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Estimates of limb posture are critical for controlling robotic systems. This is generally

accomplished with angle sensors at individual joints that simplify control but can

complicate mechanical design and robustness. Limb posture should be derivable from

each joint’s actuator shaft angle but this is problematic for compliant tendon-driven

systems where (i) motors are not placed at the joints and (ii) nonlinear tendon

stiffness decouples the relationship between motor and joint angles. Here we propose

a novel machine learning algorithm to accurately estimate joint posture during

dynamic tasks by limited training of an artificial neural network (ANN) receiving

motor angles and tendon tensions, analogous to biological muscle and tendon

mechanoreceptors. Simulating an inverted pendulum—antagonistically-driven by motors

and nonlinearly-elastic tendons—we compare how accurately ANNs estimate joint

angles when trained with different sets of non-collocated sensory information generated

via random motor-babbling. Cross-validating with new movements, we find that ANNs

trained with motor angles and tendon tension data predict joint angles more accurately

than ANNs trained without tendon tension. Furthermore, these results are robust to

changes in network/mechanical hyper-parameters. We conclude that regardless of the

tendon properties, actuator behavior, or movement demands, tendon tension information

invariably improves joint angle estimates from non-collocated sensory signals.

Keywords: biologically-inspired robots, deep learning, artificial neural networks, tendon-driven systems,

sensor fusion

1. INTRODUCTION

What are the control mechanisms by which Nature masters versatile limb movements that robots
have yet to learn? Even the smallest of creatures can quickly and expertly learn to control
their limbs for a variety of tasks, yet robots struggle to match this level of performance and
generalizability. Therefore, roboticists often turn to Nature for inspiration, hoping to harness
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hidden lessons to build robots with comparable functional
versatility. Tendon-driven robots are a bio-inspired class of
robots that are becoming increasingly popular because of
their functional advantages (Laurin-Kovitz et al., 1991; Lee
and Tsai, 1991; Pratt and Williamson, 1995; Kobayashi et al.,
1998; Pratt, 2002; Valero-Cuevas, 2016; Mazumdar et al., 2017;
Marjaninejad and Valero-Cuevas, 2019; Marjaninejad et al.,
2019a,b; Andrychowicz et al., 2020). Chief among these is the
fact that tendon-driven robots are not burdened by the need
to place actuators at the joints they actuate. They can instead
be placed more proximally to provide more robust and efficient
quadrupedal or anthropomorphic robots by reducingmechanical
vulnerability and limb inertia (Jacobsen et al., 1986).

An estimate of the configuration of the limb is essential
for most state-based robotic feedback control strategies (Heess
et al., 2017; Marjaninejad et al., 2019b; Andrychowicz et al.,
2020). In the absence of visual feedback, this is generally
accomplished by placing sensors directly on joints. This increases
limb inertia, complicates mechanical design, can be an additional
source of noise, and risks damage (Marjaninejad et al., 2019b,c).
These adverse effects become more pronounced for slender or
deformable limbs (e.g., fingers in tendon-driven robotic hands)
where it may be impossible or impractical to sensorize the joints.
To address these challenges, we must ask, “What alternatives are
there to on-location joint sensors?” and, more importantly, “How
has Nature evolved to solve these problems?”

Interestingly, biological limbs do not have dedicated sensors
to explicitly and uniquely encode joint angles. Instead, they
have sensors for muscle (actuator) lengths and velocities
(called muscle spindles, Figure 1A blue; Crowe and Matthews,
1964) and for tendon tensions (called Golgi tendon organs,
Figure 1A maroon; Appenteng and Prochazka, 1984)1. Previous
work established that, in general, a functional (yet indirect)
relationship exists between the states that these proprioceptors
measure and the kinematic states (like posture; Hagen and
Valero-Cuevas, 2020), in support of the theory that these
proprioceptive signals could, in principle, be integrated
by the nervous system to form internal representations
of posture (Scott and Loeb, 1994; Dimitriou and Edin,
2008; Van Soest and Rozendaal, 2008; Kistemaker et al.,
2013). Where and how this sensory information is fused
biologically to predict joint angles and/or limb posture is
not understood.

While it is sometimes possible to derive analytical
relationships among tendon tensions, motor rotations, and
joint posture given the precise equations for its kinematics and
dynamics, in practice it is often impractical or even impossible
to obtain accurate and time-invariant analytical models of such
nonlinear dynamical systems (Bongard et al., 2006; Marjaninejad
et al., 2017). Furthermore, even if an accurate analytical model
of the system were available, these relationships (i) would not
generalize across changes in mechanical designs or tasks and
(ii) will become increasingly inaccurate as the plant suffers
mechanical changes due to either damage or normal wear

1There are additional biological sensors that detect stretch in the skin and synovial

capsule, but these do not directly encode joint position either (Kandel et al., 2000).

and tear (Palli et al., 2012). Therefore, data-driven implicit
models that can efficiently map between sensory information
and estimates of states are preferred in practical applications
(Bongard et al., 2006; Marjaninejad et al., 2018; Kwiatkowski and
Lipson, 2019).

In Hagen et al. (2020), we estimated joint angles by training
artificial neural networks (ANNs) with limited amounts of
different sets of non-collocated sensory information collected
from a simulated inverted pendulum driven by compliant
tendons (Figure 1B) during random motor babbling. This
preliminary work concluded that limited amounts of the
so-called Bio-Inspired Set of sensory inputs (i.e., motor
rotations/velocities and tendon tensions, Figure 1A) were
sufficient to train ANNs to predict time-varying joint angles
with reasonable accuracy (∼2◦ average error). While these initial
results were promising, the average error was perhaps too
high to suggest that such a machine-learning approach to joint
angle estimation could be used in real robots. Furthermore, no
sensitivity analysis was performed to determine the robustness
of such an algorithm to changes in the hyper-parameters
of the neural networks (e.g., duration of motor babbling or
number of hidden-layer nodes) or the mechanical parameters of
the system.

Here we expand upon that framework to address these initial
limitations and to fully develop an algorithm that accurately
and reliably predicts joint posture from non-collocated sensors
in a model tendon-driven robot (called insideOut to impress
the importance of proprioception of internal variables to
outward performance). We emphasize posture estimation via
limited experience in robots because learning and operating
in the physical world often precludes collecting large amounts
of data, which is time-consuming and potentially damaging
(Marjaninejad et al., 2019a). To that end, four main extensions
were made to the original framework; (i) increasing the limit
on the number of epochs that ANNs can use to refine
their mapping when training with some set of babbling data
(thus increasing overall performance); (ii) testing different
types of motor babbling to more strategically explore the task
space; (iii) exploring the trade off between the number of
hidden-layer nodes and duration of motor babbling by testing
whether and how changes to the number of hidden-layer
nodes (previously fixed to 15) will affect the performance of
these ANNs; and (iv) performing extensive sensitivity analysis
across tasks and the mechanical parameters of the tendon-
linked actuators (i.e., tendon stiffness and motor damping) to
demonstrate its general utility for immediate application in
physical robots.

2. MATERIALS AND METHODS

2.1. Definition of the Plant and Its
Dynamics
Our goal was to determine the utility of observing different kinds
and amounts of sensory information in a tendon-driven system
in simulation. It is impractical at this point to use a physical
system that is prone to damage during the many trials required
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FIGURE 1 | (A) Types of mechanoreceptors present in a muscle. Muscles are activated by spinal α-motorneurons (green) and any subsequent muscle fascicle (i.e.,

individual muscle fiber) length changes and velocities are sensed by the muscle spindles (lm & l̇m, blue) while the Golgi tendon organs are responsible for detecting

tendon tension (fT , maroon). (B) Schematic of a tendon-driven system with 1 kinematic DOF and 2 degrees of actuation (motors) that pull on tendons with nonlinear

elasticity (creating a tension, fT ,i ). The motors were assumed to be backdrivable with torques (τi ) as inputs.

to develop and compare ANN methods. Future work will use
physical systems in the now validated algorithm. We simulated
a simple 1 degree of freedom (DOF) tendon-driven system
with 2 actuators (the standard so-called 2N design) that pull
on tendons with nonlinear stiffness (Figure 1B). We modeled
the motor actuators as idealized sources of torque (τi) with no
gearing to allow backdrivability. Similar to the approach taken
in Palli et al. (2007), the tension on a tendon [fT,i, (1)] was
modeled as an exponential function of tendon stretch (1lT,i)
with positive scaling coefficient (kT) and rate constant (bT) to
fit the shape and slope of this relationship. Tendon stretch was
calculated as the difference between joint angle (θj) and motor
angle (θm,i) excursions.

fT,i(θm,i, θj) =

{

kT
(

exp(bT1lT,i)− 1
)

; (1lT,i ≥ 0)

0; (1lT,i < 0)

(1a)

(1b)

where 1lT,i =

{

rmθm,1 − rjθj; i = 1

rmθm,2 + rjθj; i = 2

and bT > 0, kT > 0 are shape constants.



















θ̈j =
1

Ij

[

−Djθ̇j − G(θj)+ rj
(

fT,1(θj, θm,1)− fT,2(θj, θm,2)
)]

θ̈m,i =
1

Im,i

[

−Dmθ̇m,i − rmfT,i(θj, θm,i)+ τi
]

(for i ∈ {1, 2})

(2a)

(2b)

Therefore, the equations of motion for this system without
contact are given by (2) whereG is the torque due to gravity2, and
I, D, and r represent the moment of inertia, damping coefficient,
and moment arm for either the joint or the motors (denoted by
the subscripts j and m, respectively)3. We can then rewrite the

2Torque due to gravity: G(θj) = −mjgLCM sin(θj).
3The values of the parameters used in (1)–(2) were taken from Palli et al. (2008) &

Hagen et al. (2020).

system of equations for contactless dynamics in its state space
representation, (3)–(5), where Ex = [θj, θ̇j, θm,1, θ̇m,1, θm,2, θ̇m,2]

T ,

Eu = [τ1, τ2]
T , and Ey = h(Ex) is the desired output (e.g., y =

θj). To approximate contact dynamics at the boundaries (±90◦

from vertical) without the use of high impedance boundary
functions4, computational “hard stops” were invoked whenever
the pendulum attempted to leave the range of motion by
introducing a restoring joint torque that was equal to but
opposite of any torque applied into the boundary (s.t. the right
hand side of (2a) was zero when pushing on the boundaries
at±π/2).

{

Ėx = f (Ex)+ g(Ex)Eu

Ey = h(Ex)

(3a)

(3b)

f (Ex) =















x2
Eq. (2a)

x4
Eq. (2b), i = 1

x6
Eq. (2b), i = 2















(4)

g(Ex) =



















0 0

0 0

0 0

I−1
m,1 0

0 0

0 I−1
m,2



















(5)

2.2. Choosing Tendon Stiffness Parameters
The goal of these experiments was to explore what types of
sensory information are needed to accurately predict joint angles

4These functions would require our numerical integration simulation to use a

variable time step and the resulting dynamics complicate the control law for the

feedback linearization technique used to produce the generalization trajectories.
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FIGURE 2 | (A) Tendon stiffness parameters and the approximate range of Young’s modulus values. (B) Examples of tendon tension-stretch curves for the parameters

provided in (A). The Low stiffness curve (solid red) represents the default force-length relationship for the compliant tendons proposed in Hagen et al. (2020).

in a compliant tendon-driven robotic system. The parameters
used to categorize tendon stiffness (i.e., kT and bT) were
initially chosen to simulate very compliant tendons so that
we might understand if tendon tension information is vital
to this estimation. We know from previous work that tendon
compliance decouples the relationship between muscle and
musculotendon in vivo and suspect that for a robotic system this
decoupling makes it difficult to predict joint angles from motor
angle and angular velocity measurements (Hagen and Valero-
Cuevas, 2020). Therefore, we began by exploring a very compliant
system as a worse case.

Kj =
∂

∂θj

[

rj
(

fT,1(θm,1, θj)− fT,2(θm,2, θj)
)

]

= kTbTr
2
j

(

exp
(

bT1lT,1
)

+ exp
(

bT1lT,2
)

)

(

Assuming 1lT,i ≥ 0 for i ∈ {1, 2}
)

= bTr
2
j

(

fT,1(θm,1, θj)+ fT,2(θm,2, θj)+ 2kT
)

(6a)

(6b)

(6c)

In order to choose (and subsequently vary) these parameter
values for tendon stiffness, we imposed two constraints to ensure
that the joint stiffness values [Kj, (6)] fell within a conservative
range ([10,50] Nm/rad) during a given movement, so long as
the amount by which the tendon stretched stayed within a
desired range. Specifically, it was assumed that the minimum
joint stiffness was to be conserved across parameter choices
(such that Kmin

j = 2kTbTr
2
j = 10 Nm/rad if 1lT,i = 0

for i ∈ {1, 2}) and that the largest induced joint stiffness
would occur near the largest desired tendon stretch. To find
an equation for this second constraint, we considered the
special case where the pendulum was in equilibrium at the
vertical position and at the maximum desired joint stiffness
value. By the symmetry of the plant, the tendon tensions (and
by definition, the stretching of the tendons) were maximal
and equal such that Kmax

j = 2kTbTr
2
j exp(bT1lmax

T,i ) =

50 Nm/rad.
From these two constraints it was possible to vary the

parameters for tendon stiffness by changing the value for the
largest desired tendon stretch. As in Hagen et al. (2020), we
chose the maximum desired tendon stretch to be ∼ 0.08 m

for the default Low tendon stiffness, such that kT = 100 N
and bT = 20 m−1. For the subsequent experiment where
tendon stiffness was varied, we derived these parameters again
using the aforementioned method for tendons that can stretch
a maximum of 0.0267 and 0.0125 m (designated Medium and
High tendon stiffness, respectively). But in the final experiment,
where the tendons were made to be nearly inextensible, the
parameters were chosen by observation and by satisfying
the first constraint only (i.e., for increasingly stiff tendons,
the maximum joint stiffness also increases). The parameter
values used for these experiments are provided in Figure 2A

and the respective tension-stretch relationships are plotted
in Figure 2B.

To better comprehend the stiffness of these tendons, we
compared the Young’s modulus for each tendon when under
∼ 400 N of tension (assuming that this tension corresponds to
the same percentage of maximum stress, σmax

T,i = fmax
T,i /CSA,

and that each tendon had the same dimensions). Assuming a
cylindrical tendon with a diameter of 0.001 m and a slack length
(lT,s,i) between 0.01 and 0.04 m, the range for Young’s modulus
at this stress level (400 N/CSA) was calculated by (8) (Figure 2A,
right column).

KT,i =
∂fT,i

∂(1lT,i)
= kTbT exp(bT1lT,i) (7)

E
∣

∣

fT,i=400 N
= CSA−1 ·

(

KT,i

∣

∣

fT,i=400 N

)

· lT,s,i

= CSA−1 · bT(400 N+ kT) · lT,s,i

(8a)

(8b)

Note that the range of Young’s moduli for the Medium
and High stiffness tendons are 2.6x and 5.2x larger than
the range for the default (rubberband-like) Low stiffness
tendon, respectively. These higher stiffness values are
more consistent with the observed range for physiological
tendon (1.2–1.7 GPa), allowing us to speculate about just
how useful physiological tendon sensors (i.e., Golgi tendon
organs) are and their potential role in sensory fusion
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(Bennett et al., 1986; Zajac, 1989; Pollock and Shadwick,
1994)5.

2.3. Description of Improved Motor
Babbling
Previously in Hagen et al. (2020), additive low frequency band-
limited white noise was used to modulate the amplitude of
random ramp-and-hold input signals in order to induce what
is called “motor babbling.” As the average input levels of the
motors during a given hold phase were uniformly sampled, it
was rare for the inputs to be similar enough to each other for
the limb to occupy the middle of the configuration space (even
if only briefly). Instead, the effective “tug of war” happening
between the tendons was typically dominated by one motor’s
random input level, causing the limb to rapidly flip across the
configuration space to spend the remainder of the hold phase at
that boundary. While this particular babbling strategy resulted
in useful data after as little as 2 min (once the limb had flipped
a sufficient number of times), it is not conducive to an efficient
machine learning algorithm that relies on well-sampled data
collected from within the configuration space and as such we
aimed to develop a more strategic form of motor babbling to
rectify this.

As these motors are effectively locked in a game of “tug of
war” where the joint only moves if there is a net torque, the
model spends more time in the mid-range of motion (collecting
more useful data) if no motor is allowed to dominate by
choosing input levels that “fight” to limit the net joint torque.
To that end, we designed a motor babbling approach whereby
motors are each assigned low frequency, band-limited white
noise signals (1–10 Hz, 0–10 Nm) that (i) uniformly sample
the input space and (ii) are made to be similar to each other
(effectively emulating biological co-contraction of muscles).
This more efficient form of motor babbling simultaneously
explores the joint angle space whenever there is sufficient
net torque for movement as well as its nullspace (i.e., the
joint stiffness space) whenever the motors and tendons are
“evenly matched.”

To generate these motor babbling signals, the entire duration
is first divided into 50 ms windows and then motor torque
values are uniformly sampled and assigned to the first motor
for each window (Figure 3A). Values for the second motor

5As described in Zajac (1989), the most important determinant of muscle-tendon

interaction in biological cases is the ratio between tendon slack length (i.e.,

the length under zero tension) and the optimal muscle fascicle length (i.e., the

length at which the maximum force can be generated), which is omitted here for

simplification. In this idealized robotic analog system, motors can produce the

same torque at any rotor angle. Therefore, a more appropriate metric would be the

ratio between tendon slack length and the rotor’smoment arm as this describes an

actuator’s excursion per unit motor rotation. For the assumed motor moment arm

value (0.02 m) and tendon slack length range (0.01-0.04 m) this ratio is between

0.5 and 4, corresponding to the lower half of the reported physiological range

for the ratio between tendon slack length and optimal muscle length ≤ 11.25;

Zajac, 1989; Hoy et al., 1990). Future work will explore the affect of changes to this

displacement-stretch ratio, but previous work and intuition suggest that increasing

this ratio will increase the relative amount a tendon stretches compared to the

amount by which a rotor displaces, causing more decoupling between motor data

and joint angles and increasing the usefulness of knowing tendon tension data in

the proposed ANN algorithm (Hagen and Valero-Cuevas, 2020).

FIGURE 3 | Example of how 300 ms of motor babbling signals are generated.

(A) Random motor torque inputs are uniformly sampled from the range of

possible inputs and assigned to 50 ms windows for motor 1 (red). (B) Then

values for motor 2 (blue) are selected for each window from a normal

distribution centered around the values for motor 1 with a standard deviation

of 0.5 Nm (5% of the range of maximum input level). These discontinuous,

piece-wise signals are then filtered using a forward (C) and backward (D) finite

impulse response moving average filter with a filter lengths of 50 ms. This

results in correlated band-limited, low frequency (≤ 10 Hz) white noise motor

babbling signals.

for each window are then randomly selected from normal
distributions centered around the first motor’s random values
with a standard deviation of 0.5 Nm (Figure 3B)6. These
discontinuous, piece-wise constant input signals are then filtered
with a 50 ms moving average, finite-impulse response filter both
forward and backwards to produce random motor babbling
signals that are smooth, low frequency (≤10 Hz), and slightly
correlated with each other (Figures 3C,D). Thesemotor babbling
inputs are then used to drive the plant in a feedforward
simulation where the resulting joint angles are recorded along
with all motor data (angles, angular velocities, and angular
accelerations) and the tendon tension data (including their
first and second derivatives). By choosing inputs that are often
(nearly) equal, the limb stiffens during the resulting tendon “tug
of war.” This new approach effectively samples the configuration
space near the joint torque nullspace whenever the input levels
are consistent with movement, allowing the limb to flip less
rapidly across the configuration and for more useful data to
be gathered from the joint’s mid-range of motion. This is not
unlike the co-contracted movements generated by infants during
motor babbling (Dominici et al., 2011; Marjaninejad et al.,
2019b).

2.4. Training and Testing Artificial Neural
Networks
Similar to Hagen et al. (2020), for each babbling trial, four
different sets of sensory information were generated using
combinations of motor and/or tendon tension data and used
to train ANNs to predict joint angles; the set of All Available

6If there are asymmetries in either the actuators or the plant or if the system

becomes more complicated with higher degrees of freedom or more motors, then

this approach must be modified to consider the ratios between moment arms

and the nullspace of joint torques as dictated by the limb’s equations of motion

(Valero-Cuevas, 2016).
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Data (9), the Bio-Inspired Set (10), the set ofMotor Positions and
Velocities Only (11), and the set of All Motor Data (12).

All Available Data

Ex 1
sens =

[

Eθ T
m

Ėθ T
m

Ëθ T
m

Ef T
T

Ėf T
T

Ëf T
T

]T
∈ R

12 (9)

Bio-Inspired Set

Ex 2
sens =

[

Eθ T
m

Ėθ T
m

Ef T
T

]T
∈ R

6 (10)

Motor Position and Velocity Only

Ex 3
sens =

[

Eθ T
m

Ėθ T
m

]T
∈ R

4 (11)

All Motor Data

Ex 4
sens =

[

Eθ T
m

Ėθ T
m

Ëθ T
m

]T
∈ R

6 (12)

Feedforward neural networks were generated using
MATLAB’s Deep Learning toolbox, which allows for direct
control over (i) the number of nodes in our hidden-layer, (ii) the
way in which the weights and biases of the activation functions
were initialized, and (iii) the type of optimizer used7 For each
ANN created, the number of input layer nodes was equal to the
number of elements in the sensory set and the number of output
layer nodes was always one. Each network had one hidden-layer
and the number of hidden-layer nodes was explored to determine
the effect that it had on the performance of each network.

The function used to initialize the weights and biases of the
network was changed from the previously-used, default function
(Nguyen-Widrow initialization algorithm8) to one that ensured
the weights and biases were initialized randomly each trial so
that a proper comparison could be made between networks
on average. The optimizer was chosen to be the Levenberg-
Marquardt algorithm (a nonlinear least squares optimization
technique) as it is very robust for minimizing mean squared error
(MSE). As we wished to compare how well these ANNs trained
with the four sensory sets were able to predict the joint angle
for a simple 1 DOF the system, we will use the mean absolute
error (MAE) to discuss performance, but for systems with higher

7https://www.mathworks.com/help/deeplearning/ref/feedforwardnet.html.
8The Nguyen-Widrow algorithm is designed to reduce training time by

distributing the initial weights and biases in such a way that the active region of

each neuron in the hidden-layer is evenly distributed across the input space. As the

goal of this experiment was to compare how well and how quickly ANNs trained

with different sensory sets learned to predict joint angles, the Nguyen-Widrow

algorithm was a poor candidate for initialization function as it may influence the

average performance differently across ANNs trained with the four sensory sets.

FIGURE 4 | Proposed setup for training ANNs on motor babbling. Random

input torques were generated from low frequency, band-limited white noise

(1-10 Hz) chosen such that the difference between the two signals forms a

normal distribution (0± 0.5 Nm). These motor babbling signals (τbab) are

passed through the plant, the subsequent sensory information is recorded,

and ANNs are trained with the four main sensory sets (Exisens) to predict joint

angle (θ ij,pred).

DOFs mean squared error (or root mean squared error, RMSE)
would be more appropriate. Therefore, this choice of optimizer
was appropriate to find the (locally) optimal performance for
these ANNs.

The general framework for generating and training these
ANNs is illustrated in Figure 4. For each babbling trial and
each sensory set, the babbling data was randomly divided
into three sets; training (70%), validation (15%), and testing
(15%). Validation checks were performed after each epoch and
terminated the training if (i) the performance trended worse for 6
consecutive epochs or (ii) if the gradient of the performance was
below a certain threshold (10−7, i.e., if the performance curve had
flattened out and was near a minimum). The number of epochs
that the networks can train on can also be modified to prevent
overfitting (as well as to reduce training time), but because we
were interested in the best performance possible by ANNs trained
with these sensory groups, the epoch limit was changed from 50
to 10,000 to allow (most) networks to converge by means of the
aforementioned validation checks instead.

2.5. Defining Different Movements to Test
Generalizability
To adequately address each ANNs ability to generalize, we
needed to identify movement tasks that were representative of
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most typical movements. An enabling feature of nonlinearly-
compliant tendon-driven systems is the ability to control
joint angle independently of joint stiffness [Kj, (6)] by
choosing different tendon tensions in the nullspace of
the joint dynamics. Therefore, by defining four different
movement tasks where joint angle and stiffness were
prescribed either sinusoidal or random point-to-point
trajectories within the range of these values, we were
able to generate movement tasks that categorized most
typical movements.

The sensory sets associated with each of these movements
were generated using a feedback linearization algorithm
[defined in Palli et al., 2008, and described in Hagen et al.
(2020)]. Previously, point-to-point generalization trajectories
were generated from piece-wise continuous reference trajectories
that were only twice differentiable. As the feedback linearization
algorithm utilized up to the fourth derivative of joint angle
and up to the second derivative of joint stiffness eq. (6)
for the control policy, the point-to-point reference trajectories
needed to be changed in order to prevent large transients
from occurring in the control. Even if only briefly, these
transients can cause large errors in joint angle estimation
across ANNs whenever the sensory input data are outside
of the bounds learned during motor babbling which are
used to normalize the inputs to the ANNs. We therefore
created a point-to-point transition trajectory that would arrive
and leave a given point with zero velocity, acceleration,
jerk, and snap so that transitions between ramp and hold
phases were continuously differentiable up to the fourth
derivative (13).

y = yi + (yf − yi)
(

126τ 5 − 420τ 6 + 540τ 7 (13)

− 315τ 8 + 70τ 9
)

where τ = (t − ti)/(tf − ti) and y ∈ {θj,Kj}. By
limiting the amount of time it takes to transition between
points (tf − ti) to a conservative (2 · 2 Hz)−1 = 0.25 s
we limited the frequency content of the point-to-point
reference trajectories to be below 2 Hz. The output
variable could then be held constant for a given duration
(minus the transition time), before transitioning to
another point.

Therefore, we defined the four movement trajectories
used to test generalization trajectories as follows. When
both joint angle and joint stiffness were made to follow
sinusoidal trajectories, the joint angle was prescribed a
sinusoidal trajectory of ±45◦ from vertical with a frequency
of 1 Hz, while the joint stiffness was prescribed a cosine
trajectory with twice that frequency such that maximum
stiffness occurred at the extremes of the movement [or
minimum stiffness occurred when swinging across the
configuration space, (14), Figure 5A]. For this and all other
trajectories, the range of joint stiffness values was chosen to
be [20,50] Nm/rad. The length of this reference trajectory
was chosen to be 10 s (10 periods of joint rotations), but
once the controller converged on this periodic trajectory,
so too did the sensory data associated with it. Therefore,

FIGURE 5 | Example plots of four different types of reference trajectories used

to test generalizability; (A) sinusoidal joint angle and sinusoidal joint stiffness,

(B) sinusoidal joint angle and point-to-point joint stiffness, (C) point-to-point

joint angle and sinusoidal joint stiffness, and (D) point-to-point joint angle and

point-to-point joint stiffness. For point-to-point tasks, transitions were limited

to 0.25 s (2 Hz cutoff) and designed in a way that they were continuously

differentiable up to the fourth derivative (i.e., they left and arrived at each point

with zero velocities, accelerations, jerks, and snaps).

because the sensory information will be periodic, the
performance of each ANN will be periodic as well and only
one period is needed to capture the performance behavior.
We used the last three periods to ensure capture of the
average behavior.

Sinusoidal Joint Angle
Sinusoidal Joint Stiffness

θ rj =
π

4
sin(2π t)

Kr
j =

50+ 20

2
−

50− 20

2
cos(4π t)

(14a)

(14b)

When the joint angle was made to follow a sinusoidal
trajectory but the joint stiffness was made to follow a point-
to-point task, the joint angle trajectory was prescribed as
described above (1 Hz oscillation, ±45◦ from vertical), and
the joint stiffness point-to-point task was chosen such that
(i) the point-to-point values uniformly sampled the stiffness
range and (ii) the step duration was equal to 3 times the
period of the joint angle trajectory (Figure 5B). This ensured
that the maximum positive angular velocity had two periods
where it did not coincide with the transition to another
stiffness point. Therefore, for each new random joint stiffness
value, (13) was used to generate a smooth transition from
the previous value with the appropriate boundary conditions,
where it was held constant for 2.75 s before transitioning to
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the next value [step duration minus the transition time, (15)].
To adequately sample the joint stiffness space, we completed
100 point-to-point steps for this trajectory (300 s total).

Sinusoidal Joint Angle
Point-to-Point Joint Stiffness

θ rj =
π

4
sin(2π t)

Kr
j =















(13) for smooth transitions

Otherwise, constant hold phase
at random stiffness values
for 3 periods minus
transition time (2.75 s)

(15a)

(15b)

Conversely, when the joint stiffness was made to follow
a sinusoidal reference trajectory and the joint angle was
made to perform point-to-point tasks, a 1 Hz cosine
trajectory was prescribed for the joint stiffness (spanning
the joint stiffness range) while the joint angle was made
to follow a random point-to-point task that uniformly
sampled the entire range of motion with a step duration
3 times the period of the joint stiffness trajectory (16)
(Figure 5C). As before, to adequately sample the joint
angle space, we completed 100 point-to-point tasks for this
trajectory (300 s).

Point-to-Point Joint Angle
Sinusoidal Joint Stiffness

θ rj =















(13) for smooth transitions

Otherwise, constant hold phase
at random angle values
for 3 periods minus
transition time (2.75 s)

Kr
j =

50+ 20

2
−

50− 20

2
cos(2π t)

(16a)

(16b)

Lastly, when both joint angle and joint stiffness
were made to follow point-to-point trajectories, the
random values were uniformly selected from the
full range of motion and the joint stiffness range,
respectively (Figure 5D). The step duration was set
to 1 s (minus the transition time), to ensure that the
plant had ample time to converge to each point in
joint angle and joint stiffness space. For this trajectory,
200 separate point-to-point tasks were completed
(200 s total).

Point-to-Point Joint Angle
Point-to-Point Joint Stiffness

θ rj =















(13) for smooth transitions

Otherwise, constant hold phase
at random angle values
for 1 s minus
transition time (0.75 s)

Kr
j =















(13) for smooth transitions

Otherwise, constant hold phase
at random stiffness values
for 1 s minus
transition time (0.75 s)

(17a)

(17b)

2.6. Sweeping Babbling Duration and
Hidden-Layer Nodes
With the general framework defined for training an ANN on
a given sensory set, we considered how (i) motor babbling
duration and (ii) the number of hidden-layer nodes affected the
performance of the various ANNs. To test these, two experiments
were conducted in which these parameters were varied while the
average performance was determined for each sensory set across
the four generalizationmovements. For either experiment, a total
of N ANNs were trained for each sensory set from N babbling
trials for each choice of the varied parameter, where N = 25
when motor babbling duration was varied and N = 10 when
the number of hidden-layer nodes was varied. These ANNs were
then asked to predict joint angles for the four generalization
movements and the MAE was measured (Figure 6). The average
MAE was then calculated for each sensory set to measure how
well on average networks of these types could generalize given
the choice of the varied parameter.

For the first experiment where we varied the babbling
duration, we selected values between 1 and 25 s ({1} ∪
{2.5, 5, . . . , 25}) while initially assuming ANNs to have 15
hidden-layer nodes as previous work had shown that to be
sufficient when controlling the joint angles of a tendon-driven
systemwith inextensible tendons (Marjaninejad et al., 2019a). The
results from this experiment (discussed in more detail below)
showed that (i) average performance of all sets/movements and
(ii) their relative standard deviations converged after 10–15 s.
From these observations, the duration of motor babbling was
fixed to 15 s for the second experiment where the number of
hidden-layer nodes was varied from 1 to 19 with a resolution of
2 nodes.

2.7. Sweeping Movement Frequency
To observe how well ANNs trained with these sensory sets
can generalize to joint angle sinusoidal movements of varying
frequencies, we defined 8 separate movements where the angular
frequency was chosen to be either 0.5, 1, 2, or 4 Hz and the joint
stiffness was either varied sinusoidally or as a point-to-point task
[(18)–(19) for f ∈ {0.5, 1, 2, 4}Hz].
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FIGURE 6 | Proposed experimental setup for a single choice of either babbling duration (Experiment 1, N = 25) or the number of hidden-layer nodes (Experiment 2,

N = 10). For either experiment, for each choice of the independent parameter, N motor babbling experiments were conducted and N ANNs were trained (see

Figure 4). The performance of each of these networks was determined by its ability to generalize to different movements [where joint angle and/or stiffness are

prescribed either sinusoidal (Sin) or point-to-point (P2P) trajectories; See Figure 5]. A feedback linearization controller then calculated the input torques needed to

produce the desired movements (see Palli et al., 2008 or Hagen et al., 2020), which were then passed through the plant to produce the experimental joint angle (θj,exp)

as well as the four sensory sets of interest (Exisens). These sets were then passed through their corresponding ANNs (that were trained with babbling data) to predict

joint angle (θ ij,pred). The prediction errors for each network were then averaged over all trials, and the performance as a function of the independent parameter could

then be evaluated.

Sinusoidal Joint Angle
Sinusoidal Joint Stiffness

θ rj =
π

4
sin(2π ft)

Kr
j =

50+ 20

2
−

50− 20

2
cos(2π ft)

(18a)

(18b)

Sinusoidal Joint Angle
Point-to-Point Joint Stiffness

θ rj =
π

4
sin(2π ft)

Kr
j =















(13) for smooth transitions

Otherwise, constant hold phase
at random stiffness values
for 3/f s minus
transition time (0.25 s)

(19a)

(19b)

For each of these movements, the feedback linearization
algorithm derived in Palli et al. (2008) was again used to generate
the associated sensory sets. Assuming 15 s of motor babbling and
15 hidden-layer nodes, 50 ANNswere created for each sensory set
from 50 trials of motor babbling which were then asked to predict
the joint angles for each of these 8 generalization movements.
As before, each ANN’s performance was calculated as the MAE
and the overall generalizability of each sensory set (for each
movement) was calculated as the average across all 50 trials.

2.8. Sweeping Tendon Stiffness and Motor
Damping
The next experiment swept across both tendon stiffness and
motor damping parameters to better understand the affect
those parameters have on performance. The approach used for

each choice of parameter values was similar to the approach
taken previously—ANNs for each sensory set were trained with
motor babbling data and their overall (average) performance was
determined by their ability to generalize to different movement
tasks. As the control needed to produce the generalization
trajectories changes whenever the plant is changed, the sensory
sets associated with the four generalization trajectories must be
generated via the feedback linearization algorithm for each of
the 9 parameter settings described below (3 motor damping and
3 tendon stiffness). Then for each parameter setting, 50 ANNs
were trained for each sensory set from 50 motor babbling trials
to predict joint angle (assuming 15 hidden-layer nodes and 15 s
of motor babbling) which were then asked to predict joint angles
for each of the four generalizationmovements uniquely generated
for each parameter setting. Consistent with previous experiments,
each ANN’s performance was calculated as the MAE and the
overall generalizability of each sensory set (for each movement)
was calculated as the average across all 50 trials. Therefore, for
each of the 9 parameter settings chosen, a single performance
metric was provided for each sensory set and each movement to
describe how well each ANN generalized, allowing us to identify
any trends across either parameter.

As previously discussed, the original choice of tendon
stiffness was quite low in order to determine if tendon tension
information would be useful for predicting joint angles in a very
compliant tendon-driven system. However, to address whether
this extreme choice of compliance affects the results, we utilized
Medium and High stiffness tendons (defined previously) to
compare the results. Additionally, the motor damping values of
interest were chosen to be 0.5x, 1x, and 2x the nominal value
provided in Palli et al. (2008) (0.00462 Ns/m).

2.9. Very High Tendon Stiffness Experiment
We were limited in how stiff we could make the tendons while
still maintaining these joint angle reference trajectories with a
joint stiffness range of [20,50] Nm/rad. At some point, the tendon
stiffness became high enough that the range of possible tendon
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tensions needed to follow the prescribed joint angles would not
intersect with the range of tendon tensions that produced these
lower joint stiffness values (i.e., themovement became infeasible).
Therefore, for a separate experiment where parameters kT and
bT were chosen to describe a tendon with Very High stiffness
(one that deformed nearly a tenth as much as the default Low
stiffness tendon, bottom row in Figure 2A) new generalization
trajectories were generated from a more reasonable joint stiffness
range. This allowed us to answer the question, “What happens
when tendon stiffness approaches infinity and the tendons
become inextensible?”

While conducting a preliminary motor babbling experiment
with these new tendon stiffness parameters, it was observed that
the range of induced joint stiffness values was quite large with a
maximum of around 2,000 Nm/rad. Therefore, it was determined
that keeping the joint stiffness between 150 and 650 Nm/rad for
the four generalization trajectories would (i) better represent the
typical joint stiffness values this plant would experience during
babbling while (ii) allowing the feedback linearization algorithm
to adequately control these trajectories.

As we did for the previous experiments, generalization
trajectories were generated using the feedback linearization
controller and the resulting sensory information was divided
into the four sensory sets. Then 50 ANNs were generated
for each sensory set (15 hidden-layer nodes) and trained
with random babbling data (15 s) to predict joint angle.
The ability of each ANN to generalize was measured as the
MAE for each of the four movement trajectories and the
average performance was then calculated to identify how these
performances compared to the considerably lower stiffness
examples seen in previous experiments.

3. RESULTS

3.1. Sweeping Motor Babbling Duration
When motor babbling duration was varied between 1 and 25
s (and the number of hidden-layer nodes was fixed to 15), we
found that ANNs trained with tendon tension data (i.e., the
set of All Available Data and the Bio-Inspired Set), provided
more accurate joint angle estimates across all babbling durations
and generalization movements (Figure 7). In fact, ANNs that
utilized tendon tension information performed nearly 2–3 orders
of magnitude better with as little as 5 s of motor babbling.
Interestingly, ANNs trained with the Bio-Inspired Set performed
as well as (if not better than) those trained with the set of All
Available Data. Additionally, we can see from Figure 7 that both
the performance and relative standard deviation converge for
all sensory sets after as little as 10–15 s of motor babbling9.
Therefore, we adopted a reasonable 15 s of motor babbling when
we explored changes in performance as a function of nodes in the
hidden layer.

9Note that Figure 7 is plotted on a log scale, the peaks for both the All Available

Data and Bio-Inspired Set at 20 s of babbling are on the order of 10−3 to 10−2, and

therefore do not reflect large variations from the average values but more likely

noise.

3.2. Sweeping Number of Hidden-Layer
Nodes
The performance of ANNs trained with tendon tension
information increases rapidly across all movements and then
saturates as the number of nodes increases (Figure 8). Intuitively,
if the number of nodes is too small, features of the data will be
discarded as there are fewer available ANN parameters to capture
it and the performance degrades. It is important, however, to note
that their performance was never worse than that of the ANNs
trained without tendon tension. Interestingly, their performance
saturated after 9 hidden-layer nodes (even though using as little
as 3 nodes still resulted in approximation errors less than 10−2

degrees on average). Thus, our original choice of 15 nodes for the
ANNs in the first experiment and our initial work (Hagen et al.,
2020) was reasonable (albeit unnecessarily complex).

Interestingly, Figure 8 reveals further interactions between
the type of information encoded by different sets of sensory data
and ANN structure. First, as mentioned above, some data sets are
better than others. And second, increasing the number of nodes
does not always improve performance. Case in point are the
ANNs trained only with motor information. They always under-
performed compared to ANNs trained with tendon tension, and
had increasingly poor performance as the number of hidden-
layer nodes increased.

3.3. Neural Network Performance Across
Sensory Sets
Figures 7, 8 reveal that for ANNs with 15 hidden-layer nodes that
were trained with 15 s of motor babbling performance (i) was
consistent across sinusoidal and point-to-point movements for
each sensory set (i.e., similarly small relative standard deviations)
and (ii) only improved slightly when either babbling duration
or hidden-layer nodes were increased for ANNs trained with
tendon tension (orange and dark blue in both figures). For
ANNs trained with tendon tension, the choice of 15 hidden-layer
nodes and 15 s of babbling produced very accurate joint angle
estimates with average errors∼ 10−3 degrees. This demonstrates
a remarkable improvement in both accuracy, speed, practicality,
and computational efficiency when compared to the ∼ 100

degree average errors obtained after 2 min of motor babbling
reported in Hagen et al. (2020). Therefore the choice to use
15 s motor babbling duration and 15 hidden-layer nodes when
performing the sensitivity analysis discussed in the following
sections is justified.

During training, the more accurate ANNs showed steep
improvements followed by slow asymptotic progress, as seen by
the plot of performance against the total number of epochs for
each of the 25 ANNs trained for each sensory set (Figure 9A,
left). The more accurate ANNs using the Bio-Inspired Set and
the set of All Available Data utilized 2,917 and 5,284 epochs on
average, respectively. In contrast, ANNs not using tendon tension
converged well before 1,000 epochs. However, the middle panel
in Figure 9A shows that the performance of the ANNs trained
with tendon tension already performed two orders of magnitude
better than their tension-less counterparts after 100 epochs, as
they progressed in their steep improvement. In fact, if we average
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FIGURE 7 | The average performance (MAE) and relative standard deviation (shaded region) for each sensory set (N = 25 ANNs, 15 hidden-layer nodes) plotted

against the babbling durations used to train these networks for all four generalization movements. Those ANNs trained with tendon tension (dark blue and orange)

drastically outperform those trained only with motor information (light blue and purple) with a 3 orders of magnitude improvement after as little as 5 s of training.

Additionally, the Bio-Inspired Set performed as well as our baseline set (All Available Data), suggesting that tendon tension in addition to motor positions and velocities

are sufficient to predict joint angles. *Note that because this plotted on a log scale, the peaks for both the All Available Data and Bio-Inspired Set at 20 s of babbling

are on the order of 10−3 to 10−2, and therefore do not reflect large variations from the average values but more likely noise.
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FIGURE 8 | The average performance (MAE) and relative standard deviation (shaded region) for each sensory set (N = 10 ANNs, 15 s of motor babbling) plotted

against the number of hidden-layer nodes used by each ANN for all four generalization movements. For any choice in the number of hidden-layer nodes, the ANNs

with tendon tension outperformed those trained only with motor information. However, for fewer and fewer hidden-layer nodes, the performance of the ANNs trained

without tendon tension improved while the performance of ANNs trained with tendon tension data degraded but always performed best. It can be seen that the

performance of the ANNs trained with tendon tension data begin to plateau for 9+ hidden-layer nodes. *Note that because this plotted on a log scale, the peaks for All

Available Data at 11 and 17 nodes are on the order of 10−3 to 10−2, and therefore do not reflect large variations from the average values but more likely noise.

Frontiers in Neurorobotics | www.frontiersin.org 12 October 2021 | Volume 15 | Article 679122

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Hagen et al. insideOut

FIGURE 9 | (A) Performance (RMSE in degrees) vs. the number of epochs needed to train each ANN. For each of the four sensory sets, 25 motor babbling simulation

of 15 s were performed to train ANNs with 15 hidden-layer nodes. Although it took the ANNs more than 1,000 epochs for the performances to converge (even

requiring up to 10,000 epochs for the ANNs trained with tendon tension data), the majority of the performance improvement came within the first 20–50 epochs

(middle). In fact, the ANNs trained only with motor data (Motor Position and Velocity Only and All Motor Data) converged with as little as 6 epochs (as seen by the

average plot on the right). Lastly, it appears that learning from motor information may have allowed for faster learning, but the performance was soon beaten by the

ANNs trained with tendon tension (which took longer to learn). (B) Bar plots of the average performance (MAE) of each of the four ANNs when predicting joint angle

from the four generalization movements (plotted on a log scale. For each sensory set, there is little difference across movements, but there is a consistent trend that

the sensory sets that include tendon tension (All Available Data and the Bio-Inspired Set) perform 3 orders of magnitude better than the sets trained without

tendon tension.
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the training performance for the first ten epochs for each sensory
set (Figure 9A, right) we found that (i) ANNs trained with motor
information alone saturated their improvement around the 6th
epoch and (ii) performed marginally better than ANNs trained
with tendon tension before the 6th epoch. This implies that it is
faster to learn a kinematic relationship between motor position
and velocity information but the relationship is fundamentally
of limited utility. Conversely, it took longer to learn an accurate
mapping of the more complex kinematic plus kinetic relationship
between motors, tendon tensions, and the joints that they actuate
but the performance was drastically better. When the ANNs are
allowed to converge without an epoch limit (i.e., as in Figure 9A,
left), we again see that, across the four generalization tasks, the
average performance of ANNs trained with tendon tension data is
2-3 orders of magnitude better than that of ANNs trained without
it (Figure 9B).

3.4. Neural Network Performance Across
Types of Movements
We also explored how the type of time-varying sensory data
affected the estimates of joint angles. We compared performance
across joint angle and joint stiffness values for each of the
four movements and each sensory set by evenly dividing the
output space into bins (every 9◦ and 2 Nm/rad) and calculating
their average performance (Figure 10). ANNs trained with
tendon tension performed equally well for all values of joint
angle and joint stiffness across all movements (dark shading—
linear scale—of the stiffness vs. joint angle planes in the left
two columns). Alternatively, ANNs trained without tendon
tension (right two columns) performed worse at low values of
joint stiffness across all movements. These results make logical
sense as lower joint stiffness can be attributed to the tendons
operating in regions of lower tendon stiffness (called the “toe
region” for physiological tendon) which is categorized by more
disproportionate lengthening per unit force and more nonlinear
decoupling between motor and kinematics states.

3.5. Sweeping Across Movement
Frequencies
The performance of all sensory sets decreased as the movement
frequency increased (for either sinusoidal or point-to-point
joint stiffness task), but the ANNs trained with tendon tension
generalized better to faster movements (Figure 11). Note that
Figure 11 is plotted on the log scale. While the relative decrease
in performance for ANNs trained with tendon tension is larger at
higher frequencies, the absolute decrease in performance can be
considered small ( 10−3– 10−2 degrees) compared to the ANNs
trained without tendon tension ( 100 to 101 degrees).

By dividing each movement into joint angle bins (every 15
degrees) and calculating the average performance of each bin
of all 50 ANNs trained for each sensory set, we can identify
if errors in joint angle estimation have any dependence on the
location in the work space as frequency is increased. The results
across frequencies are plotted for each sensory set as logarithmic
radial bar plots in Figure 12 for all 8 movement tasks. First, it
is important to note that the ANNs trained only with motor

information (light blue and purple) are relatively consistent across
the joint angle space regardless of the choice of joint stiffness
task—the performance of these ANNs was consistently poor
everywhere for each frequency. Secondly, and perhaps more
interestingly, for either joint stiffness task the performance for
ANNs trained with tendon tensions (dark blue and orange) was
consistent across the workspace for lower frequency movements,
but developed edge effects as the movement became faster
(i.e., when the movement reversed). This apparent speed-
accuracy trade off has important consequences to the observed
physiological phenomenon of the same name as mentioned in
the Discussion.

3.6. Sweeping Plant Parameters
The performance of each sensory set across across all 4
generalization movements are plotted for each of the 9
combinations of motor damping and tendon stiffness parameters
in Figure 13. It can be seen that the performance of ANNs
trained with tendon tension information actually decreased as the
tendons became stiffer (as indicated by the separation of lines in
the left two columns of Figure 13), but still clearly outperformed
the ANNs trained only with motor information by roughly
2 orders of magnitude. There do not appear to be any clear
trends, however, when comparing performance and the amount
of motor damping used. There is a slight positive trend (negative
slope) between the performance of the ANNs trained with the All
Motor Data and the amount of motor damping, as can be seen in
the last column of Figure 13, but it is not significant. Similarly, a
slight trend exists for ANNs trained with the set of All Available
Data when the tendons are compliant (i.e., Low stiffness) that
disappears when the stiffness increases. Interestingly (but not
surprisingly), these two sensory sets are the only ones that include
motor acceleration, and it would be expected that higher motor
damping would cause motor acceleration data to become more
useful leading to better performance in the ANNs that utilize it.

3.7. Very High Tendon Stiffness Experiment
This last experiment tested the extreme case of using very
stiff tendons as engineers tend to prefer designing robots with
stiff tendons to better justify neglecting (potentially nonlinear)
tendon stretch. The average performances of ANNs (N = 50)
trained with these four sensory sets when asked to generalize to
these movement tasks with higher joint stiffness values are shown
Figure 14. Consistent with the results above, ANNs trained
with tendon tension information still outperformed those ANNs
trained without it, but the difference was reduced from 3 orders of
magnitude to 1. That is, tendon tension information became less
useful as the tendons approach inextensibility, but not useless!).
Additionally, ANNs trained without tendon tension increased
their performance from ∼ 100 to ∼ 10−1 (cf. Figures 13, 14,
respectively), consistent with our intuition that ANNs trained on
systems with more inextensible tendons should see an increase
in their performance because the behavior of the motors and the
joint will be more coupled.

For this very high stiffness case, we divided the joint angle
and joint stiffness space into bins (every 9◦ and 32 Nm/rad.)
and calculated their average performance, displayed as heat maps
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FIGURE 10 | Linear-scale heatmap of the average MAE vs. joint angle and joint stiffness for sinusoidal and point-to-point trajectories (default Low tendon stiffness

experiment). It is clear that the ANNs trained with tendon tension (left two columns) reliably predicted joint angles at any level of joint stiffness, while the ANNs trained

without tendon tension (right two columns) had difficulty at low joint stiffness values (regardless of the type of movement). This is because tendon tensions that

produce lower joint stiffness occupy the more nonlinear “toe” region of the tension-stretch relationship (i.e., more disproportionate lengthening per unit force) which

causes more nonlinear decoupling between motor and kinematics states.
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FIGURE 11 | Bar plot of the average performance (MAE) of each sensory set (N=50 ANNs) as function of the frequency of the sinusoidal joint angle trajectory. The

joint stiffness was either varied sinusoidally or by a point-to-point task (18)–(19). The ANNs trained with tendon tension (left two sets) appear to generalize better to

higher frequency movements, only worsening slightly when the movements becomes fastest. The ANNs trained only with motor information may decrease their

performance by a similar order of magnitude, but there is quite a difference between producing average errors of 10−2 and 101 degrees.

in Figure 15, to identify any trends across the output space
for each sensory set and movement. Similar to the default Low
tendon stiffness results shown in Figure 10, the ANNs trained
with tendon tension data (left two columns) still (i) performed
better across all movements and (ii) generalized better to lower
stiffness values than ANNs trained only with motor data (right
two columns). While the difference between ANNs trained with
and without tendon tension is no longer as pronounced, the
overall trends were still the same: tendon tension informationwas
always useful—especially at low joint stiffness values.

4. DISCUSSION

By expanding on our prior work, we now demonstrate a robust
framework that can estimate joint angles in tendon-driven
systems on the basis of sets of sensory data extracted from limited
motor babbling. Importantly, the Bio-Inspired Set of sensory data
performed best. This set mirrors the information available from
muscles, which vertebrate animals use apparently seamlessly
in order to estimate limb posture from sensors that are not
located at joints (e.g., muscle fascicle length via muscle spindles
and tendon tension via Golgi tendon organs). We find that for
different durations of motor babbling (i.e., amounts of data) and
different ANN architectures (i.e, network structures and number
of nodes), the ANNs trained with data sets that include tendon
tension outperformed the ANNs trained without it (Figures 7,
8). Intriguingly, those ANNs trained with the Bio-Inspired Set

performed as well (if not better than) the baseline set of allmotor
and tendon tension sensory data, (All Available Data). Therefore,
we conclude that it is possible to train an ANN on limited non-
collocated measurements of motor position, motor velocity, and
tendon tension only to estimate joint angles reliably during a
variety of joint angle and joint stiffness trajectories. While the
2-tendon 1-joint architecture (2N design) discussed here is the
most popular in tendon-driven robots (with each pair of tendons
acting only on a single joint), these results can be readily extended
to robots with multiple joints.

4.1. Robustness Over the Parameter Space
Our findings are important to autonomous learning, control,
and on-line adaptation in physical robots because only 15 s of
motor babbling sufficed to produce consistent results for each
of the four sensory sets when used to train ANNs with 15
hidden-layer nodes. This may be a consequence of the babbling
patterns chosen, which we designed to broadly span the joint
angle and joint stiffness spaces with a high degree of temporal
correlation, similar to that seen during biological babbling in
infants (Dominici et al., 2011; Marjaninejad et al., 2019b). More
specifically, we illustrated in Figures 7, 8 that increasing either
the number of hidden-layer nodes or the duration of motor
babbling only slightly improved the performance of ANNs
trained with tendon tension allowing us to provide very accurate
joint angle estimates with average errors∼ 10−3 degrees without
having to expose the plant to large training times [compared to
the∼ 100 degree reported in Hagen et al. (2020)]. One may argue
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FIGURE 12 | Radial bar plot of the average performance (MAE) of each sensory set across the joint angle space as the joint angular frequency is increased and the

joint stiffness was either varied (A) sinusoidally (twice the frequency) or (B) as a point-to-point task. For either task, ANNs trained with tendon tension (dark blue &

orange) generalized better to higher frequency movements, only worsening slightly when the movements becomes fastest. For these two sets, when movements

were the fastest, the largest errors occurred at the boundaries of the sinusoidal movement (à la speed-accuracy trade offs).
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FIGURE 13 | Comparing the average performance of ANNs designed to predict joint angles from one of four sensory sets when motor damping (x-axis) and tendon

stiffness (line style) are varied. We see from the vertical separation of the lines in the left two columns that ANNs trained with tendon tension information perform worse

as tendons become more inextensible—a trend not observed in the ANNs trained with motor information only (right two columns). Additionally, there appears to be no

trends in performance with respect to motor damping except for those ANNs trained with all motor data (including acceleration, right column) or the set of All Available

Data when tendon stiffness is Low, which intuitively makes sense as higher damping may mean more useful information in the motor acceleration data.
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FIGURE 14 | Bar plots of the average performance for ANNs for each sensory set when the tendon stiffness values are very high (see section 2.9 for explanation).

ANNs trained with tendon tension information (the Bio-Inspired Set and the set of All Available Data), still outperform those ANNs trained with motor information alone

(the sets of Motor Position and Velocity Only and All Motor Data). However, the difference in performance was reduced from 3 orders of magnitude (observed

previously) to 1 because (i) the ANNs trained only with motor information improved their performance by nearly 1 order of magnitude and (ii) the ANNs that train with

tendon tension information continue the trend of worsening performance when tendon stiffness increases (increasing errors by nearly 1 order of magnitude).

that such sub-degree improvements in estimation errors are
not relevant. We argue, however, that they are important when
controlling nonlinear systems like bio-inspired tendon-driven
limbs. Improving the stability margin and robustness of optimal
control methods for such systems has been a longstanding
goal (Doyle, 1978; Weghe et al., 2004; Theodorou et al., 2011;
Reed et al., 2020). Improving the joint angle estimates can only
facilitate and improve their control. Small errors in the proximal
joints of multiarticular limbs result in large errors of end-effector
position, which explains the much larger number of muscle
spindles in proximal vs. distal limb muscles (Scott and Loeb,
1994). Moreover, brief periods of retraining (using data coming
from another sensory source such as visual feedback) may be
particularly useful to compensate for errors caused by, say, sensor
drift or plant wear. The cerebellum appears to perform such a
role to fine-tune neural networks associated with gaze control
(Koziol et al., 2014).

Alternatively, we found that ANNs that trained only with
motor kinematic information performed their best when the
networks had one hidden-layer node implying that the best
approximation these ANNs trained without tendon tension
could provide was captured by a single equation of motor
positions and velocities. Adding nodes without providing any
additional useful information resulted in worse performance as
more floating parameters (i.e., weights and biases) needed to
be set from limited data to recapture what was best described

by a simple equation. This single-equation approximation
is reminiscent of approximations of muscle lengths that
rely on the “inextensible tendon” assumption used in many
musculoskeletal models, which results in large errors in muscle
fascicle length and velocity estimates, particularly in pinnate
muscles (Hagen and Valero-Cuevas, 2020). Here we demonstrate
the consequences of such errors for limb position estimation, and
their mitigation by including tendon tension in the estimator.

When comparing the average training performance of these
ANNs (Figure 9A, right) we found (i) that ANNs trained with
motor information alone only marginally improved after the 6th
epoch and (ii) that before the 6th epoch the performance of
the ANNs trained with tendon tension information was worse.
These observations imply that it is initially easier to learn the
relationship between motor position and velocity information
but the relationship is fundamentally incomplete and further
training cannot rectify this. Conversely, it took longer to learn
the complex relationship between motors, tendons, and the
joints that they actuate, but the performance was drastically
better. These results further strengthen the argument that tendon
tension information critically enables the accurate prediction of
joint angles from non-collocated sensory information.

Regarding speed of movement, we found that the ANNs
that trained with tendon tension information in addition to
motor kinematic information (e.g., the Bio-Inspired Set of
sensory information) generalized better to faster movements
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FIGURE 15 | Linear-scale heatmap of the average MAE vs. joint angle and joint stiffness for sinusoidal and point-to-point trajectories (Very High tendon stiffness

experiment). Similar to the default Low tendon stiffness results plotted in Figure 10, the ANNs trained with tendon tension data (left two columns) still (i) perform better

and (ii) better generalize at lower stiffness values than ANNs trained only with motor data (although the difference is not as large).
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than ANNs that trained without tendon tension data, producing
average prediction errors ≤ 10−2 degrees. Higher frequencies
of oscillatory movement necessarily require larger torques
for acceleration and deceleration, which results in increased
tendon stretch. Therefore, these results are consistent with our
expectations that the performance of the ANNs trained only
with motor information should generalize poorly to these more
demanding, more rapid movements while ANNs that train with
tendon tension information should generalize well as they can
correct for large changes in tendon behavior responsible for
decoupling motor and joint angle states. Interestingly, ANNs
trained with tendon tension exhibited edge effects during high
frequency movements, with lower performance at the points of
movement reversal (Figure 12). As this effect was present for
the baseline set of All Available Data, it is unlikely that this
phenomenon can be attributed to missing or incomplete input
data. Instead, because higher frequency movements will naturally
require larger tendon tensions in order to brake the joint as
it approaches the target amplitude (i.e., the point at which the
joint reverses direction), the tendon tension data—which we have
shown to be critical for accurate joint estimation—may move
outside its dynamic range causing the ANNs to produce less
accurate estimates as they try to extrapolate this relationship.
Such a speed-accuracy computational trade-off has been well
established in humans where faster movements come at the cost
of lower accuracy at the movement target (Fitts, 1954). Here
we present a complementary state-estimation mechanism for a
similar trade-off.

4.2. Relationships Between Robotic and
Biological Systems
For the extreme case of nearly-inextensible tendons, ANNs
trained only with motor information improved substantially,
although they were still about an order of magnitude poorer than
ANNs trained with tendon tension (Figure 14). This confirms
the intuition of robot builders who have long used such stiff
tendons despite their vulnerability to breakage or risk of injuring
human users. Assuming inextensible tendons carries well-known
risks to state estimation and controller robustness. To our
knowledge, we are the first to quantify those risks and, more
importantly, confirm that they can be mitigated by incorporating
sensors of tendon tension. Such a biological strategy has been
proposed (Scott and Loeb, 1994). The ∼ 100 Golgi tendon
organs distributed throughout the myotendinous junction of the
typical muscle appear to be well-suited to generating an ensemble
signal that accurately, albeit nonlinearly, reflects total tendon
tension (Mileusnic and Loeb, 2006). The requisite integration of
signals from tension-sensing Golgi tendon organs and length-
sensing muscle spindles has been identified in the spinocerebellar
tracts (Bosco and Poppele, 1997, 2001). The work presented
here demonstrates that a neural network can be trained to use
such proprioceptive information to compute accurate postures,
as suggested previously (Scott and Loeb, 1994; Dimitriou and
Edin, 2008; Van Soest and Rozendaal, 2008; Kistemaker et al.,
2013). The choice of a nonlinear spring for our tendon model
was based on biological tendons and aponeuroses (Scott and

Loeb, 1995). The lower-stiffness “toe” region at low tension is
associated with disproportionate tendon stretch per unit tendon
tension and, therefore, larger and more nonlinear decoupling
between motors and joint angles (Zajac, 1989; Hagen and Valero-
Cuevas, 2020). Networks trained with tendon tension data did
not have problems generalizing to these lower joint stiffness
(and therefore lower tendon stiffness) tasks, suggesting that
tendon tension data were sufficient for ANNs to model this
nonlinearity accurately.

Mindful of the robotic vs. biological distinction, we have been
careful not to call joint angle the “state” and we do not call our
approach “state estimation.” It is not clear what “state” means in
the biological context. Rather we used the ANN approach as a
generic means to answer the information-theoretical question of
whether and how different sets of afferent (sensor) information
can—in principle—estimate a variable of interest: joint angles in
this case.

In engineering, in contrast, the concept of state is well-
defined and central to the Newtonian, Lagrangian, Kanesian,
and Hamiltonian approaches to rigid body dynamics and
their control: the “states of a system” are the minimal set
of generalized coordinates (usually kinematic DOFs in robotic
systems) that suffice to explain the energy transformations the
system can undergo, and how to control them. In this context,
the concepts of state, observability, and the estimation of state as a
function of sensory information (i.e., state estimation) are clearly
defined. Biological controllers are hierarchically organized into
computational subsystems that may employ different coordinate
frames (Soechting and Flanders, 1992; Scott and Loeb, 1994),
none of which may correspond to a canonical physical descriptor
such as joint angles. Limb posture must be derived from sensors
in complex arrays of muscles and tendons that often cross
multiple joints, each with more than one degree of freedom
(Scott and Loeb, 1994).

5. CONCLUSION

We have demonstrated that it is possible to utilize sensors not
located at joints in tendon-driven systems to provide accurate
joint angle estimation during dynamical tasks using neural
networks trained with limited data—a novel bio-inspired posture
estimation framework called insideOut. Specifically, we have
shown that tendon tension data in addition to motor position
and velocity data were sufficient to train ANNs capable of
accurately predicting joint angles in compliant tendon-driven
systems with as little as 15 s of motor babbling data. More
importantly, these joint angle estimates were robust to changes
to the physical characteristics of the system (e.g., tendon stiffness
and motor damping) and tasks (e.g., joint angle and joint
stiffness trajectories). Our findings have important implications
to autonomous learning, control, and on-line adaptation in
tendon-driven robots as we present an efficient data-driven
approach that creates an implicit model that accurately maps
limited sensory information to limb posture (i.e., joint angle).
Future work will deploy this algorithm in physical robots
with multiple joints to demonstrate its practical utility and to
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explore the effect of more complicated routings for tendons
that span more than one joint, as is common in biological
musculoskeletal systems.
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