'," frontiers

in Neurorobotics

PERSPECTIVE
published: 09 June 2021
doi: 10.3389/fnbot.2021.675657

OPEN ACCESS

Edited by:
Tom Ziemke,
Linképing University, Sweden

Reviewed by:

Markus Peschl,

University of Vienna, Austria
Olivier Georgeon,

Catholic University of Lyon, France

*Correspondence:
Claudio Castellini
claudio.castellini@dlr.de

Received: 17 March 2021
Accepted: 04 May 2021
Published: 09 June 2021

Citation:

Bettoni MC and Castellini C (2021)
Interaction in Assistive Robotics: A
Radlical Constructivist Design
Framework.

Front. Neurorobot. 15:675657.
doi: 10.3389/fnbot.2021.675657

Check for
updates

Interaction in Assistive Robotics: A
Radical Constructivist Design
Framework

Marco C. Bettoni’ and Claudio Castellini®*

' Steinbeis Consulting Centre, Knowledge Management and Collaboration (KMC), Basel, Switzerland, ? The Adaptive
Bio-Interfaces Group, German Aerospace Centre (DLR), Institute of Robotics and Mechatronics, Oberpfaffenhofen, Germany

Despite decades of research, muscle-based control of assistive devices (myocontrol) is
still unreliable; for instance upper-limb prostheses, each year more and more dexterous
and human-like, still provide hardly enough functionality to justify their cost and the effort
required to use them. In order to try and close this gap, we propose to shift the goal of
myocontrol from guessing intended movements to creating new circular reactions in the
constructivist sense defined by Piaget. To this aim, the myocontrol system must be able
to acquire new knowledge and forget past one, and knowledge acquisition/forgetting
must happen on demand, requested either by the user or by the system itself. We
propose a unifying framework based upon Radical Constructivism for the design of such
a myocontrol system, including its user interface and user-device interaction strategy.

Keywords: upper-limb prosthetics, myocontrol, machine learning, incremental learning, human-robot interaction,
human-machine interfaces, radical constructivism, interaction design

INTRODUCTION

According to the layman’s definition, a Human-Machine Interface (HMI) is the hardware/software
system enabling a user control a device (computer, robot, tool, etc.); it is the channel through
which user-device interaction takes place (Castellini, 2016). Unsurprisingly, most HMIs rely on the
assumption that the user can voluntarily and precisely control arms, hands and fingers—think, e.g.,
the handles of a wheelbarrow, the cockpit of an airplane, and the surface and operating system of a
smartphone. However, this assumption fails when the device to be controlled is an assistive one. An
upper-limb amputee using a prosthetic arm in daily life or a stroke survivor progressively getting
in control of a rehab exoskeleton cannot properly use their limbs to control their machines—here
a more flexible and smart kind of HMI is required (Beckerle et al., 2018), able to interpret the
user’s intent to move using bodily signals typically related to muscle activation (myocontrol, see,
e.g., Castellini et al., 2014).

But myocontrol is still unreliable, notwithstanding three decades of intense research (Schweitzer
etal., 2018). The human-friendliness and dexterity of upper-limb prostheses, for instance, increases
every year, while their rejection rate remains high, largely due to poor myocontrol (Vujaklija
et al., 2016). Better sensors, better physical interfaces and better machine-learning (ML) methods
and models are the main avenues researchers are pursuing (Fougner et al., 2012; Jiang et al,
2012); still, without neglecting these issues, a fundamental ingredient the recipe lacks is a tight
coupling between user and machine (Hahne et al., 2017; Beckerle et al., 2018). Coupling arises
from reciprocal adaptation which in turn relies on “transparent” control of the device—the device
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should move according to the user’s wishes without the user even
consciously realizing it (Makin et al., 2017).

Here, a somewhat deeper psychological interpretation of
the informal notion of transparent control (Fougner et al,
2012) is required. Musculoskeletal impairments, preventing
motor commands from being correctly executed, lead to
the disappearance of circular reactions—basic sensori-motor
associations created during the infancy by interacting with the
environment (Piaget, 1966; Evans, 1973; Sanchez and Loredo,
2007), significantly degrading the patient’s quality of life. But they
can also be restored/created anew by exploiting the plasticity
of the neural circuitry which can be induced, e.g., in virtual
reality (Yanagisawa et al., 2016), sometimes with consequences
on the perception of pain. Myocontrol could possibly then
be used to foster the restoration, or novel creation, of such
circular reactions, to replace those destroyed by the patients
condition. Correct and reliable intent interpretation would then
be a desirable side effect.

To this aim, the ideal assistive device reacts as dexterously
and quickly as the musculoskeletal system itself (Botvinick and
Cohen, 1998) while providing proper sensory feedback in real
time; but this is just a necessary condition. The user must also
be involved in a fruitful sensorimotor interaction with the device,
teaching it how it should work (Nowak et al., 2018). We believe
that a Radical-Constructivist (von Glasersfeld, 1995) framework
can unify all these aspects and provide useful guidelines for the
design of better ML systems, user interfaces and experimental
protocols for myocontrolled assistive devices.

ON THE PURPOSE OF ASSISTIVE
SYSTEMS

In mammals (actually, in all beings endowed with a nervous
system) every single movement produces a “sensorial trace”—
in the simplest setting, indeed a proprioceptive one. Simple,
basic, stereotyped movements corresponding to similarly simple
sensorial traces, for instance the act of flexing a wrist and the
feeling of flexing it, become strongly associated to each other
through repeated execution since birth, thanks to the plasticity
of the nervous system. According to Piaget, such sensori-motor
associations are the building blocks of one’s own body control
and even, possibly, of intelligence tout court (Piaget, 1966); the
paradigm of enactive/embodied knowledge and learning points
in the same direction (de Bruin et al., 2018).

Radical Constructivism

Piaget’s theory of cognitive development contends that, in the 1st
month after birth, an infant’s activity is characterized by simple,
genetically determined reflexes such as rooting and sucking;
subsequently, till 4 months of age, the interest shifts to the
body, trying to reproduce pleasant events—a rudimentary form
of goal-directedness (Piaget, 1966). These cyclic behaviors had
been called circular reactions by Baldwin (Baldwin, 1894) because
a random action would generate a pleasant stimuli leading to
the repetition of said action. Piaget further developed this idea
by introducing the concepts of assimilation, accommodation,

organisation and action scheme, which led him to further
distinguish primary, secondary (4-12 months) and tertiary (12—
18 months) circular reactions (Piaget, 1966).

In particular, an action scheme (von Glasersfeld, 1995) is
a goal-directed extension to the traditional stimulus-response
reflex model, consisting of (1) the recognition of a specific
situation; (2) the execution of an action associated with
that situation; and (3) the comparison of the new situation,
obtained as a consequence of the action, to an expected
(desired) result. The infant will first recognize a situation
as an instance of something known (assimilation, Piaget,
1966; von Glasersfeld, 1995), then it will execute an activity
associated with it, and lastly, it will try to assimilate the
obtained result to its expectations. If this attempt fails, either
the initial recognition will be modified, in order to prevent
further triggering of the same action in the future, or a
new scheme will be created, by modification of the expected
result (accommodation).

The continual execution of action schemes, at first at random,
then in a progressively coordinated fashion, leads to their self-
organisation into more and more complex ones, effectively
building up sensorimotor coordination in the infant. In order
to form, use and organize action schemes, however, an infant
needs a set of basic capabilities, namely (von Glasersfeld, 1995)
to be able (a) to remember and retrieve past experiences; (b)
to compare and determine (dis)similarity between them and the
current situation; and (c) to evaluate experiences as interesting
and/or beneficial, that is, to match them against a goal. The
need for such a system-oriented perspective leads us to adopt a
more operational kind of constructivism then Piagets, Radical
Constructivism (von Glasersfeld, 1995). RC is based upon six
fundamental principles, derived more in detail from Piaget
(1966), von Glasersfeld (1983, 1995), Varela et al. (1991), Kant
(1998):

1. [Experiential world] Although all human beings share the
same physical space, each one lives in a secluded experiential
world, an inner universe constructed by interacting with
the environment.

2. [Objects] The objects found in the experiential world use the
environment but are not determined by/do not conform to
it; rather, they are determined by/conform to the way the
individual constructs them. This idea goes back to Immanuel
Kants Copernican revolution (Kant, 1998).

3. [Functions] Objects are constructed via a self-organizing
system of basic functions: reflexes, circular reactions,
assimilation, accommodation and organisation (Piaget, 1966).

4. [Autopoiesis] This self-organizing system is autopoietic
(Varela et al., 1991): the outcomes of the construction extend
and further develop the basic functions that constructed them.

5. [Viability] In the process of constructing the experiential
world, viable objects are preferred—objects which better fulfill
the goal for which they have been constructed (von Glasersfeld,
1983).

6. The [environment] then provides material for the
construction of each individual’s experiential world and
puts to the test its viability.
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Musculoskeletal Impairments From the RC

Perspective

Primary and secondary circular reactions clearly encompass
the above-mentioned intuitive notion of (simple, basic,
stereotyped) “sensorimotor associations.” They are subsequently
hierarchically organized in action schemes thanks to
assimilation, accommodation and organisation. Action schemes
corresponding to more complex, high-level, goal-directed
actions can be decomposed into finer-grained action schemes,
and, in the end, into their constituent circular reactions (this
idea already appears in, e.g., von Glasersfeld, 1995; Kumar et al.,
2018). For instance, “reaching for and grasping a cup of tea” can
be decomposed into simpler actions schemes, e.g., “focus on
the cup,” “stretch the arm,” “pre-shape the hand,” etc. Each such
scheme can be decomposed in turn, till primary and secondary
circular reactions are reached. Each time such an action scheme
is executed, all lower-level action schemes and circular reactions
it involves are executed in turn. This way, the organisation of
the objects at the core of this action continually consolidates and
adapts, increasing its own viability and tightening the coupling
between the environment and the subject.

Seen from this perspective, acquired musculoskeletal
impairments disrupt specific sets of primary and/or secondary
circular reactions, and, consequently, all action schemes based
upon them. As a consequence, the organization of these schemes
gets gradually undone. A trans-radial amputation, for example,
annihilates—among others—all secondary circular reactions
related to the missing wrist, as well as all higher-level ones based
upon them. Phantom-limb sensation and pain and maladaptive
cortical reorganization (Flor and Birbaumer, 2000; Erlenwein
et al, 2021) can probably be seen as consequences of such
a disruption. In RC terms, the experiential world of those
who suffer from a musculoskeletal impairment undergoes a
dramatic reorganisation; objects which had been constructed
during the patient’s life as a healthy person disappear and
new action schemes are constructed, which are necessarily
much less viable then before. Following the previous example,
trans-radial amputees shift the dominance to the remaining
limb, adapt the gait to the altered weight of the body and perform
manipulation tasks using compensation movements (Schweitzer
et al., 2018)—these are only some of the new experiential
objects they construct. An amputation significantly reduces the
patients quality of life; nevertheless, the new action schemes
are the most viable given the prosthetic system at the patient’s
disposal and the autopoietic nature of the objects in the patient’s
experiential world.

Myocontrol as a Means to Fix a Broken
Experiential World

A prosthetic system (the prosthetic device plus its myocontrol
system) should then aim at bi-directionally connecting the
patient to the device in such a tight way that novel primary
and secondary circular reactions form, functionally replacing
the missing ones and constituting the basis of new action
schemes; this would translate to better feeling of immersion
and embodiment, more trust in the prosthesis, better control

and higher functionality in daily living. These ideas, moreover,
apply to all assistive devices requiring fine control by a disabled
user (exo-suits, exoskeleta for rehabilitation, active orthoses,
virtual rehabilitation systems, etc.) via residual muscle activity—
wherever myocontrol is involved.

We contend that the ideal assistive system should foster the
re-organisation of the patient’s experiential world, rather than
detecting the patient’s intent. For instance, it should enable an
amputee flex and extend the wrist with such a short latency and
high precision, that no conscious attempt to do it is felt; and it
should provide such an apt and subtle substitute feeling for the
flexion/extension of the wrist, that the association between the
action and the feeling becomes intimate, indissoluble—indeed, a
new primary circular reaction. Currently, no prosthetic device is
able to provide such a swift motion, but virtual reality is a viable
test-bed, for instance to ease neuropathic pain or as a prosthetic
training environment (Ortiz-Catalan et al., 2014; Nissler et al,,
2019). Such a claim is substantiated by numerous hints found in
literature about the swiftness of self-powered prostheses and its
fallout on prosthetic rejection, for instance relating the feeling
of immersion and embodiment to short mechanical latency, its
looks and the reliability of myocontrol (Farrell and Weir, 2007;
Smith et al., 2011; Beckerle et al., 2018).

An RC myocontrol system is then a bidirectional interface
(Beckerle et al., 2018) translating actions and feelings back and
forth, fostering the construction of new circular reactions.

INTERACTION FOR ASSISTIVE ROBOTICS:
A RC PERSPECTIVE

In the previous Section we have tried to provide the RC
perspective on musculoskeletal impairments and the aim of
RC myocontrol. We now sketch its characteristics and give an
example of it.

Radical-Constructivist Myocontrol
Consider the six principles mentioned above, which RC-based
myocontrol should adhere to. Its experiential world is the
space of signals available to interact with the user, typically,
bio-signals gathered from the user and environmental signals
provided by the device and the physical environment. The
objects in its experiential world, constructed in the course
of time, are (a) signal patterns gathered from the user
while trying to perform specific actions; and (b) a model
associating signal patterns to said actions. Assimilation and
accommodation correspond then to defining the patterns/actions
associations in the model: a pattern can be associated to
an existing action (assimilation), or associated to a new
action or rejected (accommodation). Assimilation and
accommodation are therefore supervised functions—the
system needs to interact with one or more oracles to know the
pattern/action association, e.g., the experimenter, the user or a
decision procedure.

Finally, the organisation of the objects in the system’s
experiential world corresponds to the creation or adjustment
of the above-mentioned model, determining its viability—the
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degree to which the predicted actions adhere to the patient’s
desires and needs. In a virtuous loop of data acquisition and
reorganisation of the objects, the viability increases in time,
possibly reaching a local optimum.

Operationally—consider again the three basic requirements of
a constructivist system highlighted above—RC myocontrol must
be able to

1. match a signal pattern to a previous one, estimating the
confidence of the match;

2. store, delete, retrieve and forget signal patterns; and

3. decide to acquire new patterns and/or ask the user to provide
new data, or delete past patterns.

Flexing a Virtual Wrist, in a

Radically-Constructivist Sense

How would a typical RC myocontrol look like, in practice?
We believe that it would consist of a (supervised) incremental
machine learning method, updated on-demand via carefully
designed interaction with its oracles. More in detail, basic
requirements (1) and (2) are provided already by standard,
supervised machine learning, where building a pattern/action
model is enforced by minimizing a cost functional. Furthermore,
interactive machine learning provides the ability to gather and
assign new patterns/delete past ones and update the model given
the new set of patterns. Item (3) can be enforced by querying the
user and/or the experimenter/therapist by using, e.g., measures of
confidence of a pattern match. An initial attempt can be seen in
Nowak et al. (2018).

The interaction with a human oracle, however, seems more
problematic; here, specific attention must be given to the
interaction protocols and to the interface to the user and/or the
experimenter, which must be readily, intuitively interpretable,
allowing the user to form a suitable mental model of the
device. The principles of Interaction Design (IxD, Norman,
2013), a branch of Design Science concerned with usability and
friendliness of devices, could help. The main predicament of IxD
is that objects should be designed such that they can be used in
the right way only (“human errors are design errors”). In the
case of myocontrol, there should be one way only to teach the
device which patterns correspond to which signals, and to have it
acquire and forget data (from this perspective most of IxD seems
based upon constructivist principles).

Following up the previous example of the wrist flexion,
we now sketch a possible RC wrist myocontrol system. The
system’s objects are two signal patterns, one for the resting state
and one for the full wrist flexion, gathered in the course of
time from a patient using surface electromyography (Merletti
et al, 2011). A regression method has been used to build a
proportional model of the wrist flexion, and a realistic virtual
reality wrist closely and swiftly displays the estimated wrist
flexion to the patient. Electro-cutaneous stimulators (see, e.g.,
Gonzalez-Vargas et al., 2015) are used to convey a feeling of
proportional intensity to the patent’s forearm. Within the limits
of the virtual world, the patient can walk and freely move
the arm and forearm while flexing the wrist. Each time the
wrist flexion does not reflect the patient’s desire, for instance

because of the limb-position effect (Campbell et al., 2020),
the patient can act on either of two virtual buttons on the
forearm, clearly labeled with a resting wrist and a fully flexed
one. Pressing one of the buttons starts a further data gathering
related to the action represented on the button itself; the model is
instantaneously updated.

A further element of the user interface is sound feedback,
issued whenever the confidence of the model estimation drops
below a threshold; this feedback denotes the necessity for
the patient to provide more data in an area of the input
space where the uncertainty is high [this strategy already
appears in Gigli et al. (2020)]. In the course of the time
spent within the virtual world, we expect the objects in the
experiential world of the myocontrol system, that is the signal
patterns corresponding to the resting state/full flexion and the
regression model, to increase their viability with respect to the
environment, and a new hierarchy of circular reactions related
to the flexion of the wrist to arise in the user’s experiential
world. As a side-effect, the enaction of the virtual wrist flexion
becomes more and more accurate with respect to the patient’s
desire—this can easily be assessed by administering a TAC
test (Simon et al, 2011) to the patient at specific intervals
of time.

CONCLUDING REMARKS

The requirement that the user be at the centre of research
in assistive robotics is nowadays relevant in literature and
is clear from the growing number of research projects
in which clinics and healthcare companies are involved.
User-centred design should be employed at all stages, and
this requires a deeper understanding of the neurological
and psychological processes behind (re)learning
sensorimotor faculties. In this perspective article we have
argued that Radical Constructivism offers such a theoretical
and practical framework to conceive and design a human-
centered approach to assistive robotics; in particular, that RC
can be used to understand musculoskeletal impairments,
shift the paradigm of myocontrol and set a new aim
to it, and design in a principled way the HMI and the
patient-device interaction.

A number of open issues remain, three of which seem
particularly interesting at the time of writing. In the first
place, interactive machine learning has been explored only
marginally so far in myocontrol, the classical approach being
the collection of data at the start of each control session
(Castellini, 2016), therefore there is yet no comparison. The
potential superiority of one approach with respect to the other
will be proven only in the course of time and via testing on
end-users. Secondly, we are aware of no neural correlates of
circular reactions that can be detected with state-of-the-art
brain imaging techniques (although, e.g., Virji-Babul et al,
2012 is a promising study going in this direction), so how
to detect the creation and disappearance of novel circular
reactions induced by RC myocontrol is still an open question.
Lastly, a way of numerically determining the interpretability

new
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of an assistive
unexplored, issue.

system is a fascinating, although still
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