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1. INTRODUCTION

The day seems not too far away, in which robots will be an active part of our daily life, just
like electric appliances already are. Hence, there is an increasing need for paradigms, tools, and
techniques to design proper human-robot interaction in a human-centered fashion (Beckerle et al.,
2017). To this end, appropriate Human-Machine Interfaces (HMIs) are required, and there is a
growing body of research showing how the Peripheral Nervous System (PNS) might be the ideal
channel through which this interaction could proficiently happen.

During daily motor tasks such as grasping, walking, or speaking, the central nervous system
(CNS) recruits a number of α-motoneurons in the ventral horn of the spinal cord and modulates
the rate at which they discharge action potentials. The α-motoneurons are further modulated by
supraspinal, afferent volleys and intrinsic motoneuron properties (Heckman et al., 2005; Enoka,
2008). The motoneuronal axonal action potentials are transformed into forces by a group of muscle
fibers (the muscle unit) innervated by one axon. The muscle unit and the motoneuron form
the final ensemble of all motor actions, the so-called motor unit. Translating neural commands
into muscular forces, (spinal) motor units represent a promising interface to the CNS. However,
there are some physiological constraints of motor control that must be taken into account by
robotic applications.

In this opinion paper, we claim that better user experience would lead to more intuitive control
and tighter human-robot interaction or even human-machine integration and vice-versa (see
Figure 1).

Using PNS data for intent detection as well as for online assessment of user experience
renders such interfaces technically promising and a tool to understand human behaviors and
reactions (Beckerle et al., 2019). To improve on this, we discuss developments in intent detection
and user feedback and user feedback emphasizing on anthropomorphic systems, which are
directly controlled by humans, e.g., prostheses and teleoperation, and aiming to create novel
sensorimotor paradigms.

2. PERIPHERAL-NERVOUS-SYSTEM–MACHINE INTERFACES
(PNS-MIs)

Interfaces for controlling anthropomorphic robotic systems, e.g., HMIs for self-powered
prostheses, cannot function like a joystick or a touch-screen for instance, since the user cannot
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FIGURE 1 | Peripheral-Nervous-System–Machine Interfaces (PNS-MIs) in human-robot interaction: PNS data facilitates simultaneous intent recognition and online

experience evaluation. This fosters novel sensorimotor interaction paradigms, sheds light on human behavior and reactions, and thereby opens up new directions for

human-robot interaction.

physically operate such devices. These HMIs must rather resort
to interpreting the user’s intent based on signals the user is
able to produce - usually, relevant biological signals related to
the intended muscle activation (Beckerle et al., 2019). Surface
electromyography (Merletti et al., 2011) is a primary example,
although different kinds of signals are currently being explored,
e.g., tactile information (Beckerle et al., 2018, 2019) and also
promising for other applications such as anthropomorphic
teleoperation (Nostadt et al., 2020) or teaching collaborative
robots (Cansev et al., 2021).

In principle, all signals generated by the users can and
should be used to interpret their intent, but clearly, the optimal
choice of signals and sensors depends on a tradeoff involving
several factors. This includes, e.g., how well the sensors can
be worn (ergonomy), how expensive the processing is (both
economically and computationally), and how invasive their setup
is. Furthermore, intent detection does not necessarily coincide
with classification of signal patterns; rather, it’s the ability to
provide the user a seamless control experience based upon such
signals, e.g., using regression instead of classification.

2.1. The Pros and Cons of CNS/PNS-MIs
Broadly speaking, signals related to movement and muscle
activation can be classified according to whether they are
recorded from the CNS or the PNS (Castellini et al., 2014). HMIs
relying on CNS signals include brain-machine interfaces using

surface electroencephalography as well as electrocorticography
with direct implants on the motor cortex and spinal implants
(Micera et al., 2010), or by decoding spinal motoneurons from
high-density EMG signals (Farina et al., 2017; Del Vecchio
and Farina, 2019). PNS-based HMIs, on the contrary, are
those using signals recorded from the limbs, either invasively
or non-invasively, e.g., implanted electromyography and direct
connections to peripheral nerves vs. surface electromyography,
force- and magneto-myography (Fang et al., 2015). Although
EMG interfaces are placed in the periphery (muscles) the signal
carried by the electrical activity generated by muscle fibers is
in a one-to-one relation with spinal motoneurons. Moreover,
minimally invasive approaches like local tomography of the
limbs, which entail no surgery but indeed the injection of energy
into the body, exist (Sierra González and Castellini, 2013; Gibas
et al., 2019).

Given the extreme density of neural cells found in the CNS,
most signals useful for robotic control to be potentially found in it
are physically unavailable for direct inspection, unless one resorts
to very invasive methods, e.g., the Braingate (Hochberg et al.,
2012). Non-invasive methods, on the other hand, strongly suffer
from cross-talk: the main problem is to tell signals pertaining
to the intent under examination from “all the rest.” Surface
electroencephalography, for instance, poses extremely complex
problems to interpret and discern the neural firing patterns of
interest, since each sensor can only record potentials from a large
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pool of neurons. Accordingly, damping and distorting effects
due to skull bone tissue complicate pattern recognition (Lazarou
et al., 2018). As opposed to that, an excellent signal-to-noise ratio
can be obtained at the price of getting in contact with the cerebral
cortex or the spinal cells (Hochberg et al., 2012).

PNS-based systems, on the other hand, can use better
separated and physiologically relevant signals, naturally enforced
by the anatomical branching of nerves and neurons as they
depart from the brain, brainstem, and spinal cord. If one is
interested in detecting the intent to move, exert forces and
torques, and/or activate one’s own muscles, then detecting
such activity from the PNS appears to be a better choice
especially if non-invasiveness is desired (Castellini et al., 2014).
On top of this, if minimal invasiveness is permitted or
desired, PNS approaches are probably even the best choice
nowadays. Ultrasound scanning and electromyographic sensors
implanted during osseointegration (Ortiz-Catalan et al., 2014)
or injected into the muscles (Becerra-Fajardo and Ivorra,
2019) offer high signal-to-noise ratios while entailing rather
low risk.

2.2. Improving on PNS-MIs
It has been known to physiologists for the last three decades that
the neural activation that is transmitted by the motoneuron is
delayed by the muscle tissue over a large range of values, from
roughly 50 to more than 200 ms (Partridge, 1965; Baldissera
et al., 1998). During fast motor tasks the nervous system
compensates this delay by increasing the motoneuron firing
frequency and the delay between the recruitment of successive
motor units. Therefore, the CNS tunes this delay dynamically.
Previous experiments in animal preparations demonstrated that
changes in stimulation frequency alters the delay between the
myoelectrical signal and the force produced by the muscle
tissues in a very large range (Partridge, 1965; Baldissera et al.,
1998). Recently, by decoding the activity of a large population
of motoneurons during contraction at different speeds, we also
found that the human nervous system modulates such delays
in a very broad range (50–250 ms for hand and leg muscles
Del Vecchio et al., 2018).

In virtually all prosthetic applications, however, this delay
is fixed (Farina et al., 2014) yielding devices that do not
follow the physiological modulation during natural processes like
muscle fatigue (Zhou et al., 1998), adaptation of contraction
speed (Del Vecchio et al., 2018), and muscular force output
(Del Vecchio et al., 2018). Still, neuroergonomics should indeed
translate these basic physiological findings into novel interface
designs and, potentially, prosthetic applications for improving
human robot-interactions. One potential solution to overcome
this limitation is to decode surface EMG in real-time. We have
previously shown that it is possible to retrieve the motoneuron
discharge timings with delays smaller than 2 ms (Glaser et al.,
2013; Barsakcioglu and Farina, 2018; Chen et al., 2020; Ting et al.,
2021). Moreover, the potential to identify individual motor unit
discharge times allows to label each motor unit to its unique
motor space, e.g., encoding flexion/extension or which digit.
Therefore, classification of EMG activity can be performed in a
highly accurate way by associating each motor unit to its specific

spatiotemporal space, as shown in a spinal cord injury case
(Ting et al., 2021).

2.3. Considering User Experience Through
PNS-MIs
Recent research outlines that PNS-MIs also have potential in
directly assessing user experience going beyond established
psychometric and physiological methods. An interesting example
is the embodiment of robotic systems such as prostheses or
teleoperation systems (Beckerle et al., 2019; Nostadt et al., 2020):
the embodiment of artificial limbs can be assessed through
surveying subjective experience with questionnaires (Longo et al.,
2008), objective behavioral measures (e.g., proprioceptive drift),
or (neuro)physiology (Christ and Reiner, 2014). This effect
was also shown for artificial limbs with myoelectric control
(Romano et al., 2015; Sato et al., 2018), but we might ask
ourselves whether myoelectric measurements could also be used
to analyze neuroergonomics of interaction with such devices.
Recent work by Preatoni et al. for instance (Preatoni et al., 2021)
indicates that proper sensory feedback makes a leg prosthesis
feel lighter.

For patients suffering from stroke, the experience of
device embodiment seems to have similar influence on
electromyographic activity as for other physiological
measures, i.e., electrodermal activity and skin temperature
(Llorens et al., 2017). While, Tsuji et al. (2013) even
report subjective survey results to be better represented by
electromyography than by electrodermal activity, (Llorens
et al., 2017) state that interactions between their subjective
and neurophysiological results were inconclusive. Besides
embodiment, the perception of pleasantness of affective touch
can be related to electromyographic as well as to electrodermal
measurements (Ree et al., 2019). This is very interesting since
providing affective information through touch was shown to
increase the embodiment of artificial limbs (Crucianelli et al.,
2013, 2018; van Stralen et al., 2014) and, hence, appears worth
considering in human-robot interaction (Beckerle et al., 2018).

Although myographic activity was measured at different sites,
i.e., hand and face (Tsuji et al., 2013; Llorens et al., 2017; Ree et al.,
2019), considering it in the assessment of user experience seems
promising. We have ourselves recently put forward the potential
connection between control based upon muscle activation and
action schemes in the sense developed by Piaget (Piaget, 1950).
Here, a proper PNS-MI could foster the creation of novel circular
reactions, leading to embodiment as a natural consequence
(Bettoni and Castellini, 2021). The factors influencing the effect
remain unexplored so far. Understanding and shaping these
interactions might be supported by multimodal data from an
interface integrating myography with other physiological data,
e.g., electrodermal activity or heart rate.

3. DISCUSSION

With this position paper, we advocate peripheral
neuroergonomics as an elegant way to improve HRI. Non-
invasively interfacing the peripheral nervous system seems to
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provide very good interpretability and is currently advantageous
over CNS-based interfaces, which outline higher invasiveness
as well. Moreover, peripheral interfaces can augment or
complement other modalities such as eye-tracking and
electroencephalography to improve the recognition of user
intentd and cognitive status. Generally, we expect considering
neuromechanical insights in novel interfaces designs to foster
improved HRI characteristics of robotic systems and devices.
An accurate closed-loop control of the neuromechanical delays
matching the physiological pathways would likely improve
sensorimotor interactions. In addition, peripheral neural
information can complement psychometric and physiological
methods to assess user experience, which indicates that
integrating myographic assessment in multimodal PNS-MIs
would bring the neuroergonomics of human-robot interaction
to a new level of quality.
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