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This paper is concerned with learning transferable forward models for push manipulation

that can be applying to novel contexts and how to improve the quality of prediction when

critical information is available. We propose to learn a parametric internal model for push

interactions that, similar for humans, enables a robot to predict the outcome of a physical

interaction even in novel contexts. Given a desired push action, humans are capable to

identify where to place their finger on a new object so to produce a predictable motion of

the object. We achieve the same behaviour by factorising the learning into two parts. First,

we learn a set of local contact models to represent the geometrical relations between the

robot pusher, the object, and the environment. Then we learn a set of parametric local

motion models to predict how these contacts change throughout a push. The set of

contact and motion models represent our internal model. By adjusting the shapes of

the distributions over the physical parameters, we modify the internal model’s response.

Uniform distributions yield to coarse estimates when no information is available about

the novel context. We call this an unbiased predictor. A more accurate predictor can

be learned for a specific environment/object pair (e.g., low friction/high mass), called

a biased predictor. The effectiveness of our approach is demonstrated in a simulated

environment in which a Pioneer 3-DX robot equipped with a bumper needs to predict a

push outcome for an object in a novel context, and we support those results with a proof

of concept on a real robot. We train on two objects (a cube and a cylinder) for a total of

24,000 pushes in various conditions, and test on six objects encompassing a variety of

shapes, sizes, and physical parameters for a total of 14,400 predicted push outcomes.

Our experimental results show that both biased and unbiased predictors can reliably

produce predictions in line with the outcomes of a carefully tuned physics simulator.

Keywords: learning transferable skills, push manipulation, prediction, forward models for physical

interaction, robotics

1. INTRODUCTION

Modelling push manipulation so that the outcome of a push can be accurately predicted remains
largely an open question, especially in novel situations, e.g., previously unseen objects or same
objects in different environments (i.e., a cube on a carpet or on an icy surface). However, as robot
make their way out of factories into human environments, outer space, and beyond, they require
the skill to manipulate their environment in unforeseeable circumstances. These skills become
even more critical to robots encountering conditions as extreme as abandoned mines (Ferguson
et al., 2004), the moon (King, 2016), or for rescue missions as for the Fukushima Daiichi Nuclear
Power Plant.
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Humans possess an internal model of physical interactions
(Johansson and Cole, 1992; Witney et al., 2000; Berthoz, 2002;
Mehta and Schaal, 2002; Flanagan et al., 2003, 2006) that allows
for them to predict the outcome of a physical interaction
such as grasping, lifting, pulling, or pushing. Such internal
models are the result of an accumulation of a life of physical
interactions as opposed to an inherent understanding of physics.
Internal models play a crucial role in our ability to manipulate
objects, although accuracy is not their main characteristic but
to provide a reasonable, adaptable guess. Prediction errors are
then dealt with by adjusting on-the-fly our actions. Previous
efforts in robot pushing have investigated how to design or
learn a functional mapping between objects, environments, and
motion actions that could be used to make predictions or
derive controllers. Mandatory evaluation strategies for these
models include accuracy in the predictions or success rates in a
chosen scenario but, yet, there is no evidence that the reported
performance is in anyway preserved outside the laboratory.
While robots in a warehouse can freely navigate and complete
tasks such as delivering or checking goods, no system is capable of
exploiting push operations for novel objects in novel situations.
We hence argue that before we can see an autonomous robot
capable of, for example, inserting a box of varied produce onto an
over-the-head store shelf, we need to enhance the generalisation
capabilities of our models.

Deep learning approaches are appealing on such respect. The
recent PushNet have shown the potential of recurrent networks
in terms of generalisation to novel objects for re-position and
re-orientation tasks using only planar motions. On the opposite
note, it is not clear how the recurrent network, trained only on
convex objects, is capable of generalising to concave objects, as
well as whether it could cope with more complex tasks (e.g., peg-
in-the-hole problem) or 3D motions. Finally, it must be noted
that PushNet requires 4.8× 105 training samples over 60 objects
to learn planar pushes.

In contrast, we proposed an intelligible model-based approach
for learning a parametric internal model of physical interactions
from experience to boost the capability of a robot in predicting
the effects of pushing operations in novel contexts. By novel
context we refer to objects with different size, shape, or physical
properties from the one used in training, as well as different
physical properties of the environment.

In this work we aim to mimic a specific ability observable
in humans: the ability of estimating from geometrical properties
of the new object/environment where to contact the object for
applying the desired push so to obtain a desired (predictable)
planar motion of the object. We formulate the problem as
follows. First, we learn an internal model (as a forward model)
to mimic the casual flow of a push action in terms of the next
state of the pushed object given the current state of the system
(i.e., object/environment) and the motor commands (i.e., desired
push action). Second, we condition the learning process on the
observable local contacts to boost the generalisation capabilities
of the system; intuitively making predictions on familiar grounds
yields to better performance. Figure 1 shows our test scenario
in which a Pioneer 3DX is able to anticipate the motion of
a previously unseen object by sampling local features (i.e.,

robot-object and object-environment contacts) similar to what it
experienced during training for the given action.

The validity of using local contacts for boosting
generalisation has been already demonstrated for robot
grasping applications (Kopicki et al., 2016). However, the grasp
synthesis can be considered as a static problem, in which we only
aim to compute displacements of the robot’s fingers w.r.t. to a
target object in a quasi-static fashion to disregard any dynamics.
Our previous preliminary investigation in Stüber et al. (2018) has
shown for the first time that such a formulation can be applied
to more dynamical tasks as pushing objects. In more details, our
internal model is learned by constructing a set of local experts,
and each expert encapsulates a part of our understanding of the
physical interaction. Each expert is constructed as a probability
density function (pdf). We learn two types of experts: (i) contact
models, which learn the local geometrical relations between two
bodies, e.g., the contact between the robot pusher and the object
to be pushed, or between the object and the environment, and
(ii) motion models, which learn the motion of contact frames
throughout a push. Each motion model is conditioned on the
initial (local) contact frames provided by the contact models,
thus enabling the system to make predictions on a familiar
ground even when the new object has a different (global) shape
from the one used to learn the models.

To learn a contact model we do not require a Computer Aided
Design (CAD) model of the object. Our objects are acquired via a
depth camera, and we refer to them as Point Cloud Object Models
(PCOMs). Although our predictors are constructed by using only
geometrical features extracted from a point cloud, the motion
models are parametric w.r.t. critical physical parameters. The
parametric space is represented as two independent pdfs: one for
the mass distribution of the object to be pushed, and one for the
friction parameter. During training we learn the motion models
by repeating the same pushing action with different physical
properties drawn from the parametric space distributions. By
varying physical parameters, we observe how an object behaves
under different conditions. By changing the shape of the pdfs over
the parametric space at training time, we bias the predictors to be
specialised in a specific context, i.e., low mass/high sfriction.

The experimental evaluation aims to demonstrate the
generalisation capabilities of the proposed method in novel
contexts. Thus, we present an extensive set of experiments in
a virtual environment as well as a prove of concept on a real
Pioneer 3DX robot. The performance of ourmodels are evaluated
against the prediction of a carefully calibrated physic simulator.

The experimental results show that the internal model can
select a reliable initial contact for the robot to apply the desired
push. It can also learn to estimate the initial pose of the object
to push, which is critical for estimating the resting pose of
the object after the push as a rigid body transformation. It is
capable of estimating planar motions of novel shaped objects
without knowing the physical parameters, and of improving
its performance when some information about the contexts is
available in terms of mass and friction distributions.

The remainder of the paper is structured as follows. First a
section on related work providing an overview of the history
of push manipulation modelling. For a more detailed survey
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FIGURE 1 | Our test scenario. A Pioneer 3DX equipped with a 3D printed bumper pushing a novel object. The robot is capable of predicting the effects of the push

even if the carton box is not present in the training data. (Left) The real robot executing the action. (Right) The action is repeated in simulation where our prediction

for the pose of the object at the end of the pushing action is shown.

on robot pushing, see Stüber et al. (2020). The next section
will describe the background of the model, laying the ground
work for the following section which covers the architecture of
transferable push manipulation models. An additional section
covers our approach to biasing the models during training
upon physical parameter distributions. Finally the experimental
methodology applied and the ensuing results are then discussed
before summarising the conclusions of this paper and proposing
directions for future research to consider.

2. RELATED WORK

Mason (1982, 1986) was the first to start work on constructing
a model for the forward modelling of push manipulation
motion. This model and those which later built upon it
(Peshkin and Sanderson, 1988; Lynch, 1992; Lynch and Mason,
1996; Mason, 2001; Cappelleri et al., 2006; Flickinger et al.,
2015) are known as analytical models and attempt to closely
replicate Newtonian mechanics with their methodology. The
main drawback of such approaches is their dependence upon
accurate physical parameters and difficulty in modelling friction
in some circumstances, as demonstrated by the work of Kopicki
et al. (2017), Zito et al. (2012, 2013a,b, 2019).

Recent efforts have instead attempted to build models either
partially or entirely built around a set of training data. Zhou
et al. (2017) proposed a model that combines the underlying
structure of an analytical model with a data-driven friction
model. Similarly, Bauza and Rodriguez (2017) retain some
analytically informed structure, but use a data-driven approach
based upon Variational Heteroscedastic Gaussian Processes to
model all the physical processes involved in pushing. In both
of these approaches the data-driven nature of the models allows
the inherent variance of frictional processes to be captured.
This helps to alleviate some inaccuracy seen in predictions
from pure analytical models resulting from over idealised
friction mechanics. Further still, Meriçli et al. (2015) built
a model entirely around a data-driven design. With their
approach they made as few assumptions about the physical
mechanics involved as possible, relying purely upon collected

training data to derive expected motion. This allowed for the
model to accommodate for a collection of objects possessing
non-quasi-static properties, as these properties were inevitably
captured in training data.

Finally, two neural network based models proposed by Finn
et al. (2016) and Agrawal et al. (2016), respectively attempt to
tackle this problem. Finn et al. aimed to utilise video footage
alone to generate video footage, however the results of this were
both insufficient and ill suited for usage in planning. Meanwhile,
the approach Agrawal et al. proposed attempts to simultaneously
train both a forward and inverse model for push manipulation
motion. Focusing upon the forward model, it first translates
images provided to the model into a feature space. From here
a relationship between the initial setup in feature space and the
motion of the object is established with training data. This in turn
allows predictions to be drawn for the motion of the manipulated
object across a series of discrete time steps.

Despite the opportunity for autonomous data collection these
neural network approaches offer, they also require enormous
amounts of data. Given their performance compared to analytical
models it may be hard to justify whether the collecting the
necessary data is preferential to just obtaining a good set
of physical parameter estimates for use with an analytical
model alternative. That being said, it appears as though
neural network based approaches cannot currently compete
with their contemporaries in analytical models and other data-
driven models.

Having now established the approaches taken by other
contemporary push manipulation models we now proceed to
detail our transferable model architecture, beginning with the
mathematical and technical background underlying components
of the model.

3. CONTRIBUTIONS

This work builds on the framework developed in our previous
work (Stüber et al., 2018). Our main novel contributions to the
framework are as follows:
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Contact and Motion Model Selection: Previously we trained
our models on a single object, i.e., a cube. All the contact models
were therefore trained to cope with an object with flat contacts.
Predicting motions for a different type of object, i.e., a cylinder,
was possible but led to a drop in prediction accuracy. In this
work we present a method to store several different models
trained on different objects and determine which one is most
appropriate to use at prediction time. Results of experiments
(see section 8.1) indicate that the method is indeed capable of
selecting and applying the most appropriate contact model and
motion model based upon principal curvatures associated with
the contact model. Prediction accuracy using this method is
comparable to the case where contact and motion model are
selected by hand using knowledge of the cases to be tested.

Pose Estimation: In this work we have improved the initial
estimate of the object’s pose. In previous work a centroid
approach was used to approximate the object’s initial pose. Here,
we show for the first time how to adapt the methodology used
by the contact model and re-purpose the query density in order
to produce an object position model. Section 8.2 shows that
our proposed model is significantly more accurate than the
previously used centroid approach. Furthermore, the position
model is not limited to just this model and could be used in any
situation in which an object’s position needs to be estimated from
a captured point cloud.

Biased Predictors: We investigate the effects of biasing vs.
generalising (i.e., unbiased) models upon coefficient of friction
and mass distributions during model training. In our previous
work, we assumed the mass of the object to be constant, or
sampled from a Dirac distribution, and the friction was sampled
from an uniform distribution. In this work, we call these models
unbiased predictors since we attempt to learn our model over a
large range of conditions (i.e., from low to high friction). Our
experimental results (section 8.3) show that unbiased predictors
are capable of providing a decent prediction when compared to
ground truths derived in a physics simulator, i.e., OpenDynamics
Engine (ODE). Another benefit of unbiased models is that they
offer a greater level of reliability when transferring to novel
contexts. Nonetheless, the conclusion of this investigation is that
biased predictors can be used to offer a significant increase in the
accuracy of the motion model and that generalising as it stands
typically leads to unintentional biasing.

4. BACKGROUND

This section provides background information on several of the
techniques applied as part of our method. Table 1 shows the list
of symbols used in this paper at a glance.

4.1. Surface Features
Surface features collectively describe the surface of an object and
are derived from a 3D point cloud of the object O. We define
a surface feature as a pair x = (v, r) ∈ SE(3) × R

2, where
v = (p, q) ∈ SE(3) is the pose of the surface feature x in the
standard Euclidean group defined in a three-dimensional space,
and r ∈ R

2 is a vector in 2 Dimensions (2D) that describes the
surface descriptors. We then define SE(3) as R3 × SO(3), where

p ∈ R
3 is the translation and q ∈ SO(3) the orientation of the

surface feature. All poses denoted by v are specified relative to a
frame at the world originWO.

To compute the surface normal at point p we use a PCA-
based method (Kanatani, 2005). Surface descriptors correspond
to the local principal curvatures around point p (Spivak, 1999),
so that they lie in the tangential plane to the object’s surface and
perpendicular to the surface normal at p. We denote with k1 ∈ R

3

the direction of highest curvature, and with k2 ∈ R
3 the direction

of lowest curvature which is imposed to be perpendicular to k1.
Let us define r = (r1, r2) ∈ R

2 as a 2D feature vector to denote the
value of the curvatures along directions k1 and k2, respectively.
Then, the surface normal and principal directions allow us to
define the 3D orientation q that is associated to a point p.

4.2. Rigid Body Motions
The push situations we aim to model consist of an object B being
pushed by the manipulative link of the robot L. The push will
begin at time t0 and finish at time tF , throughout this period of
time the robot will attempt to maintain a constant predefined
velocity throughout the push, although given the limitations of
the robot’s dynamics the resulting velocity may be less in cases of
high mass and/or friction.

Throughout the push we assume that both L and B are rigid
bodies and that the push occurs under quasi-static conditions.
Namely, neither L nor B will deform and B will only move as a
result of active slow-speed motion as part of the push operation
from L.

The model is trained for individual predefined actions a =

(ẋ, θ̇) where ẋ is the desired linear velocity and θ̇ is the desired
angular velocity. These actions together form a complete model
which provides a repertoire of actions which can be predicted for
during practical usage.

Motion experienced by the object or its parts belongs to
SE(3) and is denoted as m = (pm, qm), with pm being the
translational component of the motion and qm the rotational
component. For a given action a we aim to train a model that
can approximate a Probability Density Function (PDF) over rigid
body motions P(m|a).

To achieve this a Product of Experts (PoE) approach is
used. Rather than model the motion for the object as a whole
we sample a set of local surface features to be used as the
basis of contact frames. For each of these contact frames an
approximation to a PDF P(m|a, c) over rigid body motions for
a given action a and contact frame c is derived. The PDF over
the object’s overall motion can then be predicted by taking
the product of the PDFs of each respective contact frame.
Each contact frame serves to impose a specific local kinematic
constraint on the motion of the object, with each possessing the
ability to veto any motion that conflicts with these constraints
by returning a probability density of zero for said motion.
Therefore, an approximation of the global PDF over object
motions is derived from a combination of local PDFs over contact
frame motions.

The aforementioned contact frames are further decomposed
by c = (v, r, u). v and r both correspond to the same components
of the underlying surface feature of the contact frame. Meanwhile
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TABLE 1 | List of symbols by order of appearance.

u belongs to SE(3) and is a relative pose that describes the relation
between either v and L or v and the surrounding environment
E. The first of these will henceforth be described as manipulator
contact frames cm while the latter will be described as environment
contact frames ce.

For each contact frame c there exists a corresponding
positioning relative to the origin of the object BO given by

h. Meanwhile BO is itself positioned relative to WO by vB.
Therefore, we can derive h from h = v−1 ◦ BO, where
v−1 is the inverse pose of v given by v−1 = (−q−1p, q−1),
and ◦ is the pose composition operator. The use of h
is necessary to relate the PDFs over the local motion of
contact frames back to PDFs over the global motion of the
overall object.
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FIGURE 2 | Graphical representation of contact frames. The green area marks

the object being manipulated by the robot’s manipulator, which is itself the

brighter of the reds. The manipulator contact frame is denoted with cm. It is

positioned relative to world origin by vm and its relational pose um projects

onto the nearest point of the robot’s manipulator. Meanwhile an environment

contact frame has been denoted with ce. It is positioned relative to the world

origin by ve and its relational pose ue projects onto the nearest point in the

environment. Both the manipulator and environment contact frames have

positions relative to the origin of the object BO given by hm and he, respectively.

BO in turn has a position relative to the world origin WO given by vB.

Further to the description laid out here, all of the
aforementioned aspects of the rigid body motion and contact
frames are illustrated in Figure 2.

4.3. Kernel Density Estimation
In this work Kernel Density Estimation (KDE) (Silverman, 1986)
is used to approximate PDFs and is utilised when applying
manipulator and environment contact models, position models,
and motion models.
The contact models and position models both utilise a kernel
built around surface features. Such a kernel can be described
by its mean point µx = (µx

p,µ
x
q,µ

x
r ) and bandwidth σ x =

(σ x
p , σ

x
q , σ

x
r ):

Kx(x |µx, σ x) =

N3(p
x |µx

p, σ
x
p ) 2(qx |µx

q, σ
x
q )N2(r

x |µx
r , σ

x
r )

(1)

where x = (px, qx, rx) is the surface feature being compared
against the kernel, Nn is an n-variate Gaussian distribution,
and 2 corresponds to a pair of antipodal von Mises-Fisher
distributions forming a distribution similar to that of a Gaussian
distribution for SO(3) (Fisher, 1953).

In relation to a given surface feature being used as a kernel,
px, qx, and rx correspond directly to µp, µq, and µr , while σx
is a configurable parameter universal across all kernels in the
given model. In the case of both the surface feature acting as
a kernel and the one being compared against it, px and qx are
sometimes re-positioned from the surface feature itself based off
an associated relative pose u. This only occurs for manipulator
contact models and position models, and does so upon the
creation of a query density (see section 5 for further details). This
is because the primary aim of these models is in determining or
estimating the positioning of other entities such as the robot or
the object’s ground truth position.

For our implementation, the previously defined surface
feature kernel function is approximated via the use of several
distance functions applied over a series of trial rounds, used
to track the bandwidth scaling of translational, rotational, and

surface descriptor components and denoted by T = (Tp,Tq,Tr).
Meanwhile, the aforementioned approximations and distance
functions applied during KDE are as follows:

N3(p|µp,σp) ≃

{

0, βpdp(p,µp,σp) ≥ δp

e−βpdp(p,µp ,σp), βpdp(p,µp,σp) < δp
(2)

dp(p,µp, σp) =
||p− µp||

2

σp
(3)

2(q |µq, σq) ≃

{

0, βqdq(q,µq, σq) ≥ δq

e−βqdq(q,µq ,σq), βqdq(q,µq, σq) < δq
(4)

dq(q,µq, σq) =
1− |〈q,µq〉|

σq
(5)

N2(r |µr , σr) ≃

{

0, βrdr(r,µr , σr) ≥ δr

e−βrdr(r,µr ,σr), βrdr(r,µr , σr) < δr
(6)

dr(r,µr , σr) = (r − µr)
⊺Dσr−1 (r − µr) (7)

where Dσr−1 is a diagonal matrix formed of the reciprocals of the
surface descriptor bandwidths σr . Meanwhile δ = (δp, δq, δr) and
β = (βp,βq,βr) are the cut-off distances and bandwidth scaling
parameters respectively. Bandwidth scaling via the parameter
β is used in the case that a trial round T fails entirely. If a
trial round fails, it is because at least one of: dp(p,µp, σp) ≥

δp, dq(q,µq, σq) ≥ δq, or dr(r,µr , σr) ≥ δr held true in all
cases. Bandwidth scaling allows the application of KDE to be
reattempted with either the translational, rotational, or surface
descriptor bandwidth re-scaled. This re-scaling is achieved by
incrementing either Tp, Tq, or Tr and then re-calculating the
respective β value via the following:

β = αT
–T (8)

where αT is a configurable parameter for the rate at which the
bandwidth decreases with the increase in trial rounds. Whether
to increment Tp, Tq, or Tr depends primarily upon which
trial round value is the smallest and secondarily upon whether
N3(·), 2(·), or N∈(·) contributed the greatest number of zero
likelihoods. This entire process of bandwidth scaling is done
under the pretense that even if a contact or position model does
not fit a PCOMvery well, it still makes sense to provide a tentative
result rather than failing completely.

Given NKx surface features from training acting as kernels, a
probability density can be derived over surface features in 3D
space from the following:

P(x) ≃

Nx
K

∑

i=1

wx
i K

x(x|xi, σ
x) (9)

where xi corresponds to the ith surface feature acting as a
kernel and wx

i corresponds to its weighting with the constraint
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∑Nx
K

i=1 w
x
i =1.

As for the motion model, a combination of a contact frame c and
its sampledmotionsm describe a PDF over SE(3)×SE(3)×R

2. To
account for this a new kernel function can be defined as follows:

Km(c,m |µ, σ ) =

Kc(c |µc, σ c)N3(p
m |µm

p , σ
m
p ) 2(qm |µm

q , σ
m
q )

(10)

where m = (pm, qm) is the translation and rotational motion
being compared against the kernel, c = (vc, rc, uc) describes the
contact frame the motion is being considered for and Kc(·) is the
kernel function for contact frames. Meanwhile, µ = (µc,µm)
and σ = (σ c, σm) define the mean point and bandwidth for
both the contact frame (in µc and σ c) and motion (in µm and
σm) components. µm = (µm

p ,µ
m
q ) and σm = (σm

p , σm
q ) further

encapsulate the mean point and bandwidth specific to the motion
aspect of the kernel. Once again, µm

p and µm
q correspond to the

sampled motion defined by pm and qm that is being used as part
of the kernel.

The aforementioned Kc(·) closely resembles the surface
feature kernel function Kx(·) (Equation 1), and is defined
as follows:

Kc(c |µc, σ c) =

N3(p
c |µc

p, σ
c
p) 2(qc |µc

q, σ
c
q )N2(r

c |µc
r , σ

c
r )

(11)

where c = (pc, qc, rc) is the contact frame being compared against
the kernel, while µc = (µc

r ,µ
c
u) and σ c = (σ c

r , σ
c
u) are the mean

point and bandwidth of the kernel, respectively. From this we can
additionally approximate the following PDF:

P(c) ≃

Nc
K

∑

i=1

wc
iK

c(c|ci, σ
c) (12)

where ci corresponds to the ith contact frame acting as a kernel
and wc

i corresponds to the kernel’s weighting, once again with the

constraint
∑Nm

K
i=1 w

c
i =1.

The main difference between the surface feature kernel and the
contact frame kernel is that the surface feature kernel accounts
for v while the contact frame kernel does not, instead using u.
This is because the global placement of the contact frame is
irrelevant when determining local kinematic behaviour, while
the relative position of the entity relating the contact frame is
conversely essential to determining this behaviour.
We now have a means of approximating the PDF over contact
frames (Equation 12) and the motion kernel function for contact
frames (Equation 10). It is now possible to apply KDE once more
along with conditional probability to derive an estimate of the
PDF over motion for a given surface feature with the use of NKm

sampled motions:

P(m|c, a) ≃

∑Nm
K

i=1 w
c
iKm(c,m | ci,mi, σ )

P(c)
(13)

where a is the push action being applied, while ci and mi

correspond to the contact frame and sampled motion acting as

a kernel. In the case of the action being applied a, it need not
feature in the function itself, as each action effectively has its own
model, which combine to provide PDFs over motion for a variety
of actions.

5. TRANSFERABLE PUSH MANIPULATION
MODELS

This section presents a detailed explanation of our transferable
models for push manipulation. Our main goal is to learn
how to make predictions on novel contexts, i.e., differently
shaped objects that have not been seen in training. We do
so by conditioning our predictions in previous experience.
We condition on the initial set of contacts, e.g., robot/object
(described in section 5.1.1) and environment/object (section
5.1.2) contacts, and on the action to be applied. Under the
assumption of rigid bodies, we estimate the initial pose of
the object as a reference frame (section 5.2) and we infer the
object’s pose after the action by tracking how the initial contacts
have changed.

When we need to make predictions on a new object, we query
the new point cloud to reproduce the contacts seen in training,
and to estimate the object’s pose (sections 5.3 and 5.5). We then
apply the motionmodel for the action we intend to apply (section
5.4), which yields our final estimate of how the object has moved.

Section 6 will present an alternative way for training our
motion models by biasing on specific environment/object pairs
(e.g., low friction/high mass).

5.1. Contact Models
5.1.1. Manipulator Contact Model

In order to be able to accurately predict the motion of an object
being pushed it is necessary to ensure the placement of the robot
should be similar between training time and prediction time.
The positioning of the manipulator contact frame corresponds
directly with the placement of the robot and so the contact model
aims to ensure that the manipulator contact frame is positioned
amongst surface features similar to those seen at training time.
This is important as initial placement of the robot when pushing
has a large impact on the final position of the object and as such
prediction time placements should closely reflect training time
placements so that accurate predictions are possible.

The contact model consists of a collection of contact frames
each denoted cm. These are created by iterating over the surface
features X of a training PCOM O and deriving a relational
relative pose umi and a weight wc

i for each surface feature xi.
The weight for each newly derived contact frame is based on the
following calculation:

wc
i =











0, ‖umi ‖ ≥ δc

e–λ‖u
m
i ‖

2
, δc > ‖umi ‖ > 0

1, ‖umi ‖ ≤ 0

(14)

where δc is the cut-off distance for the surface features and
λc is the exponential drop-off rate of the likelihood function.
‖umi ‖ here denotes the smallest distance found by projecting
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FIGURE 3 | Visualisation of the contact models of a cube and cylinder. Blue is

the point cloud, yellow are the contacts in the model and red are the

projections of the contacts onto the robot’s manipulator.

from xi onto the closest point of each triangular polygon in
the mesh of the robot’s manipulator. Surface features for which
‖umi ‖ ≥ δc would yield a weight of zero and are therefore omitted.
Meanwhile, umi itself is derived from the relative position between
the current surface feature and the robot’s link L. Figure 3

illustrates several contact models superimposed over the PCOMs
from which they were derived.

5.1.2. Environment Contact Model

Much like the manipulator contact model’s purpose is to position
the manipulator contact frame, the environment contact model’s
purpose is to position environment contacts and in doing so best
represent the physical constraints of the environment upon the
object being manipulated.

Like the manipulator contact model, the environment contact
model is comprised of several contact frames each denoted as ce.
Just as a manipulator contact cm has its relation with L described
by relative pose um, an environment contact ce has a relation with
E described by a relative pose ue. Once again, the environment
contact frames are constructed around surface features present
in a given PCOM. When constructing environment contact
frames the assumption is made that ue always corresponds to
the position of the closest point of the floor to the surface
feature relative to ve. However, unlike the manipulator contact
model, the environment contact model relies upon Push Data
Records (PDRs) with information regarding the placement of
environment contact frames during training of the motion
model, which is itself also composed of PDRs.
When training the environment contact model the contact
frames must be placed based upon intuition of what constitutes
a good placement for environment contact frames. Since we
assume the closest point from anywhere on the object will always
be the floor, it makes sense to preference placing environment
contact frames close to the floor. Therefore, given the surface
features X of a PCOM O we construct a function for weighting
a given surface feature x as follows:

wZ(x,X) = e
−

z(px)

maxxi∈X
z(pxi ) (15)

where z(·) is a function that returns the Z component of the input
translation. This function provides a greater weighting to surface
feature translations with lower Z-values, therefore making it

more likely that surface feature translations closer to the ground
plane will be selected.

Another aspect to consider when placing contact frames is
that surface features at the outermost extremities of an object are
much more likely to come into contact with the environment.
For example, if we consider a cube, no part of the cube can come
into contact with the environment without at least one vertex of
the cube also coming into contact with the environment. With
this in mind we define a second weighting function for a surface
feature x:

wCD(x,X) =
||px − centroid(X)||2

maxxi∈X ||pxi − centroid(X)||2
(16)

where centroid(·) is a function that returns the centroid formed
by the translation components of the input set of surface features.
This functionmakes it more likely that environment contacts will
be sampled from surface feature translations at the outermost
extremities of the object as determined by distance to the
PCOM’s centroid.

The final aspect that must be considered when placing
contact frames is to avoid placing environment contact frames
close to one another. If certain regions of surface features are
weighted particularly highly then it raises the likelihood of several
environment contact frames being placed here during training.
Since the motion model trains its own model based upon the
placement of contact frames during training, it is important to
ensure a diverse placement of environment contact frames in
order to best learn kinematic constraints relevant to all surface
features present. With this in mind, a final weighting function for
a given surface feature x is defined:

wAG(x,X,C
e) =

NC
∏

ci∈Ce

||p− pci ||
2

maxxj∈X ||pxj − pci ||
2

(17)

where Ce are the environment contact frames that have been
placed thus far. This function lowers the weighting of surface
feature translations near the environment contacts sampled
so far hence reducing the likelihood of environment contact
grouping occurring.

Having defined the various surface feature weighting
functions, we can now define a PDF over surface features:

P(x |X,Ce) = wZ(x,X)wCD(x,X)wAG(x,X,C
e) (18)

Using this PDF we can sample surface features from which
environment contact frames can be constructed. In order to do
this ue must be derived. We assume the floor is always the closest
point in the environment, for a surface feature x with translation
p = (x, y, z), we find ue to be (0, 0,−z) since the closest point
on the floor is z directly below the contact frame. Following the
placement of all environment contact frames for a given training
push the setup of environment contact frames will be recorded in
training push’s corresponding PDR.

Unlike the manipulator contact model or the position model
at prediction time a query density is not used in placing the
environment contact frames as prediction time. Instead we
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FIGURE 4 | Illustration of the position model application process. The ground

truth position of the object demarked by green is indicated with a yellow point.

The query density kernels are represented here in blue. These kernels form a

PDF within SE(3) space over the object’s position. As such, the kernels can be

supplied to an simulated annealing based optimiser in order to estimate the

position of the object.

sample from a uniform distribution of surface features derived
from the input PCOM and use the resulting surface feature
to construct a candidate environment contact frame. Equation
(12) is then used with Nc

K environment contact frames acting
as kernels to provide a likelihood value for this candidate
environment contact frame. This process is repeated for a
predefined number of iterations before accepting the candidate
with the highest likelihood to become an environment contact
frame. The entire process is then repeated several times to
provide a predefined number of environment contact frames to
be utilised by the motion model in its predictions (Figure 4).

5.2. Object Position Model
The purpose of the object position model is to estimate the initial
pose of the object to be pushed. To achieve this a structure closely
resembling the manipulator contact model is used, except rather
than modelling the relationship between surface features and
the robot’s manipulative link, the relationship between surface
features and the object’s position is modelled. This requires the
definition of a position model made up of position frames in the
same way that the contact model is made up of contact frames.

The construction of the position model largely mirrors that of
the contact model with a few key differences. Firstly, a position
frame is denoted by cp = (vp, rp, up) as opposed to cm. More
important however is that during training rather than calculating
the up by calculating the relative position of L, up can simply be
made to equal h for the position frame, which we have already
shown to be calculable as v−1 ◦ BO. Additionally, in contrast to
the contact model the weight of a position wi for a surface feature
xi is calculated as follows:

wi = dr(ri, r̄, σ
x
r ) (19)

where ri is the surface descriptor for the surface feature, r̄ is the
mean surface descriptor given by the set of surface features X
present in the PCOM O provided at training time. As such the
weight of the position frame increases the further the surface
descriptors of the position frame are from the mean value of the
surface descriptors. This is desired because it means that features
that are likely to appear less often on the object will be weighted
higher as they act as better indicators of the object’s position.
For example, if we consider a cube the presence of a vertex
provides the exact location of the centre of the cube relative to

FIGURE 5 | An example of the variety of objects that a given model can be

applied to. Moving clockwise from top left: a cube with sides of length 20 cm,

a rectangular prism with dimensions 10× 20× 20 cm, a rectangular prism with

dimensions 30× 20× 20 cm, a cylinder of height 20 cm and radius 10 cm, a

cylinder of height 20 cm and radius 15 cm, and a hybrid object formed of half

a cylinder and a triangular prism amounting to dimensions of 20× 20× 20 cm.

the position and orientation of the vertex. Meanwhile, the centre
of the cube could be in a multitude of positions relative to the
position and orientation of a flat surface upon the cube, as there
are countless flat surfaces across a cube. In other words, salient
surface features are implicitly less likely to have a large number
of potential relative positions for the object’s centre and therefore
ought to be afforded a greater weighting.

5.3. Query Density
The query density represents a series of distributions resulting
from the combination of a learnt model with a PCOM. The
object is represented as a partial PCOM of the visible object’s
surface. Through this process two quantities are estimated. By
applying the manipulator contact model described in section
5.1.1, we estimate the placement of the robot’s link w.r.t. local
surface features such that the contact is as similar as possible to
the training examples. Since several manipulator contact models
can be learned, as shown by Figure 3, we simply query the
new object with all of the available models and select the one
that produces the best match with the contacts seen in training.
A detailed explanation of our selection process is described
in section 5.5. Additionally we use the object position model
(section 5.2) to determine a reference frame for the visible point
cloud. Once these three quantities are computed, we are ready to
apply the motion model (section 5.4) to estimate the effect of a
pushing action on the novel object. This process is designed to
be transferable such that a model trained upon a single object
can be applied to a variety of previously unseen objects such
as those illustrated in Figure 5. In order to be able to derive a
PDF over robot/object positions that is more representative of
the presented PCOM O a new set of kernels must be derived.
To do this, a surface feature x is first sampled from a uniform
distribution of the surface features X of PCOM O. A weight
wn
i,j is then derived for each contact or position frame in the

corresponding model in preparation for the next step:

wn
i,j = wc

jdr(r
x, rcj , σ

c
r ) (20)
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where wc
j and rcj are the weight and surface descriptors of the jth

contact frame, and rx is the surface descriptor of x.
Having assigned a neighbourhood weight wn

i,j to each

contact/position frame, a frame is sampled from a non-uniform
distribution over the contact/position model. The likelihood of a
frame being selected directly corresponds to the neighbourhood
weight it was assigned in the last step. Once a contact/position
frame has been selected, a new frame is constructed using
the v and r components from the sampled surface feature
x and the u component from the sampled contact/position
frame. Finally another weight wc

i
′ is calculated which will act

as the new weight to be associated with the newly constructed
contact/position frame:

wc
i
′
=

Nc
K

∑

j=1

wn
i,j (21)

where Nc
K corresponds to the number of frames belonging to

a manipulator contact or position model. This entire process
is then repeated until a desired number of kernels have
been created.
Once all of the kernels have been created, a KDE approximation
of a PDF over robot/object positions can be derived. Because
we want to ultimately produce candidates for the position of
the robot/object all the kernels are positioned at u ◦ v. In other
words, we shift the kernels from the position of the sampled
surface feature based upon the relative pose of the sampled
contact/position frame. Furthermore, when approximating the
likelihood using KDE during optimisation, the surface descriptor
distance is omitted, as this has already been encoded via the
weight of kernels calculated by Equation (21). This allows the
optimisation to take place purely within SE(3) space.

Now having our KDE approximation, we first sample from
a discrete distribution over the mean points of the kernels in
3D space, using the weights associated with each kernel to
determine their likelihood of being selected. Having established
several candidates we then perform simulated annealing based
optimisation upon the candidates aiming to maximise the
likelihood approximated by KDE. Once this process is complete,
we take the candidate with the highest likelihood and use it either
to determine the starting position for the robot or an estimate
for the position of the object being pushed. Additionally, in the
case of the manipulator contact model, the kernel with the closest
mean point to the candidate with the highest likelihood will also
be returned. Since the kernels are formed of contact frames, this
contact frame will then become the manipulator contact frame to
be used as part of the motion model.

5.4. Motion Model
The motion model consists of a series of PDRs containing
information regarding the local motion of contact frames during
training pushes. These motions are then combined with the
contact frames that have been placed at prediction time to create a
KDE approximation to a PDF over final object positions for each
of the contact frames. Prior to any KDE approximation taking
place a weighting wP

i for each PDF is derived. For environment

contact frameswP
i is 1. Meanwhile the manipulator contact frame

PDF weight wP
i is calculated as follows:

wP
i =

Nce

K

Ncm
K

(22)

where Nce

K is the number of environment contact frame kernels

and Ncm

K is the number of manipulator contact frame kernels.
Besides the PDF weightings, the weightings of individual

contact frame kernels wc
i are theoretically uniform across all

kernels by default. In practice however, the contact frame kernels
are used to encode the Kc(c|µc, σ c) and P(c) parts of Equation
(13). This again, allows optimisation to be carried out over SE(3)
space and can be done since the contact frames have already
been placed.
Finally, because we wish to optimise final object position
candidates using a PoE technique the kernels need to be
represented as global object motions rather than as local contact
frame motions. To do this each approximated PDF is shifted
based upon the position of its contact frame relative to BO given
by h. This shifts all the PDFs into the same motion space. From
here a new KDE approximation to a PDF over global object
motion for an action a can be defined using the PoE technique
discussed previously:

P(m|a) ≃

NC
∏

i=1

wP
i P(m|a, ci) (23)

whereNC is the number of contact frames used in prediction and
ci is the ith contact frame.
Having defined an approximation of a PDF over global object
motion simulated annealing optimisation can once again be
applied as previously described in section 5.3. The final result
of this optimisation will be several candidates for object motion
with associated likelihoods. From here these motions can be
applied as a transformation to the current object pose at BO,
providing a prediction for the final position of the object
following the push action a.

5.5. Contact and Motion Model Selection
While the model described in this paper is indeed transferable
and can produce good results for a variety of unseen objects,
objects with significantly different surface features may suffer in
prediction accuracy. The underlying problem is two-fold, both
the physical behaviour of the object is likely to be different and the
model itself will not adapt well to being exposed to significantly
different surface descriptors. Therefore, we overcome this issue
by implementing a model library, from which an appropriate
model can be drawn and applied to an object presented at
prediction time.

In order to allow for this it is necessary to introduce a
heuristic as part of the manipulator contact frame query density
to measure the similarity of the surface features of the point cloud
and the contact model used in its creation. The calculation of a
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feature distance heuristic Hr is carried out during the creation of
the kernels of the Query Density and is calculated as follows:

Hr =

N
q
K

∑

i=1

Nc
K

∑

j=1

4

√

d′r(r
q
i , r

c
j ) (24)

where N
q
K is the number of query density kernels being created,

Nc
K is the number of manipulator contact model contact frames

being used in the kernel creation process and r
q
i is the surface

descriptors of the current sampled feature being compared
against the surface descriptors of the current contact model
contact frame rcj . d′r(·) is a modified version of the surface

descriptor distance function, defined as follows:

d′r(r1, r2) = (r1–r2)
⊺I(r1–r2) (25)

where r1 and r2 are surface descriptors and I is the identity
matrix. The heuristic provides a measure on how similar the
surface features observed in the prediction time PCOM are to
those that make up the manipulator contact model. A lower
value indicates that the contact model used in the creation of the
query density has features closer to those perceived in the object’s
point cloud.

During prediction, several query densities can be produced
using the differentmanipulator contactmodels available, then the
query density with the lowest surface feature distance heuristic
is selected and used as per usual. When it comes to the
application of the motion model, each trained contact model
will be associated with a trained motion model. Therefore, the
manipulator contact model of the previously selected query
density can be used to infer the motion model that ought to
be applied in this instance. Once the inferred motion model is
applied the outcome of the push will have been predicted using
the most appropriate models for the object in question.

6. BIASING TRANSFERABLE PUSH
MANIPULATION MODELS

The primary novel contribution of this paper is the
implementation and analysis of Physical Parameter Generalising
and Physical Parameter Biasing during training. Physical
parameters such as friction and mass often require explicit
definitions when working with an analytical means of prediction.
Hence a naive approach to handling physical parameters
would be to set them as fixed values for training based upon
a good approximation of physical parameters at prediction
time. However, such an approach is prone to overfitting as the
inherent variance of physical parameters in the real world is
unaccounted for.

Therefore, the physical parameters ought to be drawn from
a distribution. Generalising and biasing each correspond to
a type of distribution from which physical parameter values
may be drawn. Generalising describes the use of a uniform
distribution over a broad range of values, the aim being to
provide competent predictions for a wide variety of objects and
physical environments. Meanwhile, biasing describes the use of

a narrow normal distribution centred upon predetermined mean
value reflective of the expected operating conditions of the robot
in question.

It is based upon the theoretical underpinning of these
distributions that we hypothesise that models trained upon
biased physical parameters will provide a greater degree of
accuracy than achievable with a generalised. However, the
generalised model is expected provide a reasonable level of
accuracy across a wide range of operating conditions. This is
in contrast to the biased models, which are only expected to
perform to a high degree of accuracy in conditions similar to
those described by the parameter values upon which the biased
models were trained.

7. EXPERIMENTAL SETUP

Our experiments were conducted using ROS Kinect and Gazebo
Sim 9.0 with the Open Dynamics Engine (ODE). Our test robot
is a Pioneer 3-DX mobile robot equipped with a bumper affixed
in front of it to provide a flat surfaces for the pushes. The robot
was controlled with a ROS package called MoveIt.

The generalised methodology used during the experiments
is illustrated in Figure 6. At training time, a full point cloud
of the object to be pushed is acquired from multiple views of
a virtual depth camera in Gazebo. The robot is placed with
the desired contact between the robot’s bumper and the object
to learn the manipulator contact model (section 5.1.1) and the
environment contact model (section 5.1.2). Once the physical
critical parameters (i.e., friction coefficient andmass distribution)
are sampled from the desired distributions, a push action is
generated and a PDR is recorded.

At prediction time, a new point cloud is captured with a
single shot of the virtual depth camera, to best mirror typical
circumstances in a real application. The system queries the
novel point cloud with the contact model and selects the more
appropriate. Then it executes the action associated with that
particular contact model. Multiple actions could be associated
with a particular contact model, however this goes outside the
scope of this paper. We are not interested at this point to move
the object in a desired final configuration, our aim is to prove that
we can make reasonable predictions of how the object behaves
in novel contexts. Our model’s predictions are compared against
the ODE’s outcomes which we assume to be the ground truth.
The real values of the physical parameters used by the ODE to
perform the action are unknown to our system. The prediction
accuracy measure described in section 7.1 is used to evaluate our
model’s performance. Descriptions of experimental parameters
used by this methodology are detailed in Table 2.

7.1. Prediction Accuracy Measure
A suitable heuristic of prediction accuracy is necessary to
compare the efficacy of various trained models. This measure
evaluates the displacement between a predicted pose and the
true observed one. We use this to evaluate both the accuracy
in the pose estimation model (section 5.2) and the motion
model (section 5.4). The following heuristic Hacc correlates with
the error in a prediction, as such a smaller heuristic value
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FIGURE 6 | Illustration of the generalised “Model Prediction Accuracy” experiment methodology.

TABLE 2 | Experimental parameters for evaluating the selection of contact motion models (section 8.2).

Contact model generation Condition generation

Distance 0.01 Number of conditions to generate 100

Lambda 100 Number of environment contacts 5

Number of samples when generating

environment contacts

100

Motion model training Ground truth generation

Number of actions 3 Number of actions 3

Angle range [−10, 10] Angle range [−10, 10]

Action duration (s) 4 Action duration (s) 4

Action speed (ms−1) 0.1 Action speed (ms−1) 0.1

Samples per action 500 Samples per action 3

Object mass (kg) 0.5 Object mass (kg) 0.5

Object coefficient of friction U(0.15, 0.35) Object coefficient of friction U(0.15, 0.35)

Number of environment contacts 10

Prediction generation

Number of environment contacts 5

Environment contact Kernels 5,000

Manipulator contact Kernels 500

is associated with a greater level of prediction accuracy. The
heuristic is defined as:

Hacc = ‖(pe–pgt)
⊺DS‖ + min

qgt∈Qgt

(1–〈qe, qgt〉
2) (26)

where pe and qe are the translation and orientation of the
predicted final object transform, pgt and Qgt are the translation
and orientations of the ground truth object transform and DS is
the reciprocals of the dimensions of the object represented as a
diagonal smatrix.

Rather a single ground truth orientation being considered,
instead Qgt separate orientations are considered and the smallest
resulting quaternion distance is utilised. This is to account for
the fact that for certain objects there are several orientations
that appear identical. For example, a featureless, textureless cube
appears identical across 24 orientations for a given translation.

Furthermore, the heuristic scales its resulting value based
upon the size of the object being manipulated. This decision was
taken upon the insight that the size of the object is often reflective
of the accuracy required for a task. For example, a centimeter

when moving a crate is relatively insignificant compared to a
centimeter when performing microscopic level assembly.

7.2. Interpreting the Prediction Accuracy
Measure
The results presented in the next section compare different
models using the prediction accuracy measure described in
section 7.1. In this section, we present an interpretation of such a
measure to provide an understanding of how the accuracy values
map onto an error displacement measure. Equation (26) shows
that the measurement is composed by two factors: (i) linear and
(ii) angular displacement. The linear displacement is scaled with
the respect of the size of the object, thus |(pe–pgt)

⊺DS‖ ∈ [0, inf]
represents a displacement proportional to the size of the object:
0 means no displacement, 1 means a displacement as large as the
size of the object, 2 a displacement twice as large as the object,
and so on. In contrast, the angular distance (1–〈qe, qgt〉

2) ∈

[0, 1] is bounded, since the maximum rotational distance in the
Quaternion space is 180◦ or π radiants which correspond to a
distance measure of 1.
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The prediction measure accuracy is hence not bounded, but
it is a linear combination of two non-negative distances and it
provides a possible range of values for the linear and angular
distance. For example, a prediction accuracy of 0.2 means that the
linear distance cannot be larger than 1

5DS, thus for a 20 cm cube
it will be up to 4 cm in all directions, and the angular distance
cannot be larger than π

5 radiants or 36◦.

7.3. Training Set
The training set is composed of a set of contact models for the
manipulator and the environment, as described in sections 5.1.1
and 5.1.2. Figure 3 shows the two contact models used for the
experiments. The first contact model refers to contacts when the
objects has only flat surfaces and it was trained upon a cube with
sides of length 20 cm. The second refers to objects that presents
curved surfaces and it was trained upon a cylinder with height 20
cm and radius 10 cm.

7.4. Test Set
Our test set is composed of six objects. The same cube and
cylinder used in the training set are also part of the training set,
however the physical parameters were sampled at each trial to
create different contexts from the ones seen during the training.
Three of the remaining four objects were a 10 × 20 × 20 cm
rectangular prism, a 30 × 20 × 20 cm rectangular prism and a
cylinder of height 20 cm and radius 15 cm. The final object was
a hybrid object with dimensions 20× 20× 20 cm formed of half
a cylinder and an isosceles triangular prism connected by their
largest flat surfaces. Figure 5 shows the test set.

8. EXPERIMENTAL RESULTS

This section presents our evaluation of the systems. First we
evaluate the ability of our framework to select the correct contact
and motion models at prediction time. We then evaluate the
ability of our pose estimation module to estimate the pose of
an object described as a PCOM. Finally, we demonstrate the
ability of our system’s internal model to make prediction in
novel contexts. Specifically we demonstrate that the unbiased
predictors can make reliable predictions of how the object
behaves under push operations, and that biased predictors can
provide a better accuracy for specific environment/object pairs.

8.1. Contact Model Selection
We based our approach on the key idea that if we condition
predictions upon local contacts we can achieve better
generalisation. In this section we evaluate the ability of our
system to identify the most similar initial contact models for
conditioning the predictions of motion.

We evaluate our trained models on a cube and a cylinder
(section 7.3) over three conditions. The congruent condition
refers to manually select the initial contact model so that the
trained model is applied to the same object’s shape it was train
on (i.e., the contact model learned on a cube is applied on
the same cube, and the contact model learned on a cylinder is
applied to the same cylinder). The incongruent condition refers
to a manually mismatch so that the contact model trained on

the cube is applied to a cylinder and viceversa. Finally, the
adaptive condition is when the system automatically selects the
model using the local surface features as described in section
5.5. Experimental parameters used for this experiment are given
in Table 3.

The results of the tests confirm our key idea. Figure 7 shows
that motion predictions on familiar ground (congruent and
adaptive conditions) are better than when we force a mismatch
(incongruent condition). It is important to note that in these
experiments we do not test the ability of the framework to
generalise to novel shapes, which will be presented in section 8.3.
However, the main result is that the framework is capable to
automatically select the most appropriate models, and prediction
accuracy using the adaptive method is comparable to the case
where the correct models are selecting by hand (i.e., congruent).

8.2. Pose Estimation Accuracy
This experiments investigate the varying degrees of accuracy
offered by using a position model as opposed to a baseline
centroid based approach for approximating the position of an
object. The experimental results have shown that this position
model offers a significant increase in accuracy over the previously
used centroid approach.

The experiments were carried out upon a cube with sides
length 20 cm, a cylinder with height 20 cm and radius 10 cm and a
modified cube. The modified cube is almost identical to the cube
except with 1/16 of the cube’s volume removed from one of the
corners. This removes some of the cube’s symmetry and it is used
to demonstrate the adaptability of the position model’s approach.

Each object is experiment upon using the methodology
illustrated in Figure 8. The position model is run 100 times and
the mean prediction accuracy measure (see sections 7.1 and 7.2)
is used to approximate the accuracy of our estimate for the initial
pose of the object to be pushed. By contrast the centroid approach
has its accuracy determined by the accuracy measure resulting
from a single derivation of the point cloud centroid, as its output
is always the same for a given input.

Experimental parameters used for this experiment are given
in Table 4.

The position model offers significant improvements over the
centroid approach (see Figure 7). Application of the position
model resulted a mean linear error of only 1.41 cm (to 3
s.f.) as opposed to a linear error of 7.06 cm for the centroid
approach. Furthermore, it is worth noting that the centroid
approach cannot provide an estimate for the rotation of an
object, whereas our position model can. As a testament to
this, the worst accuracy measure derived for the position
model throughout all 300 applications was less than half the
accuracy measure of the best accuracy measure associated
with the centroid approach. Given that a lower accuracy
measure corresponds directly to a higher level of accuracy,
it can effectively be said that the position model’s worst
case performance has been demonstrated to be more than
twice as accurate as the best performance of the baseline
centroid approach.
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TABLE 3 | Experimental parameters for the experiments on pose estimation (section 8.2).

Pose estimation

Kernels 3000 The number of kernels to be generated in the query density.

Transform standard deviation

threshold

5.0 Defines the transform distance cut-off for kernels in the query density in terms of a transform

standard deviation multiplier.

Principal curvature standard deviation

threshold

0.1 Defines the principal curvature distance cut-off for kernels in the query density in terms of a

principal curvature standard deviation multiplier.

Simulated annealing candidates 500 The number of object position candidates to use when applying simulated annealing.

Simulated annealing steps 100 The number of steps to apply to each candidate during the simulated annealing process.

Linear Kernel bandwidth 0.1 The drop-off rate of the query density kernels in terms of linear distance between two

transforms.

Angular Kernel bandwidth 20.0 The drop-off rate of the query density kernels in terms of angular distance between two

transforms.

FIGURE 7 | (Left) Mean prediction accuracy measures each over 50 pushes when applying congruent, incongruent, and adaptive models to a cube and a cylinder.

(Right) Results for object position estimation accuracy for position model and centroid based techniques. Mean prediction accuracy measures each over 100 runs is

taken for the position model based technique meanwhile the output of the centroid technique is constant for a given input.

FIGURE 8 | Illustration of the methodology used for the pose estimation experiments.

8.3. Prediction Accuracy on Novel Contexts
In this section we evaluate the generalisation abilities of our
learned internal model for push operations. We demonstrate
that both unbiased and biased predictors can be used to make
predictions on how an object in previously unseen contexts
behaves under a push operation. Unbiased predictors can be
very useful when a good estimate for the physical parameters
of the environment/object pair are unavailable, and in this
section we will demonstrate that they are capable of providing

a reliable “guess” for the test object’s motion. Additionally,
we will demonstrate that biased predictors offer a significant
increase in the accuracy when some information about the
environment/object context is available (e.g., low friction/high
mass). The training and test for these experiments are described,
respectively in sections 7.3 and 7.4.

In the experiments four conditions were considered to
represent different variations of objects and environments
as follows:
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TABLE 4 | Experimental parameters for evaluating the prediction accuracy on novel objects (section 8.3) under various mass biasing conditions.

Contact model generation Condition generation

Distance 0.01 Number of conditions to generate 100

Lambda 100 Number of environment contacts 5

Number of samples when generating

environment contacts

100

Motion model training Ground truth generation

Number of actions 3 Number of actions 3

Angle range [−10, 10] Angle range [−10, 10]

Action duration (s) 4 Action duration (s) 4

Action speed (ms−1) 0.1 Action speed (ms−1) 0.1

Samples per action 500 Samples per action 3

Object mass (kg) U(0.085,

5.75)/N(0.1,

0.005)/N(1.0,

0.05)/N(5.0, 0.25)

Object mass (kg) N(0.1, 0.005)/N(1.0,

0.05)/N(5.0, 0.25)

Ground plane coefficient of friction N(0.3, 0.05) Ground plane coefficient of friction N(0.3, 0.05)

Number of environment contacts 10

Prediction generation

Number of environment contacts 5

Environment contact Kernels 5,000

Manipulator contact Kernels 500

• General: the model is trained to be unbiased. The
parametrisation over the friction coefficient is represented as
a uniform distribution over the unitless range [0.085, 0.805].
For the mass distribution we use an uniform distribution over
the range [0.85, 5.75] kg.

• Low: the model is trained to be either biased on a low friction
coefficient or a low mass distribution. For friction, we employ
a Gaussian distribution with mean 0.1 and std dev 0.005. For
mass, we employ a Gaussian with mean 0.1 kg and std dev
0.005 kg.

• Medium: the model is trained to be either biased on a medium

range friction or mass distribution. We employ respectively a

Gaussian with mean 0.4 and std dev 0.02 and a Gaussian with
mean 1.0 kg and std dev 0.05 kg.

• High: the model is trained to be either biased on a high

range friction or mass distribution. We employ respectively a
Gaussian with mean 0.7 and std dev 0.035 and a Gaussian with
mean 5.0 kg and std dev 0.25 kg.

Once predictions have been made for a set of push conditions for

a given object and model the predictions are compared against

the ground truths. The ground truths are the result of simulating
the outcome under the push conditions for each of the setups

relevant to the experiment taking place.
With that being said, the combination of two experiments for

mass and friction, six objects, four model applications for each

object and three setups for mass/friction results in a total of 144

different sets of simulated ground truths being compared with 48
sets of generated predictions.

Experimental parameters used for the experiment
investigating biasing upon friction are given in Table 4.

Meanwhile, the experimental parameters used for the experiment
investigating biasing upon mass are given in Table 5.

The results of the friction biasing/generalising experiment
demonstrate that models biased to a specific friction value
predicted more accurately for cases with similar friction values
and comparatively less accurately for other cases (see Figure 9

left hand side). Furthermore, in situations where a set of
models performed comparatively better they also possessed a
smaller standard deviation in the prediction accuracy measure.
This indicates that these biased models not only lead to
better predictions on average for the situations upon which
they were trained, but they also provide a greater level
of reliability.

Across most cases models performed better for ground plane
frictions similar to the ones upon which they had been trained
to (e.g., a high friction trained model performs better for
medium friction cases than low friction cases). One exception
to this is the case of applying a low friction trained model to
high friction conditions yields better results than applying it
to medium friction conditions. A likely reason for this can be
seen by looking at the plots of final object positions during
training in Supplementary Figures 1, 3. One can see that the
low friction distributions are tightly clustered and close to
parts of the high friction distributions. Therefore, for certain
high ground plane friction situations the predictions given
by the low friction model are going to match closely to the
ground truth. Meanwhile, the low friction training distributions
are for the most part far away from the medium friction
distributions. Hence, the low friction trained models perform
comparatively better for high friction situations than medium
friction situations.
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TABLE 5 | Experimental parameters for evaluating the prediction accuracy on novel objects (section 8.3) under various friction biasing conditions.

Contact model generation Condition generation

Distance 0.01 Number of conditions to generate 100

Lambda 100 Number of environment contacts 5

Number of samples when generating

environment contacts

100

Motion model training Ground truth generation

Number of actions 3 Number of actions 3

Angle range [−10, 10] Angle range [−10, 10]

Action duration (s) 4 Action duration (s) 4

Action speed (ms−1) 0.1 Action speed (ms−1) 0.1

Samples per action 500 Samples per action 3

Object mass (kg) N(0. 5, 0.025) Object mass (kg) N(0.5, 0.025)

Ground plane coefficient of friction U(0.085,

0.805)/N(0.1,

0.005)/N(0.4,

0.02)/N(0.7, 0.035)

Ground plane coefficient of friction N(0.1, 0.005)/N(0.4,

0.02)/N(0.7, 0.035)

Number of environment contacts 10

Prediction generation

Number of environment contacts 5

Environment contact Kernels 5,000

Manipulator contact Kernels 500

FIGURE 9 | (Left) Mean prediction accuracy measures each over 100 pushes produced by friction biasing experimentation for each model and condition (see

section 8.3). The unbiased models (green) perform reasonably well in all conditions, although improvements can be achieved with biased predictors, e.g., high and

medium models in high friction condition. (Right) Mean prediction accuracy measures each over 100 pushes produced by mass biasing experimentation for each

model and condition (see section 8.3). The plot shows that the mass distribution has an higher impact on the predictions than the friction, and highlights more the

need of biased models. Additionally it shows an unintentional bias of the general model (green) toward the high mass condition.

Of much greater interest however, is the behaviour of the
generalised model, which closely mirror the friction biased
model in the medium case. This is very unusual given that the
unbiased model was trained on a broad range of friction values.
We will discussed this issue in greater length at the end of
this section.

The results of the evaluation upon mass closely mirror the
results upon friction (see Figure 9 right hand side). The low and
mediummass conditions for the biased models perform similarly
for all cases whilst the high mass biased model contrasts the

other models. Again, looking at the distributions of final object
positions during training in Supplementary Figures 2, 4 it can
be seen that the highmass distributions are very different to those
generated by the low andmediummass cases. This again explains
the disparity between the low and medium mass biased models
and the high mass biased model.

The generalised and high mass biased models perform
similarly across the various cases. Further investigation revealed
that this behaviour is a result of the underlying KDE method the
models use. The various outcomes of push operations carried
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FIGURE 10 | Mean prediction accuracy measures produced during biasing experimentation for each object. The mean is only taken for cases where the prediction

time mass/friction conditions match biased training time conditions. This is to ensure that any difference in performance between objects is due to their shape

incongruence and not factors relating to friction/mass incongruence or generalisation at training time. Since there is a low, medium, and high biased model for both

mass and friction, each with 100 test pushes, the mean prediction accuracy measure is taken over 600 test pushes. The three objects on the left of the figure were

executed using a model trained on a 20 cm cube. Meanwhile the three objects on the right of the figure were executed using model trained on a cylinder with height

20 cm and radius 10 cm. Objects tend to give performance similar to the object the model was trained with and the cylindrical objects generally perform worse,

revealing a heightened difficulty of predicting for objects with more complex geometries. Finally, in the case of the 10 cm cube, even though it appears to perform half

as well as the 20 cm cube upon which its model was trained, it is also half the size and therefore the linear part of its error is doubled, meaning the linear error may well

likely be similar between the two.

out during training form kernels which combine to create
a PDF.

A generalised model attempts to provide predictions that
generalise across a wide range of physical parameters. However, if
certain physical parameters result in similar outcomes regardless
of the push conditions (e.g., a high mass object which moves
little) then this causes a large amount of kernels to be placed
close to one another leading to a series of peaks representing
a high likelihood for these positions during predictions. Hence
when simulated annealing is carried out, predictions are all
but guaranteed to come from these regions of high likelihood.
Hence in cases where this occurs the generalised model has
become unintentionally biased. As a result of this the model
does not represent a true generalisation over that physical
parameter. The risk of this occurring increases as the range of
physical parameter values generalisation attempts to account for
increases. Therefore, as it stands the uniform range used for
generalising models must be carefully selected in order to avoid
this unintentional biasing.

Another aspect of the experiments that ought to be considered
is how the various objects compared in their mean prediction

accuracy measure as shown in Figure 10. While it is true that
models were only trained upon the 20 cm cube and 20 cm
diameter cylinder it still provides some insight into the inherent
difficulty for predicting for objects with different geometries.
The cube provided the best prediction accuracy of all and has
a raw linear error of only 1.68 cm, but this makes sense given
it’s symmetry in all dimensions and lack of curvature. The
rectangular prisms performed comparatively worse, however,
despite the disparity shown in Figure 10 it is worth considering
that the accuracy measure adjusts based upon the size of the
object in question. Looking at the raw linear error associated with
each rectangular prism, the 10 cm prism has a linear error of
1.97 cm while the 30 cm prism has a linear error of 2.86 cm.

All of the objects possessing curvature performed
comparatively worse. The 20 and 30 cm diameter cylinders
had raw linear errors of 4.04 and 8.14 cm, respectively. Both
cylinders reflect a situation where a curved surface is in contact
with the robot’s manipulative link and a curved edge is in
contact with the ground plane. The motions that result from
the presence of these curves introduce additional complexity
and this is exhibited in both the reduced prediction accuracy
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and the training distribution plots. The cylinder friction biasing
distributions demonstrate a greater difference in distribution
shape between friction conditions when compared to the friction
biasing distributions of the cube. Meanwhile, the cylinder mass
biasing distributions exhibit a greater variation in the final
object positions when compared with those of a cube. Both
of these issues contributed toward a reduction in prediction
accuracy, particularly the mass distributions which introduces
a greater amount of variation in final object positions making
the prediction problem inherently more difficult. Finally, in
terms of the hybrid prism, the raw linear error was 3.96 cm.
This is less error than the cylinder upon which the model was
trained. However, this further evidences the increased difficulty
of predicting for geometries involving curves, as while the robot’s
manipulative link is still in contact with a curved surface similar
to the training cylinder, the rearmost edges at the base of the
object are straight and hence the complexity of the interactions
with the ground plane is reduced, as evidenced by the increased
prediction accuracy.

9. CONCLUSION AND FUTURE WORK

This paper presents a model-based framework for learning
transferable forward models for push manipulation. The
model is constructed as a set of contact and motion models
represented as probability density functions. The overall model
is also parametrised over physical parameters which are
critical for the task, e.g., mass and friction distributions. Our
system behaves has an internal model which learns from
experience physical interactions. In particular, we address
in this work planar push interactions between a mobile
robot, a 3D objects, and its environment. Our results show
that our internal model can make reliable predictions in
the presence of novelty in the object’s shape and unknown
physical parameters, efficiently transferring learned skills to
novel contexts.

In this work, it has become apparent that unbiased models
tend to unintentionally bias during training. Although unbiased
models still offer the capability of making reliable predictions
without the need of fine tuning of the physical parameters, the

main issue is a lack of information about the physical properties
of the environment/object pair into the KDE kernel distance
functions, which only rely on geometrical properties. Therefore, a
good direction for future work to pursue would be the integration
of contact and motion models in a more compact representation.
This compact representation should include an estimation of
physical and geometrical properties in a single model, instead
of the two separate. The main issue with this however, is that
unlike principal curvatures or relational transform information
the physical parameters cannot be derived at prediction time only
from vision.

Nonetheless, should it prove impossible to provide a good
estimate by other means, it might be possible to derive a good
estimate by carrying out several sample pushes in an online
fashion. The friction and mass values could be refined and
integrated into the models by comparing observed movements of
the pushed object with the PDRs already available in the system.
This would reflect how humans approximate these values, by
observing the outcomes of physical interactions.
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