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Nowadays, deep representations have been attracting much attention owing to the

great performance in various tasks. However, the interpretability of deep representations

poses a vast challenge on real-world applications. To alleviate the challenge, a deep

matrix factorization method with non-negative constraints is proposed to learn deep

part-based representations of interpretability for big data in this paper. Specifically, a deep

architecture with a supervisor network suppressing noise in data and a student network

learning deep representations of interpretability is designed, which is an end-to-end

framework for pattern mining. Furthermore, to train the deep matrix factorization

architecture, an interpretability loss is defined, including a symmetric loss, an apposition

loss, and a non-negative constraint loss, which can ensure the knowledge transfer

from the supervisor network to the student network, enhancing the robustness of

deep representations. Finally, extensive experimental results on two benchmark datasets

demonstrate the superiority of the deep matrix factorization method.

Keywords: non-negative matrix factorization, deep representation learning, denoising autoencoder,

interpretability, supervisor network

1. INTRODUCTION

Nowadays, deep representations have been attracting increasing attention in various domains,
such as image segmentation, pattern mining, and fault detection, in which hidden patterns of
data can be well-captured with the help of edge-cutting deep architectures (Sengupta et al., 2020;
Luo P. et al., 2021). However, the interpretability of deep representations is still a vast challenge
that greatly limits real-world applications. For instance, if parts of the deep representation of
a face image can be explained as eyes and ears, it will be easy to manipulate face images by
replacing corresponding parts. For another instance, peoplemay agree with the applications of deep
representations, irrelevant to themselves, but they shall require to know how deep neural networks
make decisions on relevant areas, such as medical treatment and autonomous driving. To solve the
challenge of interpretability, many researchers tried to excavate meanings of deep representations,
but could only achieved some shallow explanations that deep representations contain spatial and
temporal relation information of data.

Non-negative matrix factorization (NMF), as an explicable model, factorizes the original data
matrix by the product of a base matrix and a weight matrix (Lee and Seung, 1999; Févotte and Idier,
2011). To be specific, given the original datamatrixX composed of data vectors xi in data space,X is
equal to the product of the identity matrix I andX. More generally,X is equal to the product PP−1X

consisting of an invertible matrix P, the inverse matrix P−1 and X, since the invertible matrix P is a
set of base vectors of the original data space. Suppose data vectors are approximatively distributed in

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.701194
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.701194&domain=pdf&date_stamp=2021-07-20
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zkchen@dlut.edu.cn
https://doi.org/10.3389/fnbot.2021.701194
https://www.frontiersin.org/articles/10.3389/fnbot.2021.701194/full


Chen et al. Deep Non-negative Matrix Factorization Model

a subspace of the original data space, the base vectors which are
not in that subspace are useless for representation, and they can
be ignored to save the storage space and computation resources,
which benefits many fields such as fog computing (Laghari et al.,
2021), image transmission with little loss of QoE/QoS (Laghari
et al., 2018; Karim et al., 2021), and detecting and controlling
street crimes by drones (Karim et al., 2017). It is the basic
idea behind matrix factorization methods to only use fewer
base vectors and weight factors for approximatively representing
the same information. As a representative matrix factorization
algorithm, NMF requires that the original data matrix, base
matrix, and weight matrix follow the non-negative constraint,
that is, all elements of the three matrices should not be the
negative value. Thus, the elements of those matrices can be used
to denote physical quantities in the nature whose values are non-
negative, such as length, weight, and speed. In other words, the
non-negative constraint ensures the interpretability of NMF such
that data in the original data matrix can be explained as the
weighted sum of low-dimensional base vectors in the basematrix,
and the weights are represented by the weight matrix.

To explore the interpretability of deep representations, a
lot of researches combine NMF with deep neural networks. A
typical method is to directly combine NMF and the autoencoder
of the encoder-decoder architecture. Specifically, the encoder
transforms input data into a low-dimensional feature space,
while the decoder maps data features back to the original data
space by reconstructing the input data. The autoencoder is good
at learning deep representations of data. After obtaining deep
representations, NMF is conducted on the deep representations.
This method can achieve good performance, since it uses the
autoencoder to extract deep representations of data and obtains
the interpretability by the weighted sum of physical quantities
with the non-negative constraint, resulting in the final explicable
deep representations.

However, the existing methods depend on the two-stage
manner to combine NMF and the autoencoder. In those
methods, autoencoder is only used as the feature extractor to
model deep low-dimensional representations of data, and NMF
only works on the extracted deep representations. Those two
parts work separately and do not mutually guide the learning of
each other, which limits the performance of the existing methods.
Furthermore, those above methods do not fully consider the
noise hidden in the input data which obstructs the robustness of
deep representations in real world applications.

To solve those challenges, in this paper, we propose a
deep matrix factorization model with non-negative constraints
(DDNMF) for learning deep robust interpretable representations
of data. In details, a deep knowledge distillation architecture is
devised with a supervisor network and a student network, which
can address the weakness of noise and the two-stage combination
of NMF and the autoencoder. Besides, an interpretability loss is
introduced to train parameters of the deep matrix factorization
model, which is composed of a symmetric loss that guides
the supervisor network, an apposition loss that teaches the
student network, and a non-negative constraint loss that learns
the interpretable knowledge. The representations learned by
proposed model can be used for various downstream tasks such

as clustering and classification. Experimental results on standard
datasets can demonstrate the effectiveness of the proposedmodel.

The rest of this paper is organized as follows: section 2
introduces preliminaries and related works about non-negative
matrix factorization and deep neural networks. Section 3
proposes the deep denoising non-negative matrix factorization.
The experimental evaluation on standard datasets is shown in
section 4. And section 5 concludes the proposed method and
declares the direction of future work.

2. PRELIMINARIES AND RELATED WORKS

NMF is a well-known matrix factorization method (Jia et al.,
2021; Luo X. et al., 2021). It represents the original data matrix
X using the product of a base matrix H and a weight matrix
W: X ≈ WH, where X ∈ Rm×n, W ∈ Rm×r , and H ∈ Rr×n.
The row and column of original data matrix X stand for the
dimension and number of data samples, respectively. Through
NMF, the dimension of data m is changed as r, the dimension of
the feature. There usually exists r < m and r× (m+ n) < m× n,
so the result of NMF reduces the feature dimension and saves
the storage space and computation resource. At the same time,
all elements of these three matrices should be no less than zero:
X ≥ 0,W ≥ 0,H ≥ 0. Through choosing special learning rates
of the gradient descent method, Lee and Seung (1999) derived
the multiplicative update formulas of NMF which optimize the
base matrix H and the weight matrix W with keeping their non-
negative properties by the multiplication and division operations
between non-negative elements.

However, NMF is a simple linear factorization method such
that it cannot capture the non-linear relation hidden in data.
In the past decade years, much attention was paid to enhance
NMF for fitting non-linear complex data or representations.
For example, Zhang et al. (2006) proposed a kernel-based
NMF algorithm in which NMF was conducted on compact
representations transferred by kernels. Buciu et al. (2008)
introduced a polynomial NMF with the help of the non-linear
polynomial kernel mapping contributing to the correlation of
the high-order of basis image features. The kernel-based NMF
can improve representations produced by NMF with the kernel
mapping (Duong et al., 2014). Those methods fit the non-linear
relation between data by kernels.

Nowadays, deep learning has achieved great progress on
extracting deep representations for various downstream tasks.
For example, Vaswani et al. (2017) deployed the attention
mechanism in the proposed model named Transformer without
the operations of convolutions and recurrences, and led a
trend of applying Transformer in different fields of machine
learning, such as, computer vision, natural language processing.
Guo et al. (2020) proposed DeepANF for the prediction of
chromatin accessibility by attention mechanism, gated recurrent
units and convolutions, learning the deep representations of
DNA sequences.

To further enhance NMF, some deep learning models are
embedded in NMF. For instance, Ye et al. (2018) proposed
a deep autoencoder-like non-negative matrix factorization by
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FIGURE 1 | The architecture of DDNMF.

combining an encoder of matrix factorization and a decoder
of the symmetric architecture. Bhattamishra (2018) designed
a deep probabilistic NMF on the basis of autoencoders, in
which a probabilistic NMF is built on deep representations
of a deep autoencoder with an alternate manner of learning.
Bando et al. (2018) proposed a deep variational NMF by
interpreting the spectrogram of input data as the sum of a
speech spectrogram and a non-negative noisy spectrogram,
which is modeled as the variational prior distribution. Ren
et al. (2019) introduced an end-to-end deep NMF architecture
with non-negative constraints and a factorization loss conducted
on middle layers. Those deep NMFs can further learn
non-linear correlations hidden in data. However, in those
deep NMFs, deep learning and NMF work in the separate
manner. Furthermore, those deep NMFs cannot well take noise
into consideration.

3. METHODOLOGY

3.1. The Deep Matrix Factorization Model
As shown in Figure 1, DDNMF contains two parts: a supervisor
network and a student network. Each of the two networks
includes an encoder and a decoder. The difference between the
supervisor network and the student network is that a NMF
module is inserted between the encoder and the decoder of the
student network.

As mentioned above, deep neural network is good at
extracting deep representations in an unsupervised manner by
reconstructing inputs. The supervisor network in DDNMFworks
for the same goal as standard deep neural networks. Thus, the

output of each layer is computed as follows:

h
(l)
i = f (l)(W(l)h

(l−1)
i + b(l)), l = 1, . . . , L (1)

where h
(l)
i is the output feature of the l-th layer corresponding

to i-th input data xi. Specially, when the layer is the input layer,

xi = h
(0)
i . f (l), W(l), and b(l) are the activation function, weight

matrix, and bias vector of the l-th layer, respectively. L is the total
number of layers in the supervisor network. It must be an even
number due to the symmetry architecture of an encoder and a
decoder with the same structure. The size of the input feature in
the l-th layer equals to the size of the output feature in the L−l+1-
th layer. And the sizes of the weightmatrix and the bias vector in a
layer are decided by the input and output sizes of the layer. Thus,
there is a transposition relationship between the weight matrices
of symmetric layers.

Like the supervisor network, the encoder and decoder in
student network extract the deep representations of input data.
The input data are added with noise to mimic the real world data
as follows:

x̃i = xi + εi, εi ∼ P (ε) (2)

where εi is the noise vector sampled from the probability
distribution P (ε). This imitation gives the student network a
chance of learning how to remove noise mixed in data. Thus,
the supervisor network receives the input data and outputs the
same data, while the student network receives the noisy data and
outputs the noise-free data.

In normal encoder-decoder structure, the output of encoder
means the input of decoder. But between the encoder and
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decoder of the student network, there is a NMF module for
bringing the interpretability to DDNMF. The NMF module
receives and factorizes the encoded representation, then recovers
the representation by matrix multiplication for decoding in next
step. Like vanilla NMF, it follows the non-negative constraint and
matrix factorization pattern. However, different from previous
work which combined NMF with deep neural network by two
stages, DDNMF does not take them apart for two-stage training,
but always fix the NMF module between the encoder and
decoder as an inseparable part of the student network. And for
fitting non-linear relation hidden in the latent feature, non-linear
sigmoid activation function is introduced in the NMF module.
The non-negative constraint and non-linear fitting ability are
implemented as:

Hi = σ (W′Xi)

X̂i = ReLU(WHi)
(3)

where Xi represents the input matrix consisting of the output
of encoder. X̂i represents the recovered matrix composed of the
input of decoder. W′ has the same size as the transpose matrix
of W to transform Xi into the space of Hi. The non-negative
constraint is imposed on the recovered matrix X̂i by Rectified
Linear Unit (ReLU) activation function ReLU(·) [ReLU(x) =

max(x, 0)] and base matrix Hi is ruled with non-linear sigmoid
transformation function σ (·) which maps all input to the value
between zero and one, which is also non-negative.

As shown in Figure 1, the original input data are input to
two networks. In the supervisor network, data are transformed
into hidden feature space, and features are recovered to data
space. In the student network, data are added by random noise
first, then processed by feature extracting and NMF, and finally
reconstructed as the outputs. In this architecture, the NMF
module brings the interpretability, and two networks extract deep
hidden information. Among them, the student network focuses
on learning feature without disturbance, and the supervisor
network helps it keep the insight for the latent information and
structure. The next subsection will explain how the proposed
model unites and inspires above modules by the optimization of
interpretability loss function Lin.

3.2. Optimization
The interpretability loss function Lin includes three sub-terms:
symmetric loss Lsym, apposition loss Lap, and non-negative
constraint loss Lnc, as shown in Figure 1.

The symmetric loss Lsym is used for guiding the supervisor
network to reconstruct original input data. Let the supervisor
network consist of the symmetric encoder and decoder, the
symmetric loss Lsym is computed as follows:

Lsym =

N
∑

i=1

∥

∥xi − yi
∥

∥

2

2
(4)

where N is the number of data and ‖·‖2 represents the Euclidean
norm. xi represents the i-th original data, and yi represents the
i-th reconstructed data. With the minimization of the symmetric
loss Lsym, the reconstructed data are changed to be the same as
the original data.

With the help of the symmetric loss Lsym, the supervisor
network can learn from reconstructed data, while with the help
of the apposition loss Lap, the student network can learn from
appositive features. There are L+2 layers in the student network.
So the apposition loss Lap has the form as follows:

Lap =

N
∑

i = 1

(

L/2
∑

l = 1

∥

∥

∥
h
(l)
i − h̃

(l)
i

∥

∥

∥

2

2
+

L
∑

l = L/2+1

∥

∥

∥
h
(l)
i − h̃

(l+2)
i

∥

∥

∥

2

2
) (5)

where x̃
(l)
i represents the output feature of the l-th layer of the

student network corresponding to i-th input data xi. xi = x̃
(0)
i .

By this way, the supervisor network plays a role of supervisor
that imparts knowledge of latent information and structure
in data to the student network. Thus, the student network
learns the patterns of noise, which is not at the expense of
inherent knowledge.

The output of encoder is usually not the same as the input
of decoder in the student network. The difference of them is
included in the non-negative constraint loss Lnc with the formula
as follows:

Lnc =
N
∑

i=1

∥

∥

∥
Xi − X̂i

∥

∥

∥

2

F
=

N
∑

i=1

∥

∥Xi − ReLU(WHi)
∥

∥

2

F

=
N
∑

i=1

∥

∥Xi − ReLU(Wσ (W′Xi))
∥

∥

2

F

(6)

Thus, the interpretability loss function Lin is the weighted sum of
three subterms in three part of the proposed model:

Lin = αLsym + βLap + γ Lnc (7)

where α, β , and γ are the hyperparameters adjusting the
influence of the symmetric loss Lsym, the apposition loss Lap and
the non-negative constraint loss Lnc.

By applying the chain rule, the back propagation algorithm
computes the update for each model parameter θ . Then the
gradient descent algorithm is conducted to decide the new values
of each parameter θ as follows:

θ = θ − ρ∇θLin (8)

where ρ is the learning rate of gradient descent algorithm. The
bigger ρ is, the farther parameter goes to the direction of negative
gradient of the interpretability loss Lin.

For the optimization of parameters in the supervisor network,
only the symmetric loss Lsym is considered. That is decided by the
supervisor role of supervisor network. Thus, for the parameter
θ (l) of the l-th layer, the corresponding gradient is computed as:

∇θ (l)Lin = α∇θ (l)Lsym = α∇θ (l)h
(l)∇h(l)Lsym (9)

∇θ (l)h
(l) =

{

(h(l−1))
T
◦ f ′(W(l)h(l−1) + b(l)), θ (l) = W(l)

f ′(W(l)h(l−1) + b(l)), θ (l) = b(l)

(10)
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TABLE 1 | The experimental results on MNIST.

Comparative methods ACC NMI ARI

K-means 0.55480 0.51894 0.38776

GMM 0.56040 0.53567 0.40968

NMF+K-means 0.51560 0.42729 0.30529

NMF+GMM 0.55180 0.43959 0.32773

AE2+K-means 0.58850 0.52520 0.40667

AE2+GMM 0.63030 0.55528 0.44391

AE2+NMF+K-means 0.53250 0.49350 0.37485

AE2+NMF+GMM 0.57320 0.49281 0.38625

DDNMF+K-means 0.81150 0.70153 0.64887

DDNMF+GMM 0.74840 0.65667 0.57424

The best two values are in bold.

TABLE 2 | The experimental results on FashionMNIST.

Comparative methods ACC NMI ARI

K-means 0.48730 0.51603 0.35172

GMM 0.52260 0.51377 0.35381

NMF+K-means 0.52990 0.53305 0.36654

NMF+GMM 0.54220 0.50626 0.33398

AE2+K-means 0.53860 0.53587 0.38220

AE2+GMM 0.58540 0.49864 0.36436

AE2+NMF+K-means 0.55380 0.55150 0.38742

AE2+NMF+GMM 0.56370 0.52247 0.36366

DDNMF+K-means 0.63120 0.59671 0.46759

DDNMF+GMM 0.65470 0.60651 0.47403

The best two values are in bold.

∇h(l)Lsym =







∇h(l)h
(l+1)∇h(l+1)Lsym, l < L

2
N
∑

i=1
(yi − xi), l = L

(11)

∇h(l)h
(l+1) = (W(l+1))T f ′(W(l+1)h(l) + b(l+1)) (12)

where h(l) is the output feature of the l-th layer.
f ′[W(l)h(l−1) + b(l)] represents a diagonal matrix whose
diagonal elements are the derivative values of the activation
function in the l-th layer. T means the matrix transposition and
◦ means the operator of output product. When θ (l) represents
the bias vector b(l), the gradient ∇θ (l)h

(l) is a matrix whose size

is corresponding to the size of h(l) and b(l), which is equal to
f ′[W(l)h(l−1) + b(l)]. When θ (l) represents the weight matrix
W(l), ∇θ (l)h

(l) is a three-order tensor whose size is corresponding

to the size of h(l) and W(l), which is represented by the output
product of h(l−1) and f ′[W(l)h(l−1) + b(l)].

For the optimization of parameters in the student network, the
apposition loss Lap and the non-negative constraint loss Lnc are

used. The gradient corresponding to the parameter θ (l) of the l-th
layer is computed as:

∇θ (l)Lin = ∇θ (l) h̃
(l)∇h̃(l) (βLap + γ Lnc) (13)

∇θ (l) h̃
(l) =

{

(h̃(l−1))
T
◦ f ′(W(l)x̃(l−1) + b(l)), θ (l) = W(l)

f ′(W(l)h̃(l−1) + b(l)), θ (l) = b(l)
(14)

∇h̃(l) (βLap + γ Lnc) = Grad(h̃(l))

+







∇h̃(l) h̃
(l+1)∇h̃(l+1) (βLap + γ Lnc), l < L+ 2

2β
N
∑

i = 1
(ỹi − yi), l = L+ 2

(15)

∇h̃(l) h̃
(l+1) = (W(l+1))T f ′(W(l+1)h̃(l) + b(l+1)) (16)

where h̃(l) is the output feature of the l-th renumbered layer in
the student network. ∇h̃(l) (βLap + γ Lnc) includes Grad[h̃

(l)], the
gradient from loss function directly which is depended on the
layer itself, and the gradient transmitted from the next layer.
Mentioned that the NMF module is without the bias.

Finally, the overall training algorithm are outlined in
the Algorithm 1.

Algorithm 1: Optimization algorithm of DDNMF

Input: input dataset X, noisy dataset X̃, hyper parameters
{α,β , γ }

Initialize randomly trainable parameters
for not converged do

for each epoch of data {x} and {x̃} do
forward feed in the supervisor network with Equation
(6)

forward feed in the student network with Equations
(6, 8)

compute the losses with Equations (9)–(12)
update parameters in the supervisor network with
Equations (14)–(17)

update parameters in the student network with
Equations (18)–(21)

end for

end for

Output: trained network

3.3. Algorithm Complexity
Both of input dataset X and noisy dataset X̃ of DDNMF
have N samples. Assume that the overall training algorithm is
converged after going through the whole datasets t times, the
number of iterations is O(tN). In each iteration, samples from
the two datasets are input into the supervisor network and the
student network. The supervisor network has L layers, and the
student network contains an extra NMF module with a fixed
number of layers. Thus, the total layer depth of DDNMF is
O(L). In each layer, the forward feed and back propagation
process are conducted to extract features and modify parameters.
Assume that the maximum dimension of features in all layers
is D, the space complexity, also the number of parameters
including W and b, will be O(D2) in each layer. In forward feed
process, both of the multiplication and addition operation on
parameters in each layer are O(D2), and the output of activation
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FIGURE 2 | The t-SNE figures of DDNMF and AE1 on MNIST and FashionMNIST. (A) DDNMF+MNIST, (B) DDNMF+FashionMNIST, (C) AE1+MNIST, (D)

AE1+FashionMNIST.

function is computed O(D) times. Similarly, in back propagation

process, the number of multiplication/addition operation and
derivative function computation in a layer are O(D2) and O(D),
respectively. So the time complexity of each layer are also O(D2).
Considering that in each iteration, the time complexity of the
calculation on loss terms Lsym, Lnc, and Lap are O(D), O(D),
O(LD), respectively, the time complexity of loss can be ignored
in the analysis of algorithm complexity. In conclusion, the space
complexity of DDNMF is O(LD2), and the time complexity of
DDNMF is O(tNLD2).

4. EXPERIMENTS

In this section, the performance of DDNMF is extensively
evaluated. In the clustering task on several datasets,
DDNMF is compared with various methods in terms
of accuracy (ACC), Normalized Mutual Information
(NMI), and Adjusted Rand Index (ARI). Results show
that DDNMF outperforms the comparative methods.
Implemented by Python, all the codes are performed on
the Dell PowerEdge R740 server with a Tesla V100 GPU,
Intel Xeon Silver 4114 CPU (2.20 GHz) and 256 GB DDR4

memory. The details of experiments are described in the

following subsections.

4.1. Datasets
MNIST and Fashion-MNIST datasets are used to verify the
performance of DDNMF.

MINST (Salakhutdinov and Murray, 2008) consists of 70,000
labeled gray images with the size of 28×28, which describe the
handwritten digits from 0 to 9. The experiments use the images
to conduct DDNMF and comparative methods, measuring the
performance by labels.

FashionMNIST (Xiao et al., 2017) consists of 70,000 gray
28×28 images with 10 different labels, such as trouser, coat, and
sneaker. Similarly, images are used for comparative methods and
labels are applied for evaluation.

4.2. Comparative Methods
K-means is a basic clustering method widely used in various
tasks. In our experiment, it plays the role of not only a baseline
but also a component of other comparative methods.

Gaussian Mixture Model (GMM), as a generative method,
is also a typical clustering method based on the probability
theory. Like K-means, GMM can also cluster the extracted
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TABLE 3 | The results of DDNMF and AE1 on different noise levels.

Noise level 10% 20% 30% 40% 50% 60% 70% 80%

MNIST+DDNMF:ACC 0.73810 0.66530 0.69270 0.78400 0.58310 0.65280 0.74060 0.67260

MNIST+AE1:ACC 0.76220 0.71380 0.70260 0.72230 0.69670 0.67900 0.70590 0.57040

MNIST+DDNMF:NMI 0.69090 0.61762 0.62424 0.65516 0.57338 0.61489 0.63023 0.63649

MNIST+AE1:NMI 0.66079 0.66039 0.62352 0.63923 0.62091 0.59071 0.59371 0.59938

MNIST+DDNMF:ARI 0.62203 0.51083 0.54637 0.60423 0.46580 0.50822 0.54740 0.55506

MNIST+AE1:ARI 0.58954 0.57022 0.53432 0.55698 0.54528 0.48758 0.48707 0.43513

FashionMNIST+DDNMF:ACC 0.60360 0.59130 0.57120 0.63120 0.57690 0.52600 0.48480 0.49590

FashionMNIST+AE1:ACC 0.47270 0.46550 0.46890 0.48380 0.47050 0.47090 0.45800 0.47970

FashionMNIST+DDNMF:NMI 0.57559 0.60082 0.60209 0.59671 0.59133 0.51081 0.54363 0.52765

FashionMNIST+AE1:NMI 0.53955 0.54333 0.52740 0.50946 0.50394 0.49874 0.50315 0.50206

FashionMNIST+DDNMF:ARI 0.43383 0.45541 0.44640 0.46759 0.43419 0.36124 0.37084 0.36899

FashionMNIST+AE1:ARI 0.37198 0.37127 0.36532 0.34385 0.34220 0.33748 0.34438 0.35684

FIGURE 3 | The changes of clustering performance of DDNMF and AE1 on different noise levels. (A–C) Results on the MNIST dataset, and (D–F) are on the

FashionMNIST dataset.

representations to verify the performance of comparative
methods in the experiment.

Autoencoder is a kind of normal unsupervised deep non-
linear feature extractor. There are two autoencoders with
different parameters settings in our experiment, denoted as AE1
and AE2. Among them, AE1 has the same number of layers and
neurons with the proposed method, and the depth of AE2 is one
layer less than AE1. The ReLU activation function is employed in
both of the two autoencoders.

NMF is a well-known matrix factorization methods,
implemented as a comparative component to extract good
representations in the experiment.

4.3. Evaluation Metrics
ACC, NMI, and ARI are employed as evaluation metrics in
the experiment.

ACC usually measures the average correct rate of
classification. By the Kuhn-Munkres algorithm, ACC can
also be used in the evaluation of clustering.

ACC =
1

N

N
∑

i=1

δ(ai, km(bi)) (17)

where N is the number of the data. δ(x, y) equals
to 1 if and only if x = y. ai and bi are the real
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and the predicted i-th clustering assignment.
km() is the mapping decided by the Kuhn-
Munkres algorithm.

NMI is defined as:

NMI =
2I(A,B)

H(A)+H(B)
(18)

where I(A,B) is the mutual information between clustering
assignment A and B. H(A) is the entropy of A.

ARI is based on Rand Index (RI):

ARI =
RI − E(RI)

max(RI)− E(RI)
,RI =

a+ d

C2
N

(19)

where E() represents the expectation. C2
N is the combinatorial

number of pairing the samples. RI is the rate of correct pairs
including a same label with same clustering and d different labels
with different clusterings.

4.4. Experimental Results
Tables 1, 2 are the experimental results in terms of ACC, NMI,
and ARI of comparative methods onMNIST and FashionMNIST
datasets. There are some main observations and discussions
as follows:

* Experiments on the features extracted by AE2 (lines 5–8 of the
two tables) outperforms experiments on original data (line 1–4
of the two tables). The increase of ACC, NMI, and ARI shows
that AE2 can learn deep representations which concentrate
informative knowledge of data and are more suitable for
clustering task than original data.

* It is shown that conducting NMF on both of original data
(line 3–4 of the two tables) and deep representations (lines
7–8 of the two tables) for interpretability will decrease the
performance of clustering at most case. That is, combining
NMF and data directly will degrade the performance of
representations because of linear decomposition and the
decrease of matrix rank.

* Compared with K-means (odd lines of the two tables), GMM
(even lines of the two tables) usually clusters data or features
better. This is because K-means could be regarded as a
variant of GMM with the sphere constraint that its covariance
matrix must be like the identity matrix. Which simplifies
the procedure of K-means but limits its ability of fitting
data distribution.

* By adding NMF module into the process of extracting
features and training in the end-to-end manner, our
DDNMF achieves the best performance in terms of ACC,
NMI, and ARI on both of MNIST and FashionMNIST
datasets. Which demonstrates the superiority of the
proposed method.

Figure 2 shows the t-distributed Stochastic Neighbor
Embedding (t-SNE) figures of DDNMF and AE1 on two
datasets. The visualization also exhibits the good performance
of DDNMF.

To verify the performance of DDNMF in data denoising,
experiments on two datasets with noise from 10 to 80% are
conducted. Table 3 and Figure 3 are the changes of clustering
performance of DDNMF and AE1 on different noise levels. It
shows that both of DDNMF and AE1 suffer from the increase of
the noise level, and with the increase of noise, DDNMF reveals its
advantage of denoising and achieves the better performance than
AE1 on the two datasets. On the MNIST dataset, DDNMF has
the higher ACC, NMI, and ARI than AE1 when the noise level
is high enough. On the FashionMNIST dataset, DDNMF always
outperforms AE1 on all metrics. Which demonstrates that with
low noise levels, DDNMF can achieve comparable or even better
performance than AE1, the autoencoder with the same number
of layers and neurons, with the help of the supervisor network.
And with high noise levels, DDNMF can address the challenge
of noise by the denoising property of the student network. Thus,
experiments on the two datasets with different noise levels verify
the effectiveness of the proposed DDNMF.

5. CONCLUSION

In this paper, we proposed DDNMF for learning deep
denoising interpretable representations. The end-to-end deep
architecture composed of a supervisor network learning
noise-free knowledge and a student network capturing part-
based representation of non-negative constraints is introduced,
mining data with noise. The interpretability loss is designed
to distill interpretable knowledge of real-world noisy data.
Experimental results on standard datasets demonstrated the
effectiveness of DDNMF. In the future, on the basis of the
proposed basic deep architecture, more sophisticated deepmatrix
factorizationmethod will be exploited for deep representations of
multimodal data.
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