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Robots start to play a role in our social landscape, and they are progressively becoming

responsive, both physically and socially. It begs the question of how humans react to and

interact with robots in a coordinated manner and what the neural underpinnings of such

behavior are. This exploratory study aims to understand the differences in human-human

and human-robot interactions at a behavioral level and from a neurophysiological

perspective. For this purpose, we adapted a collaborative dynamical paradigm from the

literature. We asked 12 participants to hold two corners of a tablet while collaboratively

guiding a ball around a circular track either with another participant or a robot. In irregular

intervals, the ball was perturbed outward creating an artificial error in the behavior, which

required corrective measures to return to the circular track again. Concurrently, we

recorded electroencephalography (EEG). In the behavioral data, we found an increased

velocity and positional error of the ball from the track in the human-human condition vs.

human-robot condition. For the EEG data, we computed event-related potentials. We

found a significant difference between human and robot partners driven by significant

clusters at fronto-central electrodes. The amplitudes were stronger with a robot partner,

suggesting a different neural processing. All in all, our exploratory study suggests that

coordinating with robots affects action monitoring related processing. In the investigated

paradigm, human participants treat errors during human-robot interaction differently

from those made during interactions with other humans. These results can improve

communication between humans and robot with the use of neural activity in real-time.

Keywords: human-robot interaction, social neuroscience, joint action, ERP, EEG, embodied cognition, action

monitoring

1. INTRODUCTION

We constantly interact with other humans, animals, andmachines in our daily lives. Many everyday
activities involve more than one actor at once, and groups of interacting co-actors have different
size. Especially, interactions between two humans (so-called dyadic interactions) are the most
prevalent in social settings (Peperkoorn et al., 2020). During such situations, we spend most of
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our time trying to coordinate our behavior and actions with other
humans. Until recently, human cognition was mostly studied in
non-interactive and single participant conditions. However, due
to novel conceptual and empirical developments, we are now
able to bring dyads instead of single participants to our labs
(Schilbach et al., 2013). This approach is called Second-person
neuroscience (Schilbach et al., 2013; Redcay and Schilbach,
2019). It suggests that we need to study the social aspect of
our cognition with paradigms that include real-time interactions
between participants instead of the passive observation of socially
relevant stimuli (Redcay and Schilbach, 2019). Such an approach
can reveal a new perspective on human social cognition.

Coordination between members of a dyad is achieved by
joint actions (Sebanz and Knoblich, 2021). There are different
aspects of coordination that facilitate achieving common goals
between co-actors. Firstly, Loehr et al. (2013) showed in pairs
of pianists performing solo and duets that monitoring of our
actions, our partner’s actions, and our joint actions is required
to coordinate successfully. Second, being familiar with each
co-actors individual contributions in the dyad helps to form
predictions about the partner’s actions, which further improves
coordination (Wolf et al., 2018). Third, recently proposed
action-based communication serves as a fundamental block of
coordination (Pezzulo et al., 2013). In comparison to verbal
communication, this low-level sensorimotor communication is
implicit and faster. Experiments by Vesper et al. (2017) serve
as examples of sensorimotor communication in the temporal
dimension. Their results have shown that participants adjusted
their actions to communicate task-relevant information. Fourth,
while both co-actors are engaged in a constant flow of perceptual
information, they create coupled predictions about each other’s
actions that are necessary to achieve fruitful coordination
(Sebanz and Knoblich, 2021). Curioni et al. (2019b) investigated
coordination tasks with incongruent demands between partners,
and their results suggested the benefits of reciprocal information
flow between participants. In sum, there are different aspects
of human cognition that allow for the maintenance of
dyadic coordination: Action monitoring, predictions based on
familiarity of partner’s actions, action-based communication, and
reciprocal information flow.

So far, most dyadic interaction studies investigated the
coordination between human co-actors (Sebanz et al., 2006;
Vesper et al., 2010). However, in recent years we are more and
more surrounded by robotic co-actors (Ben-Ari and Mondada,
2018). Furthermore, there are many different predictions for
the future of robotics, but all point into the same direction:
there will be more robots among us (Stone et al., 2016;
Diamond, 2020; Wiederhold, 2021). In line with this, humanoid
robots are getting progressively better at socially relevant tasks
(Campa, 2016). It is thought that these social robots will
be used in many different fields of our everyday life in the
upcoming years (Enz et al., 2011). One of the main challenges
in robotics is creating robots that can dynamically interact
with humans and read human emotions (Yang et al., 2018).
Concerning these changes in our environment, a new research
line has emerged and already substantially contributed to our
understanding of human-robot interactions (Sheridan, 2016). As

many different scientists are slowly approaching this topic, the
field of human-robot interaction until now focused on human
thoughts, feelings, and behavior toward the robots (Broadbent,
2017). Studying these specific aspects is essential and further,
we believe that the scientific community has to investigate real-
life interactions between humans and robots in order to fully
understand the dynamics that underlie this field. Therefore, we
propose to use both human and robot partners in experimental
paradigms as this will help to close the gap in understanding
dyadic interactions.

There are different tools and methods to study the social
brain and behavior (Krakauer et al., 2017): EEG (Luck and
Hillyard, 1994), fMRI (Eisenberger, 2003), MEG (Baillet, 2017),
and fNIRS (Ferrari and Quaresima, 2012). From this list,
Electroencephalography (EEG) stands out as particularly useful
for studying dynamical interactions, as it not only aligns with
the temporal resolution of social interactions, but also allows
for free movement and thereby allows for dynamic interactions.
This temporal resolution allows studying brain processes with
milliseconds precision. One of the methods that are classically
used within EEG research are event-related potentials (ERPs)
(Luck and Hillyard, 1994). ERPs are suitable to study different
components of brain processes while they evolve over time.
The classic study by Miltner et al. (1997) showed different
brain signatures for correctly and incorrectly performed trials at
around 200-300 milliseconds after the feedback about an action
was perceived. This brain component was named Feedback
related negativity (FRN). In similar studies, van Schie et al.
(2004) showed that the FRN is sensitive not only to our own
actions but also those of others. Czeszumski et al. (2019) further
extended this finding to different social contexts (cooperation
and competition). Thus, EEG and specifically ERPs have been
proven valuable tools to investigate the physiological basis of
social interactions.

Therefore, we have a good understanding of EEG-based
markers of action monitoring. Nonetheless, it is only in recent
years that human behavior and its neural basis are studied
together with robotic partners (Wykowska et al., 2016; Cheng
et al., 2020). Based on more than 20 years of research on action
monitoring in humans, similar ERP components (E/FRN) were
expected to be elicited in human-robot paradigms. Namely,
the difference between brain responses to correct and incorrect
actions of a robotic arm was found (Iturrate et al., 2015; Kim
et al., 2017). Furthermore, these differences in midfrontal
ERP components were used to improve co-adaptation between
human and robot behavior in turn-taking tasks (Salazar-Gomez
et al., 2017; Ehrlich and Cheng, 2018, 2019a,b; Iwane et al.,
2019), and real-world driving (Zhang et al., 2015; Chavarriaga
et al., 2018). Such EEG based interfaces highlight the importance
of studying the neural basis of human-robot interactions. The
results confirm that similar brain mechanisms are involved when
we observe actions of the robot. Yet, little is known about action
monitoring in dynamic situations with non-human, robotic
partners. The goal of this study was to test whether the same
neural mechanisms are present when we interact with robots in
a dynamic paradigm and if there are differences between human
and robotic partners.
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To answer these questions, we adapted a dynamic dyadic
interaction paradigm for human-robot interactions. We chose
the paradigm from Hwang et al. (2018) and Trendafilov et al.
(2020), in which two human participants had to manipulate a
virtual ball on a circular elliptic target displayed on a tablet and
received audio feedback of the ball’s movement. Participants used
their fingers to move the tablet and manipulate the position of
the ball. We changed the paradigm, by adapting the tablet to
enable coordination with the robot and to fit the requirements
for EEG measurements. On the one hand, this paradigm allows
for coordination similar to a real-life situation; on the other hand,
it allows for the analysis of neural underpinnings of cognitive
functions required for coordination. In this study, we specifically
focused on the aspect of action monitoring with human and
robot partners. Thus, to extend our knowledge the present study
investigates action monitoring in a dynamic interaction task
between humans and robots. Additionally, based on the results
from Hwang et al. (2018) we decided to test whether auditory
feedback about actions (sonification) influences coordinated
behavior and cognitive processes. Taken together, this study tries
to approach a novel problem with interdisciplinary methods and
sheds new light on the neural processes involved in dynamic
human-robot interactions.

2. METHODS

2.1. Participants
We recruited 16 participants (7 female, mean age = 25.31 ±

1.92 years) from KTH Stockholm Royal Institute of Technology.
We had to exclude two dyads from further analysis, one due
to measurement errors in the robot control and one due
to excessive movements from participants which led to large
artifacts in the EEG data, leaving data from 12 participants in
6 recording sessions. Participants had normal or corrected-to-
normal vision and no history of neurological or psychological
impairments. They received course credits for their participation
in the study. Before each experimental session, subjects gave their
informed consent in writing. Once we obtained their informed
consent, we briefed them on the experimental setup and task.
All instructions and questionnaires were administered to the
participants in English. The Swedish Ethical Review Authority
(Etikprövningsnämnden) approved the study.

2.2. Task and Apparatus
During each recording session, participants performed the task
in four blocks of 10 min each, twice with a human partner
and twice with the robot. Further, each dyad (partner human
or robot) performed the task with or without auditory feedback
(sonification on or sonification off). The task was based on
a tablet game where the dyads cooperated with each other to
balance a ball on a circular track as they simultaneously moved it
in counter-clockwise direction (Hwang et al., 2018) (Figure 1). At
random intervals, we added perturbations that radially dispersed
the position of the ball away from the current position. In order
to reduce the subjects’ expectations of the occurrence of the
perturbations, we sampled its rate of occurrence from a Poisson
distribution with λ = 4 s.

FIGURE 1 | Schematic of game design on the tablet. (1) Circular track, (2) ball,

(3) flashing rectangle indicating experimental events (covered by luminance

sensor), (4) text box for experiment monitoring (only used by experimenter).

The experimental task was implemented on an Apple IPad Air
tablet (v2, 2048× 1536 pixel resolution, refresh rate 60Hz) using
Objective-C for iOS. During the task, subjects saw a red ball of
76.8 pixel radius on a circular track with a radius of 256 pixels and
a thickness of 42.67 pixels. The ball position was represented as
the horizontal and vertical coordinates with respect to the center
of the circular track (0,0). The tablet was mounted on a metal
frame of size 540 × 900 mm. We further added a square of size
100× 100 pixels that was used as a signal source for, and covered
by, a luminance sensor.The luminance sensor is a light-sensitive
diode that converts light into electrical current. We changed the
color of a small patch on the tablet for the different events in
the experiment (start of the experiment, start of a perturbation,
end of the experiment) over which the luminance sensor was
placed. Figure 1 shows all the visual components displayed to
the participants (the text box on the left side was used by the
experimenter to monitor the experiment status).

During the periods with another human partner, we asked
the participants to not verbally interact with each other. During
the task, they sat face-to-face at 1m distance as they held
handles connected to the short end of the frame. Similarly, while
performing the task with the robot, subjects held the short end of
frame while the other end of the frame was clamped to the grip
effectors of the robot. Figure 2 shows the physical setup of the
subjects and the robot during the experiment.

For the periods involving sonification, the position and
angular velocity of the ball were sonified. The auditory feedback
was created by a Gaussian noise generator with a band-pass
filter (cut-off frequency: ±25Hz). The horizontal and vertical
coordinates of the ball modulated the pitch of the auditory
feedback, while its angular velocity modulated the loudness. The
sonification procedure was implemented using the specifications
provided in Hwang et al. (2018).

Lastly, we used a self-manufactured luminance sensor that
synchronized the experimental events (experiment start and end,
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FIGURE 2 | Experimental setup. Participants performed the experiment with another participant (A) or a robot partner (B). In each condition they played a tablet

game by balancing a virtual ball on a circular track while moving it in the counter-clockwise direction.

and perturbation) between the tablet and the EEG amplifier. We
changed the luminance source color from black to white to mark
the start of the trials, white to black to mark the end of the trials.
During a session the patch was white, except at the frame where
the perturbation happened, which was marked with gray (RGB=

134, 134, 134).

2.3. Robot Control
We used the YuMi robot (ABB, Västerås, Sweden) shown in
Figure 2 for our experiments.We implemented a Cartesian space
controller based on the original joint-level velocity controllers
provided by the manufacturer. The robot had direct access to the
tablet data and no active sensing was necessary. Starting the robot
at the joint position depicted in the Figure 2, we send Cartesian
space velocity commands to both arms at 10Hz. The Cartesian
controller was designed such that the X, Y positions of both end-
effectors are kept constant during an execution, and only the Z
position of the end-effectors are adjusted to move the ball. We
denote the left and right end-effector velocity commands in the
z axis by vz

l
and vzr and the current X, Y position of the ball

on the game by (bx, by), respectively. We first obtain the angle
θ corresponding to the current position of the ball in the polar
coordinate system by θ = arctan(by, bx). Then, we obtain the

next target angle θ̂ = θ + π/12 to let the ball move in the
counterclockwise direction. The next target X,Y positions of the

ball are found as b̂x = Gp(R× cos(θ̂)− bx), b̂y = Gp(R× sin(θ̂)−
by), where R is the radius of the circle on the IPad game and
Gp = 0.1 is a constant gain. The velocity commands in the z

axis are then found as vz
l
= −Gv(b̂x − αx) − Gv(b̂y − αy), v

z
r =

Gv(b̂x − αx)−Gv(b̂y − αy), where, αx,αy are gravity acceleration
in the X, Y directions measured by the IPad, and Gv = 0.5 is a
constant gain. The command velocities are then clipped to have
an absolute value less than 0.02 m/s, and the clipped values are
sent to the Cartesian velocity controller.

2.4. Experimental Protocol
We prepared both participants for the EEG recording together,
which took around 45 min to complete. Once the subjects
were ready to start the experiment, we led them to a room
that housed the robot. Depending on the dyad combination,
we provided oral instructions about the task and clarified any
remaining questions. For human-human dyads, we started the

task on the tablet with either of the sonification conditions
depending on the experiment session. To counterbalance the
sonification and partner sequence for the combinations of
dyads (human-human or human-robot), we permuted the
combinations. Each experimental session was sequenced based
on this permutation. We also counter-balanced the sonification
during the task, so that every even numbered experiment
session started with the sonification condition for all the dyad
combinations. For the human-robot dyads, we first reset the
limbs of the robot to its initial conditions and then started the
task on the tablet. After each block, the participants were given
a short break and then repeated the task with the alternate
sonification condition. The whole experimental session lasted for
about 4 h.

2.5. EEG Data Acquisition
We recorded the EEG using two 64-Ag/AgCl electrode systems
(ANTNeuro, Enschede, Netherlands), and two REFA8 amplifiers
(TMSi, Enschede, Netherlands) at a sampling rate of 1,024 Hz.
The EEG cap consists of 64 electrodes placed according to
the extended international 10/20 system (Waveguard, eemagine,
Berlin, Germany). We placed the ground electrode on the collar-
bone. We manually adjusted the impedance of each electrode to
be below 10k� before each session. The recording reference was
the average reference, which, only in the single-brain recordings,
was later programatically re-referenced to Cz. During human-
human interactions, two brains were recorded simultaneously
with the separate amplifiers, synchronized through the ANT-link
(Synfi, TMSi, Enschede, Netherlands). VEOGs were recorded
with two additional electrodes, one placed below and one above
the eye.

2.6. Pre-processing
The analysis of the EEG data was performed in MATLAB 2016b
and the behavioral analyses in Python 3.7.

We preprocessed the data using the EEGLAB toolbox
(v2019.0) (Delorme and Makeig, 2004). As a first step before
preprocessing, we programmatically extracted the trigger events
from the luminance sensor and added them to the recorded data.
Then, the data from each condition was downsampled to 512Hz,
followed by referencing all datasets to Cz electrode. We then
high-pass filtered the dataset at 0.1Hz and then low-pass filtered it
at 120Hz in order to not unnecessarily discard gamma frequency
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activity (6 dB cutoff at 0.5Hz, 1Hz transition bandwidth,
FIRFILT, EEGLAB plugin, Widmann et al., 2015). Following
this, we manually removed channels that showed strong drift
behavior or excessive noise (mean: 7, SD: 2.7, range: 1–13). We
manually inspected the continuous data stream and rejected the
portions which exhibited strong muscle artifacts or jumps. To
remove further noise from eye and muscle movements, we used
independent component analysis (ICA) based on the AMICA
algorithm (Palmer et al., 2008). Before performing ICA, we
applied a high-pass filter to the data at 2Hz cut-off to improve
the ICA decomposition (Dimigen, 2020). We visually inspected
the resulting components in combination with using ICLabel
(Pion-Tonachini et al., 2019) classifier. IClabel was run on
epoched data, 200 ms before and 500ms after the perturbation.
Based on the categorization provided by ICLabel, and a visual
inspection of the time course, spectra, and topography, we
marked ICs corresponding to eye, heart and muscle movements
for rejection (mean: 26.5, SD: 5.2, range: 18–44). We copied
the ICA decomposition weights to the cleaned, continuous data
and rejected the artifactual components. Finally, using spherical
interpolation, we interpolated the missing channels based on
activity recorded from the neighboring channels.

2.7. Behavioral Analysis
To understand the behavioral differences for the factors partner
and sonification, we used measures of mean angular velocity
and mean error produced. These behavioral differences indicate
how well the partners coordinated with each other. Furthermore,
as the velocity and position of the ball were sonified, these
measures are indicative of the effect of sonification on the dyadic
performance. We first calculated the instantaneous angular
position θ (in degrees) of the ball using the horizontal and vertical
(X, Y) positions of the ball on the tablet as follows:

θt =
180

π
∗ arctan

yt

xt
(1)

We used the atan2 function to take into account the X, Y position
in the negative coordinate axes. θt values were transformed from
[−π ,π] to range [0, 2π]. Next, we computed the instantaneous
angular velocity ω of the ball using the following formula where t
is the sample time-point:

ω =
1θ

1t
(2)

We, subsequently, calculated the mean ω for each participant for
the four different conditions. Next, We calculated the error as
the difference of the instantaneous radial distance between the
radius of the track and the ball’s current position measured as the
distance from the track’s center as follows:

errort =

√

x2t + y2t − Radiustrack (3)

2.8. Deconvolution and EEG Analysis
Even though the perturbations were sampled from a Poisson
distribution with λ = 4, the corresponding neural responses

might overlap in time and bias the evoked potentials (Ehinger
and Dimigen, 2019; Dimigen and Ehinger, 2021). Further,
experimental block onset and offset typically elicit very strong
ERPs overlapping with the perturbations. Finally, we see
clear, systematic differences in the behavior depending on the
condition (e.g., higher velocity with a human partner), which
could lead to spurious effects in the ERPs. We further added
eccentricity (distance from the circles midpoint), in order to
control for the ball’s trajectory. In order to control both temporal
overlap and covariate confounds, we used linear deconvolution
based on time-regression as implemented in the unfold toolbox
v1.0 (Ehinger and Dimigen, 2019). Consequently, we modeled
the effects of the partner (human or robot), the sonification (off
= 0, on= 1) and their interaction as binary, categorical variables,
the eccentricity and the velocity were coded using B-spline basis
functions and the angular position using a set of circular B-
splines. The block on- and offsets were modeled as intercept only
models. The complete model can be described by the Wilkinson
notation below (Wilkinson and Rogers, 1973).

perturbation ERP ∼ 1+ partner + sonification+ partner : sonification

+ circularspline(angular position, 8)

+spline(eccentricity, 5)

+ spline(velocity, 5)

block onset ERP ∼ 1

block offset ERP ∼ 1

This model was applied on the average referenced continuous
EEG data, and each event was modeled in the time range of−500
to 700 ms with respect to the event onset. We collected a mean
value of 640 trials per subject.

Similar to the two-stage mass univariate approach, we
calculated the t-value over subjects for each of the resulting
regression coefficients (similar to difference waves between two
conditions) for all electrodes and time points (time-range of
−500 to 700 ms). That is, for the purpose of comparison of two
conditions, they are preferable as they avoid confounds by other
factors. The multiple comparison problem was corrected using a
permutation based test with threshold-free cluster enhancement
(TFCE) (Mensen and Khatami, 2013; Ehinger et al., 2015) with
10,000 permutations(default parameters E = 0.5 and H = 2).
We used the eegvis toolbox (Ehinger, 2018) to visualize all evoked
response potentials.

3. RESULTS

3.1. Behavioral
In this study, humans played a collaborative game either with
other humans or with robots. We further added sonification of
the ball’s movement as a supplementary auditory feedback to the
participants. Figure 3 shows the raw positions of the ball overlaid
for all subjects and the partner and sonification conditions.
The behavior we analyse here, is the mean velocity of the ball
during each session and the mean deviation of the ball from the
circular track. These measures indicate how fast the participants
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FIGURE 3 | Distribution of ball positions. (A) Ball positions on the tablet with a human (red) and robot (blue) partner. (B) Ball positions on the tablet for sonified (green)

and not sonified movements (orange). The black circle represents optimal trajectory. It can be seen that participants deviated more with a human partner. No such

difference is visible for a change in the sonification.

performed the task and how much error they produced, both a
proxy of the success of the collaboration.

We calculated the mean angular velocity (ω) for each
participant for the four different conditions (Figure 4A). To
test the statistical significance of these findings, we computed
a 2 × 2 factorial repeated measures ANOVA with the factors
partner and sonification. The ANOVA showed a significant main
effect of partner, F(1, 11) = 87.09, p < .0001 where subjects
exhibited a mean angular velocity of 265.20 degrees/second and
SD ±0.28.29 with a human partner, conversely, with a robot
partner subjects showed a mean angular velocity of 159.23
degrees/second ±29.40. The ANOVA did not reveal a significant
main effect of sonification, F(1, 11) = 1.00, p = 0.33, with mean
angular velocity 210.06 degrees/second ±65.51 with sonification
off and the mean angular velocity was 214.36 degrees/second
±62.53 with sonification on. There was no significant interaction
of factors partner and sonification, F(1, 11) = 0.04, p = 0.83.
Hence, we can conclude that participants were faster at moving
the ball on the circular track while performing the task with a
human partner.

Next, we analyzed the mean error produced by participants
during a session. Figure 4B shows the mean error across
participants for the four different conditions. To statistically
assess these differences, we performed a 2 × 2 factorial repeated
measures ANOVA with factors partner and sonification. The
ANOVA revealed significant main effect for partner F(1, 11) =

42.61, p < 0.0001 where subjects had amean error of 0.04±SD =

0.012 while performing with a human partner, conversely, they
had amean error of 0.01±0.012 while cooperating with the robot.
We did not find a significant main effect of sonification F(1, 11) =
1.75, p = 0.21 where subjects had a mean error of 0.032 ± 0.017
with the sonification off and mean error of 0.033 ± 0.018 with
sonification on. There was no significant interaction of factors
partner and sonification, F(1, 11) = 0.51, p = 0.48. We can
conclude that subjects made larger errors while performing the
task with a human partner compared to the robot partner.

Lastly, we were interested in the correlation between
the behavioral measures we analyzed. Figure 4C shows the
correlation of mean error and mean velocity for the partner and
sonification conditions. For human partner with sonification off
the Pearson correlation showed a correlation coefficient ρ =

0.98, p < 0.001 and for sonification on ρ = 0.89, p < 0.001. For
robot partner with sonification off ρ = 0.97, p < 0.001 and with
sonification on ρ = 0.97, p < 0.001. These results show that the
mean error and mean velocity were positively correlated during
the task.

3.2. EEG
Next, we look at the overlap- and behavior-corrected brain
activity during the task. Using a overlap-corrected time
regression approach, we investigate the main effect and
interaction ERPs from the 2 × 2 design, while adjusting
for eccentricity, velocity and position of the ball (see section
2 for details). For the effect of the behavioral data on
the ERP, please see the Supplementary Material. We only
report ERPs time-locked to perturbation events. Descriptively,
in electrode Cz (Figure 5A), we see the typical pattern of
a positive deflection, followed by a negative and a second
positive deflection after the perturbation onset. We did not
have a specific hypothesis to a predefined component and
analyzed all electrodes and time points simultaneously. The
TFCE analysis reveals two clusters for the main effect of
the factor of partner (Figure 5B). The first cluster is likely
to represent the activity between 230 and 270 ms with its
maximum amplitude being −2.8µV at electrode FC1 (median
p: 0.025, minimal p: 0.018). The second cluster most likely
represents the time range of 515–605 ms with a peak at
−1.2µV at electrode FC2 (median p: 0.026, minimal p: 0.002).
Both clusters are found in the central region. No significant
clusters were found for neither the factor sonification nor the
interaction term.
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FIGURE 4 | Behavioral differences between conditions partner and sonification. (A) Differences in mean angular velocity across different participants. The error bars

indicate standard error of mean. (B) Differences in mean error across different participants. The error bars indicate standard error of mean. Panel (C) shows the

correlation of mean error and mean velocity for partner and sonification conditions.

These results show that we find differences in the participants’
ERPs with respect to their current partner independently of their
differences in behavior: When interacting with a robot partner
the ERPwill have a stronger amplitude indicating a systematically
different processing.

4. DISCUSSION

Our experiment investigated neural correlates of action

monitoring in a dynamic collaboration task that involves
two co-actors. Participants performed the task with another

human and robot partner while we measured EEG signals.
Co-actors tried to keep a virtual ball on the circle displayed on

a tablet; they used their hands (human arm or robotic arm)

to manipulate independent orientation axes of the tablet. We
perturbed the ball to investigate neural action monitoring
processes of the participants. We found fronto-central ERP
components at around 200–300 ms after the ball was perturbed.
The components were stronger for human and robot partner
compared to interactions with another human. These results
suggest that the dynamic processing of our actions is influenced
by whether we collaborate with a robot or a human.

The behavioral measures of our participants’ actions were
different between human and robot partners. We focused our
analysis on two aspects of collaboration: The speed which is
represented by the ball’s velocity and the accuracy as indicated
by the mean error. Our results suggest that participants perform
slower when paired with the robot and achieve higher accuracy
(ball closer to the circular track). There is a trade-off relation
between these factors; this is why we discuss them together
(Figure 4C). One simple explanation could be that the robot’s
control were themselves slow and prone to error. The human
participants might have restrained themselves and thereby
executed artificially slow movements. Another interpretation of
why our participants slow down (and increased accuracy) while
performing with the robot is that they had less trust in the robot

than a human partner. This is in line with past research that
suggests that level of trust changes during real-time interactions
with robots (Desai et al., 2013) and that, in general, trust
levels are different for human and robot partners (Lewis et al.,
2018). Another interpretation for slower movements is that it
is challenging to create a model of a partner’s actions during a
joint collaborative task with a robot. Based on work suggesting
that we represent others’ actions as our own (Sebanz et al., 2003),
it is possible that in the case of interacting with a robot we
need more time to create such representations. There is much
space for interpretations why having a robot partner triggered
slowermovements; however, we would like to point that themain
goal of our study was to investigate neural correlates of different
partners, and behavioral responses were collected to exclude their
influence on neural responses (see section 2.8 for details).

After adjusting for behavioral differences in the EEG analysis,
we see that robot partners affect neural correlates of action
monitoring differently in comparison to a human partner. We
found that between 200-300 ms after the perturbation event
disturbing the collaboration, the EEG amplitudes differ at the
fronto-central sites. The literature on single participants at these
electrodes and time window suggests that it is when and where
monitoring our errors or feedback about our actions unravels
(Miltner et al., 1997; Cavanagh et al., 2009). Similarly, when
it comes to neural activity involved in action monitoring in
dyadic situations, the same activations play a role (van Schie
et al., 2004; Czeszumski et al., 2019). If the error is committed
by the participant and can be inferred from his action (e.g.,
making a typo), the brain component involved is called Error-
related negativity, with more negative activation for erroneous
actions than correct ones (Yeung et al., 2004). In case of behavior
that needs feedback to understand the consequences of the
action (for example, gambling task), it is called Feedback related
negativity (Hajcak et al., 2006). In comparison to these classic,
static, and passive experiments, we had real-time collaboration
between two participants, and we observed similar component
peaking around 200-300 ms after the perturbation happened.
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FIGURE 5 | EEG results. (A) ERP at electrode Cz. The red lines show the activation when interacting with a human partner, while blue lines indicate a robot partner.

The solid line are the ERP when the sonification was off, while the dashed line represent sonification on. Below, are the topographies for the grand average (mean over

all conditions). (B) Clustering results for the different factors (red line and dot represents electrode Cz). Top: Effect of partner. The analysis finds two clusters in the

central area (black dots and segments). One is likely due to a difference at around 230–270 ms, while the second one is present later (around 510–600 ms). These

results indicate that the ERP will have a smaller amplitude when interacting with a human partner. Middle: Effect of sonification. No cluster was found here. Bottom:

Interaction. No cluster was found here.

Our participants were not informed about the perturbations, so
they could have been treated as participants’ own or the partner’s
error. Therefore, we suggest that the neural activation we
observe in our study resembles classic components. Our finding
that robotic partners modulate action monitoring corroborates
recent study (Hinz et al., 2021). However, there is a crucial
difference between both studies: Participants in Hinz et al.
(2021) study performed a task sequentially (turn-taking), while
in our study, participants interacted with each other in real-
life. Both studies point in the same direction. Robot partners
modulate neural activity. We speculate that differences in the
amplitudes of the ERP for robotic and human partners may
arise from differences in how we represent actions of artificial
and human-like agents. Such differences might involve partly

non-overlapping neuronal substrates with different visibility to
EEG recordings. Furthermore, the perceived options to optimize
performance in the joint interaction by adjusting to the behavior
of the partner might differ. Such differences can elicit different
neural patterns that we are able to measure with EEG.

Our results suggest that robot partners can modulate neural
activity in a dyadic experiment. Concerning that there is not
many studies that focused on neural underpinnings of human-
robot interactions, the results we present here have a value
for research topics in the field of join-action. They are a
first exploratory step toward a theoretical and methodological
foundation. We showed the feasibility of conducting a human-
robot interaction study while measuring EEG from the human
participant in a dynamical paradigm. With full experimental

Frontiers in Neurorobotics | www.frontiersin.org 8 August 2021 | Volume 15 | Article 686010

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Czeszumski et al. HRI EEG

control, we explored neural correlations of human-robot
interactions in an ecologically valid setup (Matusz et al., 2019;
Czeszumski et al., 2020; Nastase et al., 2020). There is vast
literature on the topic of joint actions between humans and
robot partners (Curioni et al., 2019a; Schellen et al., 2021; Wahn
and Kingstone, 2021). Neural markers of action monitoring
during human-robot interactions were studied in turn-taking
tasks and utilized for brain-computer interfaces to improve
communication between robots and humans (Ehrlich and
Cheng, 2018, 2019a,b). Our study shows that it is possible
to conduct studies with non-human agents collaborating with
humans in real-time and measure brain activity and that the
neural basis of action monitoring is affected by the robot partner.

Lastly, we observed small differences between human and
robot partners at later time points (between 500-600 ms after the
perturbation) around the midline electrodes. These differences
are difficult to interpret. The topography suggest similar source
as the component discussed above. However, based on time we
speculate it could be P3b component. Huberth et al. (2019)
reported similar component in study that investigated self and
other (human vs. computer) generated actions in pianists. They
found that P3b component was present only for self generated
actions, suggesting greater monitoring of self generated actions.
It is important to highlight that in our study, participant had
to dynamically perform the task, while in the Huberth et al.
(2019) study participants took turns to perform joint actions.
What is similar is that they had to generate actions to achieve a
common joint goal (Vesper et al., 2010). It is possible that the late
effect we found in our experiment has the same function (greater
monitoring of self generated actions). However, in comparison to
the earlier effect (200–300 ms after the perturbation), the size of
the effect in our study is small. Therefore, we have to be careful
with interpretations. Future researcher with bigger sample size
can help to understand the function of late ERP components in
joint actions with robots.

4.1. Limitations
The exploratory aspect of investigating neural underpinnings of
human-robot interactions pose many challenges and questions.
In the present study, we tried our best to reconcile all of
them. However, there are limitations that have to be addressed.
First, our sample size was small in terms of number of
dyads. However, it was not small in terms of recordings and
total amount of gathered data. Thus, the effects reported are
significant. Second we did not perform statistic al analyses with
a predefined hypothesis. Instead, we performed an exploratory
analysis that encompasses all electrodes and time points. It is
important to understand that it is the first study of its kind.
Therefore, it has to be replicated and evaluated by future research
(Pavlov et al., 2021). Third our results could be dependent
on the robot used in the study. We suggest that different
types of robots (less/more humanoid) could modulate action
monitoring differently. The robot used in the present study
was clearly not-humanoid. Participants could clearly recognize
it as a robot and devoid of typical human traits that are often
used in communication/collaboration. Nonetheless, using this
robot helped us to maximize the difference between conditions.
Additionally, our claim is supported by research on a different

level of trust depending on the appearance of humanoid robots
(Haring et al., 2013; van Pinxteren et al., 2019). Therefore,
it would interesting to perform a similar experiment and
compare the results with a more human-like robot. Fourth,
as discussed below, our robot did not have a model of the
human actor. By this, the robot’s behavior helped to boost the
characteristic differences between the player’s partners. Fifth, our
statistical analysis does not take the dyadic dependency into
account, possibly biasing the estimated model parameters of the
human-human condition downward. In the future, study with
a bigger sample size, could answer the question whether dyadic
dependencies play a role in the effects reported in our study.
Sixth, even though participants were asked to keep their eyes
on the center of the circular track, we did not control for eye-
movements in this study, which could result in biased viewing-
behavior on the tablet. However, we adjusted for ball position
while modeling the ERPs, which is likely to be a proxy for
current eye position and also remove eye movement and blink
related ICs. Furthermore, the game required constant attention
and engagement, so it was assured that participants did not
look away from the tablet and the ball. Additionally, we are
interested in the EEG signal related to the behavior, rather than
the visual stimulus. All in all, we addressed the limitations, and
are convinced that they do not impede the interpretations of our
results as presented in next paragraphs.

5. CONCLUSIONS

Taken together, this study explored and described event-related
potentials related to action monitoring in humans collaborating
with other humans or robots. We used a dynamic real-time
collaborative task and found that around 200–300 ms after our
actions are disturbed, our brain activity is modulated by the
type of partner. Our results corroborate previous research on
the neural basis of human-robot interactions. Furthermore, we
show the feasibility of conducting research on collaboration
between human and non-human partners with EEG. The results
of our study suggest that non-human partners modulate how we
perceive and evaluate joint actions. It is crucial that we found
the differences between human and robotic partners during a
dynamical coordination task, as it can have implications on
the future of human-robot interactions and brain-computer
interfaces. We speculate that our findings could improve already
existing interfaces that use recognition of errors in real-time. It
could be especially useful in situations when robots and humans
have multiple interactions and it is important to distinguish
between different partners. Further research into the origin of
the observed differences might elucidate the neuronal substrate
of understanding the behavior of a partner during joint action.
Such research and application could further facilitate interactions
between humans and robots in many environments.
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