
task tj with j ≤ k after training the model incrementally from t1
to tk. The average accuracy at task tk is:

Ak =
1

k

k
∑

j=1

ak,j.

Definition 2. (Average Forgetting Chaudhry et al., 2018)
Forgetting f kj ∈ [−1, 1] for a task tj, after the model learned from

task t1 to tk, is the difference between the maximum knowledge
gained about the task in the past and the knowledge the model
currently has about it: f kj = maxl∈{1,··· ,k−1} al,j − ak,j,∀j < k. The

average forgetting at task tk is, therefore:

Fk =
1

k− 1

k−1
∑

j=1

f kj .

Hence, Ak represents the performance of a model on the current
task tk and all previous tasks. Fk represents how much a model
forgot about all previous tasks given the current time step k.
The order of the tasks can affect the final results (Lomonaco
and Maltoni, 2017; Parisi et al., 2018). Hence, each experiment is
repeated four times, and the results are averaged. Each repetition
has a different, randomly generated, category order:

• R1: ball, bottle, cup, doughnut, glasses, pen, pocket watch,
present, vase, book
• R2: ball, book, bottle, cup, doughnut, glasses, pen, pocket

watch, present, vase
• R3: doughnut, ball, pocket watch, glasses, pen, book, bottle,

present, vase, cup
• R4: present, cup, pocket watch, vase, doughnut, pen, glasses,

book, ball, bottle

The GDM, and the A-SOINN+ approach, have hyperparameters
required to be tuned to preserve reliable models. Therefore, a
grid search is performed for each model. Since each experiment
requires 20 models (three GDM and two A-SOINN+ for each

repetition), 20 grid searches are executed for a single experiment.

The considered hyperparameters and assignments of the GDM

and A-SOINN+ are shown in Tables 1, 2, respectively. Memory
replay is used for each GDM model since Parisi et al. (2018)
already showed that it improves the performance of the GDM
approach. Preliminary tests confirmed this for the proposed
dataset. According to Parisi et al. (2018), K values larger than two
do not improve the GDM model’s performance. Therefore, only
two assignments are considered.

Both tables show the best assignments averaged across
all grid search iterations in bold letters. We considered
context learning for the A-SOINN+ in the first place.
Therefore, we utilize the number K of context vectors
in our grid searches. However, as preliminary tests
showed, no improvements were observable if including
context learning into the A-SOINN+. This grid search
confirms this assumption since both assignments show
similar average accuracy values (K = 2: 83.9%, K = 4:
83.7%). The best models of each grid search are used
for a more detailed analysis by investigating the three
mentioned metrics.
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TABLE 1 | This table shows the considered GDM hyperparameter assignments

for the grid searches of the first four experiments.

Parameter Description Assignments

K No. of context vectors 2, 4

[ǫb, ǫn] Learning rates [0.1, 0.001], [0.3, 0.003], [0.5, 0.005]

[aEth, a
S
th] Activation thresholds [0.1, 0.01], [0.3, 0.03], [0.5, 0.05]

K denotes the number of context vectors. ǫb and ǫn represent the learning rates of the

BMU and its neighbors, respectively. The activation thresholds of the G-EM and the G-SM

layers are denoted with aEth and a
S
th, respectively. The best results averaged across all grid

search iterations are shown in bold letters.

TABLE 2 | This table shows the considered A-SOINN+ hyperparameter

assignments for the grid searches of the first four experiments.

Parameter Description Assignments

K No. of context

vectors

2, 4

[ǫb, ǫn] Learning rates [0.3, 0.003], [0.5, 0.005],

[1, 0.001], [2, 0.001], [3, 0.002]

K denotes the number of context vectors. ǫb and ǫn represent the learning rates of the

BMU and its neighbors, respectively. The best results averaged across all grid search

iterations are shown in bold letters.

CORe50 Experiment
In the last experiment, we aim to maintain consistency with
(Parisi et al., 2018), resulting in several differences compared
to the previous four experiments. A new feature extractor is
fine-tuned on the CORe50 to predict the 50 object instances of
the dataset. The last hidden layer is 256-dimensional, resulting
in 256-dimensional feature vectors. The CORe50 contains 11
backgrounds/sessions. Samples from sessions #3, #7, and #10
are used for testing the feature extractor and the remaining for
training. After five runs with one particular parametrization,
an average accuracy of 76.47% ± 0.21% is achieved. The same
train/test split is used for LL afterward. Therefore, the task-
dependent training set of a particular iteration contains all five
instances of one object category from all sessions except #3, #7,
and #10. Again four different repetitions are performed to reduce
the category order influence. The randomly generated category
orders are:

• R1: plug adapter, glasses, light bulb, scissors, cup, remote
control, marker, can, mobile phone, ball
• R2: scissors, cup, plug adapter, light bulb, can, glasses, marker,

ball, mobile phone, remote control
• R3: mobile phone, scissors, remote control, ball, light bulb,

can, plug adapter, glasses, cup, marker
• R4: glasses, scissors, can, light bulb, cup, plug adapter, ball,

mobile phone, remote control, marker

The same assignments as shown before (Tables 1, 2) are used
for hyperparameter optimization (see Tables 3, 4). However, the
activation threshold assignments are extended by three values:
[0.01, 0.01], [0.05, 0.05], and [0.07, 0.07] (see Table 3) to reduce
the node creation probability, which can lead to smaller GDM

TABLE 3 | This table shows the considered GDM hyperparameter assignments

for the grid searches of the CORe50 experiment.

Parameter Description Assignments

K No. of context vectors 2, 4

[ǫb, ǫn] Learning rates [0.1, 0.001], [0.3, 0.003],

[0.5, 0.005]

[aEth, a
S
th] Activation thresholds [0.1, 0.01], [0.3, 0.03],

[0.5, 0.05], [0.01, 0.01],

[0.05, 0.05], [0.07, 0.07]

The best results averaged across all grid search iterations are shown in bold letters. For

further descriptions of the parameters, see Table 1.

TABLE 4 | This table shows the considered A-SOINN+ hyperparameter

assignments for the grid searches of the CORe50 experiment.

Parameter Description Assignments

K No. of context vectors 2, 4

[ǫb, ǫn] Learning rates [0.3, 0.003], [0.5, 0.005],

[1, 0.001], [2, 0.001],

[3, 0.002]

The best results averaged across all grid search iterations are shown in bold letters. For

further descriptions of the parameters, see Table 2.

networks. The best assignments (bold letters) reveal that the
GDM can benefit from having a smaller activation threshold
(i.e., [0.05, 0.05] with 85.3% average accuracy). However, smaller
values, like [0.01, 0.01], demonstrate only 39% average accuracy,
indicating that even smaller values will show worse results and
that we found a reliable assignment for this hyperparameter.

4.2. Results
Figures 5–9 show the results of all five experiments. In the
presented graphs, the results of the models GDM 6,000, GDM
12,000, GDM 28,000, A-SOINN+, and (ncc)A-SOINN+ are
shown in blue, green, red, purple, and yellow, respectively.
The shaded areas represent the standard deviation created by
computing the arithmetic mean across the four repetitions. The
x-axes show the number of tasks already learned by the models,
hence the seen categories. Sub-figures labeled with the letter A are
showing the average accuracy results in the range 0.4 to 1.0, B the
average forgetting results in the range−0.04 to 0.4, C the number
of units of each model in the range 0–10, 000, and D the number
of units focused on the A-SOINN+ in the range zero to 100.

v-NICO-World-LL Experiments
By considering Figures 5A, 6A, 7A, 8A, it can be observed that
the average accuracy value generally decreases with an increasing
amount of learned tasks, independent of the model or the
background complexity. Additionally, the curves are lower for
models trained on the two most complex experiments. Among
the other GDM models, the GDM 28,000 reaches the highest
average accuracy values, followed by GDM 12,000 and GDM
6,000. Hence, the higher the maximal age, the higher the average
accuracy. In the first three experiments, the A-SOINN+ approach
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FIGURE 5 | The results of the first experiment. GDM 6,000, GDM 12,000, GDM 28,000, A-SOINN+, and A-SOINN+ without node creation constraint are represented

by blue, green, red, purple, and yellow lines. The x-axes represent the number of learned tasks and, therefore, the number of seen categories over time from 1 to 10.

(A) is showing the average accuracy of each model on the y-axis in the interval 0.4 to 1.0. (B) is presenting the average forgetting in the interval −0.04 to 0.4, (C) the

number of units in the interval 0 to 10,000, and (D) the number of units focused on the A-SOINN+ model in the interval zero to 100. All results are averaged across the

four repetitions. The shaded areas represent the resulting standard deviation values.

displays similar or even better average accuracy progress than
the GDM 28,000. Between tasks three and five of the fourth
and most challenging experiment, the accuracy results of the
A-SOINN+ are lower than those of the GDM 12,000. The
standard deviation values of the A-SOINN+ are higher in the
experiments of B1, B2, and B4. Especially after learning task eight,
an increase of the standard deviation is observable, accompanied
by a decrease in the average accuracy. This behavior is not
visible in the results of the GDM models. The A-SOINN+
without node creation constraint shows the highest average
accuracies in the first and fourth experiment, together with
a lower standard deviation than the A-SOINN+ with node
creation constraint. After the last task, the (ncc)A-SOINN+
and the A-SOINN+ show the best average accuracy results in
each experiment.

No substantial average forgetting (Figures 5B, 6B, 7B, 8B)
increases are observable in the GDM model curves, especially
not in the first three experiments. In the fourth one, the increase
and the standard deviation are higher than in the other three

experiments. However, the average forgetting is comparably
low and does not exceed the value 0.17. In contrast to that,
the average forgetting of the A-SOINN+ is higher in each
experiment. It increases after the model learned task eight.
This increase corresponds to the average accuracy drop after
this task mentioned earlier. The (ncc)A-SOINN+ shows the
second-highest forgetting curves. However, it has no substantial
forgetting increase at task eight.

An essential part of this work is comparing each model’s
memory requirements, which are directly linked to the number
of nodes created by the models. It is also related to the
computational requirements since for BMU determination, an
iteration over the whole network is required. In each experiment
(Figures 5C, 6C, 7C, 8C), each GDM model’s unit number
reaches a maximal point, slightly declines, and converges
afterward. The maximum unit number of the GDM 6,000 is
approximately 2,000 in each experiment, and the value converges
at approximately 1,000 units. In GDM 12,000, the maximal
point is approximately 4,000 and converges at approximately
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FIGURE 6 | The results of the second experiment. For further descriptions, see Figure 5.

2,800. GDM 28,000 shows a maximal number of approximately
7,000 and converges at approximately 6,000 units in the first,
second, and fourth experiment. However, the fourth experiment’s
standard deviation is higher than in the other. An exception is the
third experiment, where the GDM 28,000 shows a maximal value
of approximately 9,000, and no convergence can be observed
until task 10. However, due to the other results, it is expected that

convergence would take place with additional tasks. In general,
a GDMmodel with a higher maximal age shows a larger number
of units during LL. Additionally, it reaches themaximumnumber
at a later point in time than GDM models with a lower maximal
age. The (ncc)A-SOINN+ shows a linear unit number increase
in all experiments. The maximum number at the end of the
training is approximately 4,000, 2,200, 2,500, and 7,000 in the
four experiments, respectively. Figures 5D, 6D, 7D, 8D focus on
the unit number of the A-SOINN+ approach. The first and the
second experiment show a maximal number of approximately 20
nodes with a comparably low standard deviation. The maximal
number grows to approximately 30 in the third experiment,
and the standard deviation increases. In the fourth experiment,
the maximal number of nodes increases to approximately 70.
Furthermore, the curve shows a generally higher standard
deviation than in the other three experiments. In general, the

A-SOINN+ is showing the lowest number of neurons. However,
this number does not converge like in the GDM approaches. In
the first three experiments, it grows roughly linear. In the fourth
experiment, the slope increases over time, resulting in a stronger
than linear behavior.

CORe50 Experiment
Figure 9A shows that except for the GDM 6,000, all models
have a high and nearly constant average accuracy of at
least 0.97. Similar behavior is observable in Figure 9B. The
average forgetting of all models, except for GDM 6,000,
is constantly lower than 0.06. As shown in Figure 9C, the
number of units converges for the GDM approaches with a
maximum of around 1, 000, 1, 500, and 2, 300 nodes for the
GDM 6,000, GDM 12,000, and GDM 2,8000, respectively. The
(ncc)A-SOINN+ unit number increases linearly and reaches a
maximum value of approximately 9, 500. A linear unit number
increase is also observable for the A-SOINN+ (Figure 9D).
However, as in the previous experiments, the slope is much
lower than in the (ncc)A-SOINN+ with a maximal value of
approximately 75 units and, therefore, 30 times fewer than the
best GDMmodel.
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FIGURE 7 | The results of the third experiment. For further descriptions, see Figure 5.

Table 5 is summarizing all five experiments. The average
accuracy of each model is averaged across all 10 tasks. The
A-SOINN+ approach achieves the highest values (gray shaded
cells) either with or without the node creation constraint. The
A-SOINN+with node creation constraint shows either the best or
second-best results in the first four experiments. In the CORe50
experiment, the GDM12,000, GDM28,000, and both A-SOINN+
models show similar high results with an average accuracy of
97.26% for the proposed model. Table 6 shows the training time
(in minutes) and the file size (in megabytes) of the different
models in the B4 experiment without considering the testing
time. The models are trained on an Intel Core i7-4930 K CPU
with 3.40 GHz. Due to the sequential nature of LL, we are
not able to parallelize the training. The A-SOINN+ shows the
lowest training time of around 4 min averaged across all four
repetitions. This is followed by the GDM 6,000. GDM 12,000 and
(ncc)A-SOINN+ show similar training times of 363 ± 58 and
370± 22 min, respectively. The GDM 28,000 exhibits the highest
training time of 1,704 ± 437 min (≈28.4 ± 7.3 h). The lowest
memory requirements of around 0.7 MB are observable in the
A-SOINN+, followed by GDM 6,000, GDM 12,000, GDM 28,000,
and the (ncc)A-SOINN+, which exhibits the highest memory
requirements of around 741 MB.

5. DISCUSSION

Although the A-SOINN+ approach exhibits higher average
forgetting curves, it reaches average accuracy values comparably
high to the best GDMmodel. Additionally, it shows considerably
lower memory requirements regarding the number of units. In
the fourth experiment, the difference consists of approximately
28 times fewer units than the GDM 6,000 and approximately
100 times fewer than the GDM 28,000. Here, the maximum of
each unit curve is used for comparison. In the first experiment
(Figure 5), the highest difference between the two approaches
is observable. The A-SOINN+ consists of around 100 and 350
times fewer nodes than the GDM 6,000 and GDM 28,000,
respectively. Removing the node creation constraint can improve
the performance of the A-SOINN+. However, it also increases the
memory requirements since nodes are created even if the input
has the same label as the prediction.

Nevertheless, the proposed model also shows drawbacks.
It exhibits a generally higher standard deviation, especially
after task eight in the v-NICO-World-LL experiments.
Hence, the different category orders (repetitions) cause
different performances. We call this effect category order effect.
After analyzing each repetition of the first four experiments
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FIGURE 8 | The results of the fourth experiment. For further descriptions, see Figure 5.

individually, we observe that especially R1 is causing poor results.
However, sometimes R2 and R3 cause poor results as well. With
a more in-depth analysis of the training procedures, we observe
that as soon as the categories “pocket watch” and “present”
become available, the performance decreases. In R1, R2, and R3,
these objects become available at tasks 8 and 9, respectively. At
the same time, the unit number for both categories increases.
We further observe that the categories “present” and “pocket
watch” are often misclassified as “ball” or “doughnut.” We
assume that the categories’ intra-category dissimilarity is large
due to high differences among the corresponding instances. This
dissimilarity and the mentioned misclassification as “ball” or
“doughnut” can explain the higher number of units. Due to the
comparably high number of “present” units and its similarity to
existing neurons, the task-dependent test sets of previous similar
categories are more likely to be misclassified as a “present,”
resulting in low accuracy and high forgetting. As we never
train the model on previous samples again, the nodes remain
unchanged, and the performance stays low. We further assume
that this category order effect is amplified with an increasing
background complexity, resulting in a higher standard deviation.
It is assumed that the inter-category distance is larger in higher

background complexities due to a more substantial influence
of the background on the feature vectors. We hypothesize that
this effect occurs due to the small number of neurons in the
network and because already trained neurons are never retrained
afterward. Therefore, we suggest two extensions for future
work: (1) removing the creation constraint or (2) implementing
a (pseudo-)rehearsal technique. The first allows the creation
of more units for one category, which can lead to a higher
probability of being predicted correctly. The second can retrain
existing neurons to represent the corresponding category better.
Our improvement suggestions are supported by the results of
the (ncc)A-SOINN+ and the GDM models. The former has
no node creation constraint, and the latter use memory replay
(pseudo-rehearsal), and in all four, the category order effect does
not occur. However, the (ncc)A-SOINN+ shows an infeasible
unit number increase. Therefore, we recommend incorporating
(pseudo-)rehearsal in the A-SOINN+ for future work.

An essential aspect of LL is a high performance even after
thousands or hundreds of thousands of tasks, including the
memory requirements. In all five experiments, the unit number
of the GDMs converges and increases linearly or stronger than
linearly in the proposed model. In the CORe50 experiment,
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FIGURE 9 | The results of the fifth experiment, using the CORe50 dataset. For further descriptions, see Figure 5.

TABLE 5 | This table shows the arithmetic mean of the average accuracies across all 10 tasks (in percent) for each model (columns) in each experiment (rows).

Dataset GDM 6,000 GDM 12,000 GDM 28,000 A-SOINN+ (ncc)A-SOINN+

B1 73.95 ± 1.78 83.88 ± 0.66 92.60 ± 1.31 93.07 ± 3.47 95.71 ± 1.83

B2 73.65 ± 1.68 81.95 ± 2.02 89.86 ± 2.21 90.7 ± 3.62 90.06 ± 2.94

B3 72.09 ± 1.58 80.56 ± 2.08 84.88 ± 1.73 88.51 ± 2.21 88.28 ± 2.00

B4 70.96 ± 2.86 78.25 ± 2.63 80.69 ± 2.74 81.07 ± 6.30 86.93 ± 1.54

CORe50 85.58 ± 3.02 98.73 ± 0.97 99.19 ± 0.46 97.26 ± 1.76 99.33 ± 0.30

The gray shaded entries represent the highest values for each experiment.

the A-SOINN+ would become less efficient than the best GDM
after approximately 30 times more tasks (around task 310),
assuming a naive continuation of the unit number curves and a
constant average accuracy after task 10. In the v-NICO-World-
LL experiments, this would happen after 200 times more tasks
(around task 2,000) at the earliest. However, due to the decreasing
average accuracy behavior in the first four experiments, such a
prediction is unreliable. It is much more likely that the GDM
will increase its neuron number or drop in performance. On
the other hand, the A-SOINN+ can grow continually to learn

a theoretically unlimited amount of tasks. However, this, in
turn, can lead to infeasible memory requirements. Therefore, we
recommend further investigations in this direction to evaluate
the proposed model’s long-term usability on a larger dataset, e.g.,
by expanding the v-NICO-World-LL with additional categories.
Two further aspects of the dataset can be tackled in future
work to create a higher real-world resemblance. The robot’s
arm movements are smooth to create sharp images, and jittery
movements are not included. However, they take place in a real-
world HRI scenario. Furthermore, the object’s physical properties
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TABLE 6 | This table shows the training time (in minutes) and the file size (in

megabytes) of each model in the B4 experiment.

Model Training time (min) File size (in MB)

GDM 6,000 129 ± 25 39 ± 4

GDM 12,000 363 ± 58 146 ± 10

GDM 28,000 1704 ± 437 649 ± 226

A-SOINN+ 4 ± 0.7 0.7 ± 0.4

(ncc)A-SOINN+ 370 ± 22 741 ± 77

The values are averaged across the four repetitions and shown together with the

corresponding standard deviations. The gray shaded areas represent the lowest values.

like weight or texture do not influence the arm movement in
our scenario. Due to the adaptability of a virtual 3D scenario,
jittery movements and physical object properties can be included
in future work.

The results of our experiments demonstrate that for the
two tested datasets, the pruning strategy of the original
SOINN+ approach (Wiwatcharakoses and Berrar, 2019) and the
adaptations made in this work lead to an efficient LL model for
classification tasks in terms of average accuracy and memory
requirements. The latter is observable in the unit number and in
the file size of each model. We further observe that the training
time of the A-SOINN+ is approximately 268 times lower than the
one of the GDM 2,8000 in the fourth experiment. We attribute
this to the fact that for BMU determination, an iteration over
the whole network is required, making the computation time
grow linearly with the number of units. Although the A-SOINN+
without creation constraint shows similar high unit numbers
as the GDM 28,000, its training time is four times lower. We
assume that GDM’s memory replay is causing higher training
time as additional iterations over the network are performed.
These aspects indicate higher suitability of the A-SOINN+ for
autonomous robots with limited computational resources.

6. CONCLUSION AND FUTURE WORK

6.1. Conclusion
This work investigates whether the A-SOINN+ approach can
reach state-of-the-art classification accuracy results compared
to the GDM architecture while showing fewer memory
requirements in terms of created neurons. Two main adaptations
are made compared to the original SOINN+ (Wiwatcharakoses
and Berrar, 2019). (1) An associative matrix is used that stores for
each node a frequency-based distribution of input labels to enable
classification, and (2) top-down cues to regulate the structural
plasticity of the network are introduced in the form of additional
constraints for node creation and weight adaptation. The models
are tested on two LL object recognition datasets, namely CORe50
and the v-NICO-World-LL. The latter is a novel LL dataset
proposed in this work. This dataset exhibits three novel features
that are, to our knowledge, currently not considered as a
whole by other LL object recognition datasets: (1) four different
background groups of different levels of complexity are defined,
(2) a virtual robot is manipulating objects instead of a human
to simulate a long-term HRI scenario where the robot receives

different objects over time, and (3) it is recorded in a nearly
photorealistic virtual environment making it highly controlled.
The dataset consists of 100 objects belonging to 10 categories.
These categories could also appear in an HRI scenario. The
results of five experiments show that the A-SOINN+ approach
reaches high average accuracy results during LL and, in general,
it is as accurate as the best GDMmodel. Furthermore, it requires
fewer neurons than the other models, with at least approximately
30 and at most 350 times fewer units than the best GDM of each
experiment. Additionally, its training time is approximately 268
times lower.

In summary, our contributions are:

1. The A-SOINN+ approach is developed, which is a novel and
efficient version of an existing unsupervised LL approach for
classification tasks.

2. A novel, nearly photorealistic LL object recognition dataset
is created using a virtual humanoid robot. This dataset’s
main feature is the grouping of the environments into
different levels of complexity. The dataset and methodology
for synthetic data generation can be made available to the
research community.

6.2. Future Work
Future work can tackle the long-term behavior of the A-SOINN+.
In this context, the v-NICO-World-LL can be expanded with
additional categories. A more in-depth analysis of different
feature extractor architectures and data splits for transfer learning
can also be examined in future works. Furthermore, it would
be interesting to examine whether the proposed model can
continuously learn from a multi-modal signal, like an audio-
visual stream. Different aspects of a real-world HRI scenario are
not considered in this work but can influence the performance
of the A-SOINN+ and the long-term HRI experience in general.
Grasping objects is not an easy task for real robots, and incorrect
grasping can cause the object to slip out of the robot’s hand.
Furthermore, depending on the hardware, cameras might create
blurred images due to jittery robot arm movements. Future work
can examine whether the A-SOINN+ behaves differently on such
images by applying it to a real robot. The results shown in
this work indicate higher suitability of the A-SOINN+ approach
for autonomous robots with limited computational resources.
However, whether this applies to thousands or hundreds of
thousands of tasks remains an open question. Nevertheless, this
work is a further step toward social robots that continually
acquire knowledge through long-term human-robot interactions.
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