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In view of the characteristics of high mobility of FANETs nodes, combined

with the features of Topology-based class routing protocol on-demand search, a

Genetic-algorithm-based routing (GAR) protocol is proposed for FANETs which based

on improved genetic algorithm for FANETs route search, and it taking into account the

link stability, link bandwidth, node energy, and other factors. GAR improves the selection,

crossover, and variation operators of the genetic algorithm so that GAR can finally plan an

optimized route from the communication initiating node to the destination node quickly

using a smaller cost. The experimental results show that GAR can largely improve the

throughput, reduce the delay and improve the stability of the network, which is more

suitable for FANETs.
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INTRODUCTION

Flying Ad Hoc Network (FANET), as a new type of mobile ad hoc network (Chriki et al.,
2019; Shakhatreh et al., 2019; Khan et al., 2020; Nawaz et al., 2020), uses aircraft as a converter
for transmitting, receiving or forwarding wireless communication in the air. It can be replaced
at any time without the assistance of any fixed facilities. At any time, set up a network at
any place to achieve high-efficiency communication at the network layer of the multi-aircraft
system. With the advancement of embedded systems and the miniaturization of electromechanical
systems, micro-UAVs can monitor in the air, detect biological agents, identify targets, and relay
communications due to their low cost, strong scalability, easy concealment, and difficulty in
tracking. It has a wide range of application scenarios (Chriki et al., 2019; Mozaffari et al., 2019; Wei
and Yang, 2020a), and the flying ad hoc network with micro-UAV as the radar has attracted a lot of
attention from the academic, industrial, andmilitary circles. Compared with the traditional wireless
network index, the flight ad hoc network mainly completes the communication process through
data transmission between each other. Routing protocols are the key technology to enhance
network performance and to ensure proper network communication.

A FANET can be expressed as an undirected graph G= (V, E), V represents the set composed of
all nodes vi, and E represents the set composed of all links ei. The potential of V remains unchanged,
but the potential of E changes with the establishment and deletion of links, and the optimal route
is to find a suitable set {v1, v2,. . . , vn} under certain conditions, so that the corresponding the set
{e1, e2, . . . , en} is the one that with the least cost and the highest stability. For FANETs with n
nodes, there are n! total permutations of n nodes. In a wireless network such as FANETs, the route
direction is usually not limited, so it is a harmonious combination. Under the conditions, the total
number of routes will reach n!/2n. If the exhaustive search method is used, all the cases are taken
into account, and all routes need to be found, and then they are compared separately to find the
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optimal route, thus finding the best route. The optimal route is
too weighty for battery-powered FANETs to be realized at all.
Therefore, the usual approach is to determine a usable route, not
an optimized route.

In FANETs, when an intermediate node has an obligation to
communicate, all neighbor nodes of the intermediate node can be
regarded as the next hop routing node of the route. For FANETs,
finding a stable, good-performance optimized route becomes an
NP-hard (Yang and Liu, 2019; Wei and Yang, 2020a,b). As a
kind of artificial intelligence algorithm, genetic algorithm, its
powerful global search ability, especially its search ability to
complex optimization problems, makes genetic algorithm (GA)
widely used in the research of path planning, task allocation and
other problems. The routing planning problem in FANETs can
be regarded as a single-objective planning problem, so it is a
feasible option to introduce heuristic algorithms such as genetic
algorithm into FANETs routing planning.

RELATED WORKS

FANETs Routing Protocol
According to published literature, in order to cope with various
complex scenarios in FANETs, researchers have designed various
routing protocols, among which one of the more common ones is
the topology-based routing protocol. Among the topology-based
routing protocols, they are mainly divided into static routing,
proactive routing, reactive routing, and hybrid routing.

Static routing is derived from traditional wired networks and
is only applicable when the network topology does not change,
but not for MANETs and FANETs where the network topology
changes frequently. In network planning, routing tables need to
be pre-designed and stored in each network node. At the same
time, the routing table of static route cannot be updated as the
network changes, so it can only be used with the communication
at the terrestrial base station, and when the communication
link fails, it will interfere with the communication of the
whole network.

Proactive routing uses broadcast routing tables to maintain
the routing tables of nodes, and all nodes in the network
contain up-to-date routing information to other destination
nodes. The advantage is that routes to the destination nodes are
found immediately when the nodes need data transmission. The
drawback is that all nodes need to maintain real-time structural
information about the network topology, and when the network
topology changes, a large amount of routing update information
will flood the network, which will be a great drain on FANETs
with limited node energy and bandwidth resources. Some of the
more famous ones are OLSR (Jacquet et al., 2003), TDBRF (Ogier
et al., 2004), DSDV (He, 2002) etc.

Reactive routing is also an “on-demand” routing, i.e., the route
searching process is initiated when a node needs to communicate
and there is no route to the destination node in the routing
table. Typically, it includes route searching, route maintenance,
and error handling. The advantage is that nodes do not need
to maintain network-wide routing information and only need to
initiate route maintenance or error handling when the topology
changes, which can save a lot of bandwidth and node energy.

The disadvantage is that the exchange of information during
route finding brings high latency. Therefore, improving the
convergence speed of the route finding algorithm of reactive
routing and applying it to FANETs will achieve better results. The
more famous algorithms in reactive routing are AODV (Perkins
et al., 2003; Yang et al., 2017), DSR (Johnson et al., 2001; Yang
et al., 2019), etc.

Hybrid routing protocols are a compromise that combines
the advantages of proactive and reactive routing, with some
nodes using proactive routing protocols and some nodes using
reactive routing protocols. The efficiency of hybrid protocols
depends on the number of other activated nodes, but the response
to traffic demand depends on the number of traffic. Typical
representatives are the Zone Routing Protocol (ZRP) algorithm
(Haas and Pearlman, 2001), the Distributed Dynamic Routing
(DDR) algorithm (Nikaein et al., 2000), and the algorithms that
improve on them.

Genetic Algorithm
Genetic algorithms, also known as evolutionary algorithms
or genetic evolutionary algorithms (Holland, 1992; Weile and
Michielssen, 1997; Lambora et al., 2019; Song et al., 2019),
were first proposed by Professor Holland in the United States
as a parallel and stochastic optimization search method that
simulates the genetic laws and evolutionary mechanisms of
a population of organisms, which can lead to the gradual
evolution of the population to become better and better,
and then obtain the optimal solution. The central theory of
biological evolution is “survival of the fittest,” and genetic
algorithms deepen it by emulating the unique nature of biological
evolution to solve optimization problems. Genetic algorithms
are probabilistic algorithms that search for the global optimal
solution, abstracting the optimization problem into a parametric
coding form, designing the fitness function with reference to the
actual problem, calculating the fitness value of each individual
in the population, and obtaining the next generation population
through selection, crossover and mutation operations. In the
process of genetic evolution, the individuals in the population
will be retained with different probabilities according to their
fitness values, and those with high fitness will be more likely
to enter the offspring population, while those with low fitness
may be eliminated, and the new population will have more
advantages than the previous generation. The optimal solution to
the optimization problem is output (Abualigah and Diabat, 2020;
Selvaraj and Choi, 2020). The main process is shown in Figure 1.

OPTIMIZATION METHOD

Objective Function
In FANETs, for an available route, the stability of the link, the
bandwidth of the link, and the energy of the node are constrained
to be considered comprehensively, and after optimization should
have good stability, balanced bandwidth, and balanced energy
of the node, etc., and can be summarized as the expression of
the integrated cost function of routing between two nodes as in
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FIGURE 1 | Main process of genetic algorithm.

Equation (1).

Rij = ω1LSij + ω2

(

Pi + Pj
)

+ ω3Bij (1)

where, ω is the weight adjustment parameter and has ω1 + ω2 +

ω3 = 1. LSij is the link stability between node i and node j. Its
calculation is referred to paper (Wei and Yang, 2020b) and the
function expression is given in Equation (2). Pi is the residual
power of the node i. Bij is the link bandwidth between node i and
node j.

LSij =
−

(

ab+ cd
)

+

√

(

a2 + c2
)

· r2 −
(

ad − bc
)2

a2 + b2
(2)

The optimized route should have good stability, bandwidth
balance, and node energy balance, so the objective function can
be defined as:

Rl =
∑

i
j

i6=j

(ω1LSij + ω2

(

Pi + Pj
)

+ ω3Bij) (3)

GA Coding Method
The encoding method directly affects the operation of genetic
operators such as crossover operator and variation operator of
genetic algorithm, so it largely determines the efficiency of genetic
evolution. The common encoding methods are binary encoding,

FIGURE 2 | Network schematic with five intermediate nodes.

decimal encoding, etc. However, in FANETs, the number of
intermediate nodes of the route to be optimized is not necessarily
the same, so the encoding method needs to be improved to the
traditional encodingmethod. A variable-length encodingmethod
based on node IDs is designed here. i.e., node IDs represent
genes in chromosomes, a chromosome is a route, the length
of the chromosome is the same as the number of nodes in
the route, and the length of the chromosome is how many
nodes are in the route. Because the length of every route is
not same, the length of the chromosome is also not consistent.
The first generation chromosome represented by a FANET
network containing 5 intermediate nodes as shown in Figure 2

can be represented as: {S,1,2,3,D}, {S,1,2,3,4,D} {S,1,2,3,4,5,D},
{S,1,2,4,D}, {S,1,3,D}, {S,1,3,5,D}, {S,1,3,4,D}, {S,1,3,D}, {S,1,4,D},
{S,1,4,5,D}, {S,1,4,2,3,D}. . .

Design of Fitness Function
Genetic algorithms use the fitness value of each individual in
a population to perform a search. The selection of the fitness
function directly affects the convergence speed of the algorithm
and whether the optimal solution can be found. Taking the
highest network link stability, the maximum link bandwidth,
and the most residual power of the nodes as the optimization
parameters, and therefore the maximization problem, the fitness
function is transformed from the objective function, and the
objective function is converted into the fitness function, which
can be obtained by Equation (4).

Fit
(

f
)

= Max(R
l
) = Max

∑

i
j

i6=j

(ω1LSij + ω2

(

Pi + Pj
)

+ ω3Bij) (4)

Select Operation
In order to avoid premature maturation of the algorithm
and to ensure that better individuals can directly enter the
next-generation population, a hybrid retransition-free selection
operator is proposed here, which is a combination of two
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selection methods in a certain ratio of birth, followed by steady-
state reproduction without retransition on this basis. The first
way is tournament selection, and the proportion is α. The
second way is roulette selection, and the probability of an
individual being selected is proportional to its fitness value, and
the proportion is 1 − α. After selection is completed, the first
judgment is whether the individual is duplicated with the existing
individuals in the population, and if it is, it is discarded.

Crossover Operations
Crossover is the process of recombination and replacement
of parts of the structure of two parent individuals to create
a new individual. The recombination process can be between
the chromosomes of the parent individuals or between the
chromosomes for recombination of gene fragments. Because the
chromosome genes in this paper are encoded with variable length
codes, the traditional genetic algorithm of single point crossover
is not applicable here. In network routing, crossover is used
to select different paths between nodes, so crossover of gene
fragments between chromosomes is adopted here. The crossover
steps for the setup are as follows.

Select any two routes among all the routes to be selected and
check all nodes in both routes. If there are nodes in both routes
that pass through in common, then there is a common gene in
both routes and the next crossover operation can be performed.
If there is no common passing node in the two routes, then the
two routes cannot perform the next crossover operation. If there
are more than one common passing node in the two routes, the
crossover operation starts from the first common passing node
and ends at the last common passing node. If there is only one
common passing node in the two routes, the common node is
selected as the destination node.

Suppose for two chromosomes in generation t: Ri(t) =

{S,1,3,D}, Rj(t) = {S,1,2,3,4,D}, nodes 1 and node 3 are the
nodes that pass in common in the path and After the crossover
operation, the next generation chromosome is: Ri(t + 1) =

{S,1,2,3,D}, Rj(t+ 1)= {S,1,2,4,D}.

Mutation Operation
To address the problem of premature maturation caused by
random variation in traditional genetic algorithms, a heuristic
multiple variation operator is proposed here to explore the
unknown region and suppress premature maturation, i.e., to seek
the individual with the lowest value in its middle generation into
the next generation by multiple heuristic variation. The mutation
process is as follows.

Step 1: When mutation occurs, first check whether its
intermediate nodes i and I + 2 are not in the routing range
of the nodes.
Step 2: If yes, mutate the nodes that are not in the route range,
and then return to step 1 until the route is a viable route.
Step 3: If not, randomly mutate its middle and record Mi

into R.
Step 4: If R is not empty, select a random point from R to
delete; otherwise, select a random point in the path to delete.

TABLE 1 | GAR pseudocode.

BEGIN:

I = 0; //Evolutionary population generation

Init P(I); //Initializing the population

Fitness P(I); //Fitness function

While (i<=Genetic Generations)

{

I++;

Operation P(I); // Cross and mutation

Fitness P(I);

} // If the termination condition is not met, the search continues

END.

Step 5: Return to step 1 for multiple mutations (the number
of mutations is generally taken as 3 or 4), and finally seek the
individual with the lowest value in its middle generation to
enter the next generation.

Assume that for generation t chromosome is R(t) = {S,1,2,3,D}
and if node (2,3) is the mutation node, then the chromosome
mutation in generation t+ 1 is R(t+ 1)= {S,2,3,D}.

GENETIC-ALGORITHM-BASED ROUTING

GAR Route Searching
To initialize the route lookup process, the originating node S
sends a ROUTE REQUEST (RREQ) as a single local broadcast
packet, which is received by all nodes currently within the
transmission coverage of node S. Each RREQ identifies the
originating and destination nodes of the route lookup. Each
RREQ identifies the originating node and the destination node
for this route lookup. When another node receives this RREQ,
it initiates the exchange of information on link stability, link
bandwidth, and current energy of the node between neighboring
nodes. At the same time, if this node is the destination node
of this route lookup, then this node sends a ROUTE REPLY
(RREP) back to the originating node of this route lookup, and
after receiving the RREP, the originating node starts the GAR
optimized route lookup procedure. If the node receiving the
RREQ is not the destination node, then the node forwards the
RREQ according to the local broadcast packet method and starts
the neighbor node information exchange procedure.

The GAR route search steps are as follows:

Step 1: Initialize the chromosome based on the network
node ID;
Step 2: Enter the next generation according to the individual
adaptation value;
Step 3: Crossover operation according to the set
crossover probability;
Step 4: Perform mutation operation according to the set
mutation value;
Step 5: If the end condition of the algorithm is met, go to step
6, otherwise, go to step 2;
Step 6: Output the optimal chromosome as the satisfactory
solution of the problem.

The pseudo code of genetic algorithm is shown in Table 1.
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Route Maintenance
GAR still uses Acknowledgment to determine that a link
is capable of data transmission. After a node receives an
acknowledgment from an adjacent node, it can request that this
adjacent node refrain from making an acknowledgment for a
brief period of time, unless the network interface connecting a
node to this adjacent node always receives an acknowledgment
in response to a single destination stream. If the number of
retransmissions of an acknowledgment request has reached the
maximum allowed number of retransmissions and still no answer
is received, the sending node considers that the link from which
it reaches the next-hop destination node is currently broken and
then removes this broken link from its routing memory, while
sending back a ROUTE ERROR (RERR) to each such node. To
reduce the burden on the node, instead of starting a GAR when
looking for a route at the point of disruption, it will just find an
available route for route repair.

SIMULATION AND DISCUSS

Performance Parameters
To evaluate the performance of GAR, we perform comparative
simulation to validate the three types of routing, GAR,
AODV, and DSR, and focus on the following three important
performance metrics for comparative evaluation (Quy et al.,
2019).

(1) Control overhead: Control overhead is the ratio of routing
messages (protocol packets) to the total communication data
(protocol packets and data packets) in the network, i.e., the
ratio of protocol packets sent and forwarded by all nodes to
their data packets. This metric reflects the impact of routing
protocols on network communication.

(2) Throughput: Throughput is the rate or number of packets of
data transmitted throughout the network per unit of time. It
is primarily the remaining bandwidth available to a network
application between two nodes in the network at a given
moment. That is, the maximum rate that a node can accept
in the absence of frame loss.

(3) Average delay: Delay is the time it takes for a message or
packet to travel from one end of a network to the other. It
includes sending delay, propagation delay, processing delay,
and queuing delay. For FANETs, propagation delay is the
main concern.

Simulation Parameters
The performance of GAR, AODV, DSR is compared and analyzed
using NS3 simulation simulator. NS3 is an open source network
simulator running on Linux that makes it easy to build networks
that conform to the characteristics of FANETs (NS3 Network
Simulator, 2011). The simulation is set up according to the
hierarchical model as follows, all simulation parameters are
shown inTable 2. In the simulation scenario built with Linux and
NS3, each simulation time is 1200 s. Simulation scenario settings:
nodes in the simulator are distributed according to a grid with
100 m sides; the communication radius of nodes is set to 500 m,
the size of nodes is fixed to 10 × 10, i.e., the area where nodes

TABLE 2 | Simulation parameters.

Parameters Value

Simulator Linux + NS3

Simulation times 1200 s

Nodes 10 × 10

Simulation area 2500 × 2500 m

Max of CBR Connections 20

MAC layer 802.11g FreeSpace model

Channel type Wireless channel

Channel bandwidth 11 Mbps

Transmission speed 2 Mbps

Transmission range 500 m

Network layer GAR, AODV, DSR

Transfer Models WaveLan

Mobility model Random waypoint mobility

FIGURE 3 | Comparison of control overhead as node speed increases.

move is limited to a rectangle of 2500 × 2500m, and nodes are
connected with a maximum of 20 The number of connections
randomly generates data transmission requirements. The nodes
use the random waypoint mobility model (Maan and Mazhar,
2011; Kumari et al., 2015; Bujari et al., 2017), which chooses
a random direction for each node, moves at a set speed for a
period of time and then randomly chooses another direction to
continue moving, directly to the end of the simulation. The same
random number seed is set to ensure that the nodes run the same
trajectory in each simulation.

Simulation Results
Figure 3 shows the comparison of control overhead of GAR,
AODV, and DSR. The control overhead of GAR is even higher
than that of AODV and DSR in the case of low node movement
speed, because when the node movement speed is low, the
probability of routing disruption in the network is smaller, while
GAR requires more message passing between nodes during the
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FIGURE 4 | Comparison of throughput as node speed increases.

FIGURE 5 | Comparison of average delay as node speed increases.

initial route finding, which results in more control messages in
the network. However, as the node movement speed increases,
AODV and DSR have a higher probability of communication
link breakage than GAR because the stability of the link
between nodes is not considered. In AODV and DSR, when the
communication route breaks, the source node usually needs to
restart the route finding in order to re-form a communication
route, which causes more control overhead in the network.

Figure 4 shows the data throughput comparison of GAR,
AODV, and DSR. GAR shows better data throughput compared
to AODV and DSR because GAR takes into account the stability
of the route, energy of the node, etc., the route quality is higher,
the movement of the node has less impact on the route, and
therefore the route update control message occupies less of the
channel. Whereas, in AODV and DSR, routes are selected based
on minimum delay during route establishment. The route is not

a stable route even though it is the best route at a certain point
in time. In contrast, the interrelationship between the nodes on
the route selected by GAR is more stable and its energy structure
is more balanced. This routing method improves the lifetime of
the selected route and avoids the bottleneck problem and packet
collision problem at the intermediate nodes of the route, which
ultimately improves the network data throughput.

Figure 5 shows the average delay comparison for GAR,
AODV, and DSR. As the node movement speed increases, the
latency of the three routes increases, with AODV and DSR
showing a more pronounced performance than GAR. The reason
for this is that there are fewer packet collisions in the intermediate
nodes of the network using GAR, and thus the packet delay
is reduced. In AODV and DSR, after the intermediate node
is disconnected, the packet must wait until a new route is
established before it can be delivered, which naturally increases
the packet transmission delay.

CONCLUSION

Improving the lifetime and performance of the network from
the perspective of improving routing has been the focus of
research on FANETs. The stability of FANETs routing, the
bandwidth of the link, and the energy of the nodes are fully
considered therefore, the search of the route is performed
using genetic algorithm on this basis to form GAR, and the
simulation results show that GAR can effectively improve the
stability of the route, which in turn improves the performance
of the network and improves the lifetime and availability of
the network. It is worth noting that we did not consider the
energy consumption from the computation of the algorithm
in a realistic environment, which will be the focus of our
next research.
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