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Human motion intention detection is an essential part of the control of upper-body

exoskeletons. While surface electromyography (sEMG)-based systems may be able to

provide anticipatory control, they typically require exact placement of the electrodes on

the muscle bodies which limits the practical use and donning of the technology. In this

study, we propose a novel physical interface for exoskeletons with integrated sEMG- and

pressure sensors. The sensors are 3D-printed with flexible, conductive materials and

allow multi-modal information to be obtained during operation. A K-Nearest Neighbours

classifier is implemented in an off-line manner to detect reaching movements and lifting

tasks that represent daily activities of industrial workers. The performance of the classifier

is validated through repeated experiments and compared to a unimodal EMG-based

classifier. The results indicate that excellent prediction performance can be obtained,

even with a minimal amount of sEMG electrodes and without specific placement of

the electrode.

Keywords: human-machine interface, classification, exoskeletons, machine learning, intention recognition,

electromyogram, wearable sensor

1. INTRODUCTION

Upper body exoskeletons for industrial workers have been developed at an increasing pace over the
past years and have shown promising results in a controlled lab environment, yet more nuanced
for in-field experiments (De Looze et al., 2016; De Bock et al., 2020). Passive devices such as the
Paexo (Ottobock, Duderstadt, Germany) (Maurice et al., 2019) or the Mate (Comau, Grugliasco,
Italy) (Pacifico et al., 2020) provide assistance by storing energy in elastic elements. This energy
is harvested through human motion and can be used to support a specific motion or posture
such as overhead working. Due to the passive nature of the device, the assistance level cannot be
dynamically controlled limiting the versatility of these devices. Active devices, on the other hand,
comprise actuators (such as electric motors or other types, Gopura et al., 2016) which have the
potential to deliver different assistive profiles for different tasks (Gull et al., 2020). Providing the
right assistance is quite challenging, since the range of motions and tasks humans perform with the
upper body is virtually infinite.

To solve this problem, researchers are developing intention recognition and task classification
strategies to enable natural control. These recognition algorithms are most often based on uni-
modal sensing strategies, most often comprised of myoelectric signals (Kiguchi and Hayashi, 2012;
Novak and Riener, 2015; Bi et al., 2019).
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Classically these signals are acquired from wet Ag/AgCl
electrodes. This method requires to first locate the ideal position
for the sensor using body landmarks, then clean and shave the
skin at this location and apply a gel to the muscle body from
which the signal is collected. For high signal quality, this process
requires expertise and a relatively long setup time. When used
in combination with an exoskeleton, the optimal locations for
the sensors are often obstructed by the interface. In addition, the
comfort of the user could be compromised because many of the
devices associated with this acquisition technique are bulky and
several cables are attached to the arms of the users. These issues
reduce the practical applicability of themethod for an upper body
exoskeleton for industrial workers. Recently, dry electrodes were
developed that do not need gel, reduce setup time and allow for
more portability. They however come at the cost of a lower signal
to noise ratio (Hakonen et al., 2015), which will inevitably reduce
classification accuracies. A promising method to overcome the
shortcomings of EMG sensors is to combine information from
different sensor modalities (Novak and Riener, 2015). In that
context, a popular control method for exoskeletons is to combine
the information from EMG- and mechanical sensors such as
inertial measurement units (accelerometer and gyroscope) or
force- and torque sensors.

A sensor that has yet to be combined with EMG are pressure
sensors located at the physical interface of exoskeletons. The
integration of pressure sensors in physical interfaces has been
investigated in the robotics community (De Rossi et al., 2011;
Tamez-Duque et al., 2015; Wilcox et al., 2016; Langlois et al.,
2021) and have shown their relevance for the unimodal detection
of the user motion intention (Lenzi et al., 2011). Additionally,
pressure sensors can ensure a more safe and comfortable
operation of such devices (He et al., 2017).

Pressure and EMG sensors were combined in wearable bands
developed for the detection of hand and wrist motions (Connan
et al., 2016; Jiang et al., 2020). The band comprises sEMG
electrodes and force sensitive resistors that measure volume
changes induced by muscular activity. Fusion of both modalities
showed promising results for the performance of gesture
recognition. In the domain of upper body exoskeletons, several
muscle groups are usually targeted to achieve good recognition
(Trigili et al., 2019). However, in the context of industrial
workers, the application of electrodes on multiple muscles
can be problematic since clothing is usually covering most of
the muscles. Wearing t-shirts is still conceivable for certain
applications such as logistics. In that regard, only the biceps and
triceps muscles are potential sources of EMG information.

In this manuscript we propose a novel integrated, multimodal
interface comprising EMG electrodes that measure activity of the
biceps brachii, and pressure sensors that monitor the interaction
between the user and the exoskeleton. The novelty of this research
lies in the combination of EMG- and pressure-signals that this
interface can obtain. Moreover, the EMG electrodes as well as
the pressure sensors are all 3D printed. This allows to develop
the interface for other body regions as well, or to customize the
design to a specific user (Langlois et al., 2018).

Experiments on human subjects are carried out to explore the
potential of the interface to classify lifting and reaching tasks.

The analysis is performed in a test bench consisting of a torque
controlled cobot. A classifier based on K-Nearest Neighbours
(KNN) algorithm is trained to recognize lifting and reaching
tasks in an off-line manner.

2. METHODS

2.1. Sensorized Interface
The physical interface is an upper-arm orthosis with integrated
pressure sensors and EMG-electrodes. The objective of such an
interface is to ensure the correct placement of the exoskeleton
relative to the body, achieve effective force transmission, and
most of all, support safe and comfortable interactions. Interface
dynamics are known to play a crucial role in the ability of
exoskeletons to provide assistance and comfort (Cherry et al.,
2016; Langlois et al., 2020).

Four flexible polymer capacitive pressure sensors are
integrated along the centre line of the orthosis, shown in
Figure 1. The pressure sensors allow pressure measurements
with a relative accuracy of approx. 10% at a rate of 10 Hz. At
the beginning of every trial the sensors are calibrated relative
to the force sensing of the cobot. The design of the pressure
sensors and the calibration process are described in detail in
Langlois et al. (2021).

In the developed interface, the muscular activity of a single
muscle group, the biceps brachii, is monitored. The biceps brachii
was chosen since the application for which this interface is
designed is the assistance of upper body reaching and lifting
during industrial workers’ tasks. In that context, the muscles
around the shoulder are more challenging to access. Monitoring
the triceps muscles as these interact with the interface was out
of the scope of this paper. Though co-located force and EMG
sensors have been developed (Jiang et al., 2020).

The interface’s flexible straps conceal an individual electrode
pair, consisting of a printed polylactic acid, conductive filament,
similar to Wolterink et al. (2020). The electrodes are pressed
against the skin by the elastic straps to ensure skin contact.
The same straps are also providing the attachment between
the human and the robot. These are tightened the same way a
non-sensorized strap would.

Specific electrode placement is not required/performed when
donning as the straps ensure a similar pose across users. This
approach would be beneficial in a commercial application for
industrial workers, where workers do not need expertise or
support for donning the exoskeleton. Although resulting in a
wider variability of the EMG signal, we believe the pressure
sensor data can potentially compensate for this effect. However,
once the interface is worn, one should avoid the slippage of the
electrodes since this will create noise.

2.2. Experimental Setup
The experimental setup comprises the sensorized interface
and a torque-controlled cobot (Panda, Franka Emika, Munich,
Germany). The cobot is programmed to simulate a passive upper
body exoskeleton by means of a joint impedance controller. The
impedance controller is set such that an assistive force is exerted
onto the interface, effectively pushing the user’s arm to an upward
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FIGURE 1 | The setup of the experiment consists of a sensorized interface and a torque controlled cobot. The four pressure sensors located on the inside of the

interface are shown (number 1–4). The EMG electrodes are the two black squares on the inside of the straps. The cobot simulates an upper body passive exoskeleton

using a joint impedance controller.

FIGURE 2 | The subject starts in a relaxed position with the arm along the trunk (IDLE). Then, the subject reaches forward (RF) to grab the box, moves the box toward

the other shelf (LB), releases the box and reaches backwards (RB). Note that there are two possible initial positions of the box, and thus two paths that can be initially

chosen from, as indicated in blue and red.

position. This means the subject exerts a force to pull the arms
down. Similarly to an actual passive exoskeleton, the goal is to
assist humans by reducing the efforts delivered at the shoulder
level when executing lifting tasks.

The experiment consists of two shelves and a box with a
mass of 2.2 kg. The user straps him/herself into the interface
and performs the task depicted in Figure 2. The task consists
of four parts: first, the subject starts the exercise by relaxing the
arm along the trunk (IDLE). Then, the subject reaches forward

to grab the box on the shelf (RF), grabs and lifts the box (LB)
and places it onto the other shelf. The initial position of the box
is randomized (top or bottom shelf). After placing the box, the
participant reaches back (RB) to idle position and repeats the
task. IDLE, RF, LB, and RB are the labels of the exercise. This
exercise is repeated during 1 min, at self-selected speed. Each
participant repeats the exercise seven times.

During this exercise the muscular activity of the biceps, the
pressure acting on the inside of the interface and the position
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FIGURE 3 | Neighborhood component analysis allows to select features to

achieve maximal prediction accuracy. A lower score means a more redundant

signal that does not contribute to a higher classification accuracy.

and forces at the end-effector are recorded. The details of the
processing methods are explained further below in section 2.3.

2.3. Acquisition System
EMG signals from the biceps brachii are sampled through a
Cometa Mini Wave Infinity system (Cometa Srl, Bareggio, Italy)
at a frequency of 2 kHz. The signals are band pass-filtered (15–
400 Hz) before segmentation. A sliding window segmentation
is implemented with a window of 600 samples (300 ms) and an
overlap of 150 samples.

The pressure data are captured at a 10 Hz rate and the signals
are filtered through a second-order Butterworth filter with a
cutoff frequency of 2 Hz. The initial pre-compression/loading
of the interface is measured and accounted for: At the start of
the experiment, the user keeps his/her arm at the equilibrium
position of the cobot, i.e., where forces are small, and this for 20 s.
The mean pressure over that time window is subtracted from all
subsequent measurements.

The force and position measurements at the end-effector of
the cobot are captured at a 1 kHz rate and are filtered through a
first-order Butterworth filter at a 2Hz cutoff frequency. The cobot
can measure external forces with a resolution of 0.1 N.

Data analysis is performed in the Matlab environment
(MathWorks, Massachusetts, United States).

2.4. Subjects
A total of 4 healthy subjects participated in the experiment, and
they all provided written informed consent. The procedures were
approved by the Institutional Review Board at The UZ Brussel,
Vrije Universiteit Brussel and complied with the principles of the
declaration of Helsinki.

2.5. Classification Features
Regarding EMG signals, the 10 following features were selected
for further investigation: Root Mean Square (RMS), Wavelength
(WL), Enhanced Mean Absolute Value (EMAV), Average
Amplitude Change (AAC), Variance (VAR), Simple Square
Integral (SSI), Mean Absolute Value (MAV), Integrated EMG
(IEMG), Slope Sign Change (SSC), and Zero Crossing (ZC).
In terms of pressure, seven features are proposed for further
analysis: Pressure values at sensor element 1-4 (P1-P4), Total
Pressure (P TOT), Differential Pressure (dP), and Center Of
Pressure (COP). The external force (F) acting normal to
the interface and the position (X,Z) of the end-effector are
also evaluated for further analysis. This constitutes a total of
20 features.

Neighbourhood component analysis (NCA) is performed to
reduce the features that are passed on to the classifier. NCA is
a non-parametric method for selecting features with the goal
of maximizing prediction accuracy of classification algorithms
(Yang et al., 2012). The output of the algorithm is a feature weight
vector that maximizes the classification accuracy. This algorithm
is implemented in Matlab using the fscnca function. The results
of the analysis are shown in Figure 3. Features with a low score
are not considered further. These are the RMS, VAR, SSI, MAV,
and IEMG features of the EMG signals, and the position signals
of the end-effector.

2.6. Classification Protocol
Each subject except one carried out seven trials (due to
technicalities, one was discarded for subject four). Each trial is
composed of several cycles (ranging from five to eight), as shown
in Table 1. All the data was manually labeled based on the speed
of the end-effector and the video footage of the experiment. To
train the classifier, every trial of each subject is divided into three
subsets: a training-, validation- and test set. First, a training set
and a test set are divided by leave-one-cycle-out partitioning. This
means the classifier is trained (and validated) on all but one cycle.
The classifier is then tested on the left-out cycle. This process is
repeated for each cycle of each trial, and the average accuracy
for each subject is reported in the section 3. The validation
set is partitioned based on a hold-out fraction of 25% of the
training set.

A K-Nearest Neighbour cosine classifier with 1,001 neighbors
is chosen for this task. This parameter gave over-all good results
and did not overfit the data. Fewer neighbors will result in higher
accuracy for a single dataset but entail a less flexible classifier.

2.7. Classification Performances
Four performance metrics are shown in the section 3.

Accuracy is the fraction of predictions that are correct:

Accuracy =
TP + TN

n
(1)

with TP the number of True Positives, TN the number of True
Negatives and n the number of predictions.
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TABLE 1 | Average data across all trials.

Subject 1 2 3 4

IDLE duration [min max] [s] 2.48 [1.60–3.59] 1.25 [0.63–2.14] 0.97 [0.44–1.88] 0.88 [0.29–1.51]

RF duration [min max] [s] 1.70 [1.07–2.28] 2.36 [1.65–3.79] 1.71 [1.17–2.33] 1.77 [0.92–2.53]

LU duration [min max] [s] 3.10 [2.09–3.89] 4.34 [3.55–5.05] 2.76 [2.28–3.40] 3.30 [2.33–4.37]

RB duration [min max] [s] 2.11 [1.51–3.16] 2.48 [1.79–3.45] 1.96 [2.28–1.60] 2.13 [1.46–2.92]

Cycles [min max] 5.14 [5–6] 4.57 [4–5] 7 [7–7] 6.33 [5–8]

Peak force [N] 8.9 26.75 11.95 17.39

Peak pressure [kPa] 8.47 16.2 6.57 8.12

Peak velocity [Vx,Vz] [m/s] [0.055;0.117] [0.194;0.119] [0.215;0.147] [0.219;0.133]

ROM [range X; range Z] [m] [0.111;0.279] [0.232;0.305] [0.223;0.291] [0.199;0.279]

Large variations across subjects can be observed in terms of how the exercise was performed. Subject 2 performed slower motions with wider range of motion and higher forces,

whereas subject 1 performed smaller range of motions with lower forces.

Sensitivity or true positive rate measures the proportion of
positives that are correctly identified:

Sensitivity =
TP

P
(2)

with P the number of real positive cases in the data.
Specificity or true negative rate measures the proportion of

negatives that are correctly identified:

Specificity =
TN

N
(3)

with N the number of real negative cases in the data.

3. RESULTS

3.1. Motion Data, Pressure, and Force
Since the four participants could perform the task at a self-
selected speed, we found widely varying executions, both in terms
of speed of execution and forces acting on the body as well as
muscular activity. First, in terms of external force acting normal
to the interface, we observed varying peak forces across the
subjects. For subject one, the lowest peak force is found, with
a value of 8.9 N. The highest peak force is found for subject
2, with a value of 26.75 N. The forces acting on the interface
depend on the equilibrium position of the robot, which had to
be slightly adjusted for each participant, as well as the range
of motion (ROM) of the participant. Since the robot acts as an
impedance, the further away from equilibrium a subject moves
the arm, the higher the force. The smallest range of motion is
found for subject 1, with a total range across all trials of 0.111
m along the X-direction (moving the hand forward, parallel to
ground) and 0.279 m in the Z-direction (parallel to gravity). The
highest range of motion is found for subject 2, with a total range
of 0.232 m and 0.305 m, in the X- and Z-direction respectively.
In terms of pressure, the peak occurs during the lifting motion
of the box. This peak pressure is caused by the assistive force
of the robot and the change in volume of the arm. The lowest
peak pressure is found for subject 3, with a value of 6.57 kPa. The
highest peak pressure is found for subject 2, with a value of 16.2

kPa. At the same time, subject 3 spent the least amount of time
lifting up the box (LU), on average. While subject 2 spent, on
average, themost amount of time lifting up the box. Subject 2 also
performed the least amount of cycles per trial, with an average
number of cycles of 4.57.

All the average values across all trials are shown in Table 1.
In Figure 4 the raw data outcome of a single trial of subject 1
is shown.

3.2. Neighbourhood Component Analysis
The NCA revealed the features that are redundant in the
classification of the tasks. The features that were not further used
for classification are the RMS, VAR, SSI,MAV, and IEMG features
of the EMG signals, and the position signals of the end-effector.
The P2 feature was left in the feature pool. The two outer sensors,
P1 and P4 scored a higher feature weight (median weight of 2.4
and 1.5, respectively) than the inner pressure sensors, P2 and P3
(median weight of 0.0 for both). The Zero Crossing feature and
the Slope Sign Change (SSC) are the two highest rated features of
the EMG signals, with a respective median weight of 5.2 and 5.0.
The differential Pressure (dP) was the second highest feature of
all, with a median score of 5.1.

Based on these results, seven classifiers are further analyzed.
First, three unimodal classifiers (i.e., single type of sensor)
are constructed: the EMG-classifier (comprising WL, EMAV,
AAC, SSC and ZC features), the P-classifier (comprising P
TOT, COP, dP, P1, P2, P3, P4 features) and the F-classifier
(comprising F feature). Then, multimodal classifiers based on all
combinations of sensors are constructed: EMG+P, EMG+F, P+F
and EMG+P+F.

3.3. Classifier Performances
3.3.1. EMG, Pressure, and Force

Across all participants and all trials the highest median accuracy
is achieved with all the features, as shown in Figure 5, with a value
of 85.6 %, followed by the EMG+P classifier, with an accuracy of
84.4 %. The P classifier scored better than the EMG classifier with
a value of 73.3 % and 69.8 % respectively. The classifier based on
external force only scored the worst result with a value of 29.3
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FIGURE 4 | During the task the motion and force of the end-effector, the pressure inside the interface and the muscular activity of the biceps brachii are sampled. The

data shown are the results of one of the trials of subject 1.

FIGURE 5 | Accuracy of all the classifiers across all subjects and trials trained on different sensory input.
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%. The best classifier using only two modalities is the EMG+P
classifier which is further analyzed below.

3.3.2. EMG and Pressure

A Tukey-Kramer post-hoc test showed a statistically significant
better result with the multimodal classifier relative to the uni-
modal classifiers across all participants and trials (p≤0.0001). For
subject 1 a statistically significant better result was achieved with
the EMG classifier, relative to the P classifier (p ≤ 0.0001). For
subject 2 (p ≤ 0.0001) and subject 3 (p ≤ 0.001) the opposite
is true. For subject 4 the P classifier was not statistically better
than the EMG classifier (p ≤ 0.052). These results are reported
in Figure 6. In Figure 7, the confusion matrices of the EMG+P
classifiers are shown for the four subjects. The confusionmatrices
shown are the results from trial 6, 13, 20, and 23 which represent
closely the median accuracies reported in Figure 6.

4. DISCUSSION

The main outcome of the analysis is that pressure is a relevant
sensory input that can be combined with EMG sensors to
recognize lifting and reaching tasks. To the author’s knowledge
it is the first time this combination of sensors is proposed for
the recognition of upper body tasks while wearing an upper
body assistive device. The peak classification accuracy found
across all subjects and trials is 96.8 %. An important limitation
of this outcome is that the classifiers trained in this study are
subject specific. For a practical implementation of such devices
a non-subjective specific classifier is preferred. Trigili et al.
(2019) demonstrated the implementation of such a recognition
algorithm through EMG signals alone. As much as seven
muscle groups of the upper body were targeted to achieve good
classification performances. While it would not be practical to
integrate that many electrodes in a commercial device, perhaps a
multimodal strategy such as the one described in this manuscript
can help reduce the number of necessary electrodes.

Another limitation, are the performances reported in this
study, which are achieved through an off-line classification
process. It is known from literature that on-line classifiers
do not perform as well (Novak and Riener, 2015). For on-
line classifiers the processing time, as well as the feature
extraction windows become more critical, since dynamic tasks
require fast decision making. In that aspect a trade-off between
classification accuracy and timing is inevitable. Different lengths
of classification windows are known to affect classification
performance (Smith et al., 2010). Potentially, in the case of
on-line classification a KNN-based classifier might become
a bottleneck, since the classifier relies on the calculation of
angles between all neighbors for each new feature sample.
Consequently, the storage requirements and the computational
time proportionally increase with the size of the training set
(De Leonardis et al., 2018). A variety of other classifiers such
as linear discriminant analysis (LDA), support vector machines
(SVM), decision trees (DT), or artificial neural networks (ANN)
have been used in the literature (Novak and Riener, 2015;
Bi et al., 2019) and are not showing the same disadvantages
(De Leonardis et al., 2018).

Since the sample size was small, only subject specific classifiers
were developed. For a general classifier, a large sample size will
be required, and a different fusion algorithm might be necessary
to cope with the variability. More specifically, it is known that
the variability of EMG signals can be significant across time due
to artefacts and crosstalk (Bi et al., 2019). On the other hand,
we found that pressure measurements are generally more stable
signals across a particular pattern, which is in line with previous
research on the topic (Connan et al., 2016; Langlois et al., 2021).
This leads us to expect the pressure sensing would improve a
more general motion classification across a large sample size
as well. Interestingly, in our experiments the classifier based
solely on external force did not perform as well as expected.
Most probably, adding the shear component of force (instead
of only the normal component) would improve the results.
Also adding a derivative or integral component of force to
the features might improve the performance, albeit with the
necessary filtering.

The same observation holds true for the position information
of the end-effector. The neighbourhood component analysis
determined the position data to be redundant with regard
to the other modalities. Even though, measuring limb
position was shown to increase classification accuracy
(Fougner et al., 2011), since it resolves the position effect
(Radmand et al., 2014). Potentially, the pressure sensors carry
information about the position of the limb since the robot
is programmed to exert an assistive force by means of a
joint impedance controller. Additionally, adding a derivative
and second derivative term of the position might result in a
different outcome.

Several potential further developments could lead to improved
performance of the presented design. Firstly, a similar design
to the one presented in Jiang et al. (2020), wherein a co-
located force sensor and EMG sensor is implemented would
allow the triceps muscles to be monitored as well. While
contact might not always be ensured in an exoskeleton, the
system can be trained to recognize electrode displacements
and mitigate losses in classification accuracy (Hargrove et al.,
2008). In that regard, assessing how pressure readings can
further improve detection of electrode shift can be interesting.
Secondly, to limit complexity, a single electrode pair was
printed in the interface. In the future an array of electrodes
could be integrated which could compensate for the problem
of lower signal to noise ratio. Thirdly, the classification in
this experiment was achieved using a KNN algorithm. This
type of algorithm was chosen since it is considered a simple
and efficient method that yields competitive results compared
to state-of-the-art classification methods (Yang et al., 2012;
De Leonardis et al., 2018). Previous research has shown that
the effects of algorithm type on accuracy is generally small
for single time invariant classifiers, and the choice of specific
features seems to be more important (Novak and Riener,
2015). However, other types of classification methods such
as adaptive or parallel classifiers should be considered in the
future, since superior classification accuracy for myoelectric
control was shown, albeit at the expense of added complexity
(Novak and Riener, 2015).
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FIGURE 6 | The accuracy, sensitivity, and specificity of the EMG, P, and EMG+P classifiers. The dots indicate outliers, the stars indicate levels of significance.
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FIGURE 7 | Confusion matrices for the EMG+P classifier for each subject. The row summaries display the percentages of correctly and incorrectly classified

observations for each true class. The column summaries display the percentages of correctly and incorrectly classified observations for each predicted class. Diagonal

and off-diagonal cells correspond to correctly and incorrectly classified observations, respectively.

5. CONCLUSION

In this paper an integrated multimodal interface for upper-body
exoskeletons is presented. The analysis shows the relevance of
integrating pressure sensors and EMG sensors into interfaces
with the aim of improving classification of upper body lifting
and reaching tasks. The performed neighbourhood component
analysis revealed that the WL, EMAV, AAC, SSC and ZC
features of the EMG signal, the dP, P TOT, COP, P1-P4 features
of the pressure signals and the external force provided the
most information toward optimal classification. In the future,
researchers in the field should look into the possibility of
developing smarter interfaces, integrating different sensors to
achieve better recognition algorithms.
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