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Collaborative robots are currently deployed in professional environments, in collaboration

with professional human operators, helping to strike the right balance between

mechanization and manual intervention in manufacturing processes required by Industry

4.0. In this paper, the contribution of gesture recognition and pose estimation to the

smooth introduction of cobots into an industrial assembly line is described, with a view to

performing actions in parallel with the human operators and enabling interaction between

them. The proposed active vision system uses two RGB-D cameras that record different

points of view of gestures and poses of the operator, to build an external perception layer

for the robot that facilitates spatiotemporal adaptation, in accordance with the human’s

behavior. The use-case of this work is concerned with LCD TV assembly of an appliance

manufacturer, comprising of two parts. The first part of the above-mentioned operation

is assigned to a robot, strengthening the assembly line. The second part is assigned to

a human operator. Gesture recognition, pose estimation, physical interaction, and sonic

notification, create a multimodal human-robot interaction system. Five experiments are

performed, to test if gesture recognition and pose estimation can reduce the cycle time

and range of motion of the operator, respectively. Physical interaction is achieved using

the force sensor of the cobot. Pose estimation through a skeleton-tracking algorithm

provides the cobot with human pose information and makes it spatially adjustable.

Sonic notification is added for the case of unexpected incidents. A real-time gesture

recognition module is implemented through a Deep Learning architecture consisting of

Convolutional layers, trained in an egocentric view and reducing the cycle time of the

routine by almost 20%. This constitutes an added value in this work, as it affords the

potential of recognizing gestures independently of the anthropometric characteristics and

the background. Common metrics derived from the literature are used for the evaluation

of the proposed system. The percentage of spatial adaptation of the cobot is proposed as

a new KPI for a collaborative system and the opinion of the human operator is measured

through a questionnaire that concerns the various affective states of the operator during

the collaboration.
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pose estimation

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.703545
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.703545&domain=pdf&date_stamp=2021-11-23
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sotiris.manitsaris@mines-paristech.fr
https://doi.org/10.3389/fnbot.2021.703545
https://www.frontiersin.org/articles/10.3389/fnbot.2021.703545/full


Papanagiotou et al. Egocentric Gesture Recognition for HRC

1. INTRODUCTION

Robots were first introduced to industrial environments in
the mid-1950s and consequent advancements in the areas of
perception of humans and of the environment, during the last
few decades, have led to the evolution of a new area of research,
named Human-Robot Interaction (HRI). The International
Federation of Robotics (IFR)1 reports a record of 2.7 million
industrial robots operating in factories around the world, which
indicates an overall increase of 12% for the year 2020 alone.

Until quite recently, conventional automation of Industry 3.0
has been trying to insert more and more robots into production
processes to perform repetitive and hazardous tasks which have
traditionally been performed by humans. The translation to
Industry 4.0, using means such as cyber-physical systems (CPS),
cloud computing and Industrial Internet of Things (IIoT)s, aims
to insert human-robot collaboration (HRC) frameworks into the
manufacturing process. There are different categories of HRI,
depending on the workspace, the aims, the working times of the
robot and the operator.

The current work aims at the development of a Human-
centered Artificial Intelligence perception layer of a robot,
which is inserted in an industrial HRC scenario. Active vision
through gesture recognition and pose estimation enables the
spatiotemporal adaptation of the robot to each user. We focus
on the insertion of a smaller, lightweight robot which facilitates
HRC, without the need for physically separated workspaces.
Different types of interaction are implemented and ultimately the
goal of this paper is to evaluate their impact on both human-robot
collaboration and user experience. On the way to safer and more
effective HRC scenarios, touchless interaction is implemented.

Egocentric computer vision for action/gesture recognition
unleashes great potential for touchless HRI. The proposed human
egocentric system constitutes an initial step in active vision. It is
not affected by some critical issues for active vision as the camera
is unique, on the top of the operator, and moves according to
operator’s head motion. There is no change or motion of the
camera for better field of vision. In addition, occlusion or limited
resolution are improbable as the operator’s actions are executed
in front of her/his body. These actions are communicated to the
robot so as to dynamically adapt its behavior. Therefore, both the
temporal and spatial profile of the motion of the robot depend
on the rhythm and the pose of the human operator, respectively.
From an industrial point of view, the production cycle time
becomes adaptable.

This paper presents a gesture recognition module based on
3D Convolutional Neural Networks (3DCNNs), trained on an
egocentric view, for a natural collaboration between the human
and the robot. Deep Learning (DL) is a field of Machine
Learning (ML) with impressive results in pattern detection,
speech recognition and many more applications and can provide
the necessary robustness that an HRI scenario requires. The two
hypotheses that are tested, are the reduction of cycle time of the
assembly routine through the insertion of gesture recognition,

1https://ifr.org/

as well as the improvement of the handover position via the
implementation of pose estimation.

This paper consists of nine sections in total. Following
the Introduction in section 1, section 2 presents human-robot
interaction that can be achieved either physically or by touchless
means. In section 3, the routine which was implemented,
together with the experiments which are used to evaluate the
contribution of the proposed modules (gesture recognition,
pose estimation, sound notification) are described. In sections
4 and 5, the modules and their respective implementation
methodologies are presented. section 6 describes the way
that the robot performs and presents a variety of metrics
that are commonly used for the evaluation of an HRI
system. In section 7, each type of collaboration is described
and evaluated, while, in section 8, future work perspectives
emerging from the various types of collaboration are examined,
with areas for future research suggested in Conclusion, in
section 9.

2. STATE OF THE ART

Since the initial establishment of robots in industry, the aim has
been to assist humans in their heavy-duty tasks, and to keep
everyone safe at the same time. The limitations of robots, in this
early period, in conjunction with the ever-increasing levels of
safety which have had to be observed in industry, have served
to create a somewhat primitive workplace for industrial robots.
Traditionally, they have been installed in assembly-lines and
have been assigned to undertaking the tasks which are repetitive,
heavy-duty and dangerous for human operators, as described by
Hentout et al. (2019). Regardless of their efficiency and velocity,
the assembly-lines that use this type of robot have been lacking
in flexibility, especially when the presence of a human operator
is required.

Humans, on the other hand, have the flexibility and the
intelligence to consider different approaches to solve a problem
and can choose the best option from among a range of
possibilities. They can then command robots to perform assigned
tasks, since robots can be more precise and more consistent in
performing repetitive and dangerous work. This collaboration
between industrial robots and humans demonstrates that
robots have the capabilities to ensure maximum efficiency
in manufacturing and assembly; however, the evolution of
technology, together with the ongoing automation of traditional
manufacturing and industrial practices, has shown that there are
many tasks which are too complex to be fully executed by robots,
or are too financially burdensome to be fully automated.

This is the reason why the research agenda in the past few
years has focused on creating appropriate industrial working
environments, where robots and human operators can interact
effectively. Nowadays, mixed environments are being created
and industries aim to explore and create the ideal working
environment through combining the cognitive skills of the
human operators (intelligence, flexibility, and ability to act
when confronted with unexpected events) with the ergonomic
advantages of the robots (high precision, repeatability, and
strength) (Prati et al., 2021).
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The creation of mixed industrial environments, where
humans and robots co-exist and work for a common
goal reinforces the necessity of the insertion of cobots in
manufacturing process. IFR in accordance with ISO 8373
describes two different types of robots (industrial and service).
Cobots could be considered to be service robots, since they are
intended to work alongside humans; however, there are different
definitions of cobots, depending on the applications they are
used for. In the beginning, a cobot was defined as “an apparatus
and method for direct physical interaction between a person and
a general purpose manipulator controlled by a computer” (Bicchi
et al., 2008); however, due to the development of the sensors that
cobots use and because of the way they interact with humans,
this definition has evolved.

Active vision is mentioned as the capability of a robot to
actively perceive the environment and obtain useful information
for various tasks (Chen et al., 2011). It is used in plenty of use-
cases such as collaborative robotics (Queralta et al., 2020) and
industrial applications (Muhammad et al., 2017). The workflow
of a typical active vision or perception system, includes view
planning, motion planning, sensor scanning and map updating
(Zeng et al., 2020). After each stage information is collected and
update the status of the robot and its task goal.

In recent research, a cobot is referred to as a robot that has
been designed and built to collaborate with humans (Schmidtler
et al., 2015), or as a robot intended to physically interact
with humans in a shared workspace (Colgate and Peshkin,
2010). For this reason, the discussion has shifted to Human-
Robot Interaction and the way this interaction is achieved in
each application.

2.1. Categories of Human Robot
Interaction
HRI research has attracted the attention of numerous research
domains. For this reason, HRI can be classified into many
categories depending on the criteria that are used. Kopp et al.
(2021) and El Zaatari et al. (2019) distinguish HRI as functioning
on different levels, according to the workspace (separated or
common), the working time/steps (sequential or simultaneous)
and the aims (different or common) of the robot and the human
operator respectively. At the lowest level, human and robot
work alongside each other without a shared workspace (Long
et al., 2018). They have neither common tasks, nor actions, nor
intentions. Traditional industrial robots are used extensively in
such cases. At the second level, however, the human and the robot
share all or part of a workspace, they do not work on a part or
on a machine at the same time. Unhelkar et al. (2020) name this
type of collaboration as sequential, which implies that the human
operator adapts to the rhythm and the orientation of the robot,
since its velocity and its trajectories are pre-defined.

In a few industries, in recent years, humans and robots have
been working on the same part or machine at the same time,
and both are in motion (Cherubini et al., 2016). This level
of interaction is called human-robot co-operation and requires
advanced sensors and technology, like force/torque sensors or
computer vision. Despite the sharing of workspace and aim, the

human operator must adapt to the pre-defined temporal and
spatial profile of the robot. That makes this type of interaction
less natural than interaction between humans and, because of
this, different types of communication and collaboration are
established within the framework of Industry 4.0. Finally, at
the upper level, the robot responds in real-time to the worker’s
motion which is called responsive HRC. The combination of
artificial intelligence and high-tech sensors make robots able to
adapt their rhythm and motion to unpredictable incidents and
the anthropometric characteristics of the operator. The purpose
of this category is the transformation of the robot, from being
more than just a useful machine, to being a real collaborator.

Responsive Human-Robot Collaboration can be classified into
physical (pHRC, Ajoudani et al., 2018) and touchless (tHRC,
Khatib et al., 2017). pHRC can be divided into two different
categories, depending on the intended purpose of the touching.
On the one hand, there are operations which were intended to be
without contact, but where instinctively the operator touches the
robot. On the other hand, there are operations where the operator
presses or touches the robot on purpose and the robot reacts in
a particular way, depending on the amount and the direction of
the operator’s force. In the first case, the robot should perceive
the presence and the velocity of the human operator inside
its workspace and react correspondingly, either by reducing its
velocity or protectively stopping its motion in order to avoid a
collision, as noted by Michalos et al. (2015). In the second case,
Bo et al. (2016) note that the robot can either be used as a tool
which extends the capabilities of the human operator (strength,
precision etc.), or can be taught by demonstration in order to be
able to repeat a certain task precisely.

Long before the outbreak of Covid-19, which has necessitated
social distancing, industries were using technologies that
minimize the need for physical interaction among industrial
workers, enabling device operation at a safe distance2.
Contactless technology is a branch of control technology,
which has as its aim the establishing of communication between
computers/machines and human operators, without the need
for any contact whatsoever. It relies on the interpretation of
human movement and behavior, using ML algorithms and
sensors, namely RGB-D cameras, thermal cameras or Inertia
Measurement Units (IMUs, Zhang et al., 2020). The sensors
and algorithms provide the machines/cobots with commands
or instructions derived from the detection of facial patterns
(Melinte and Vladareanu, 2020), voice translation (Gustavsson
et al., 2017) and gesture recognition (El Makrini et al., 2017).

Contactless technology allows users to control digital or
industrial systems, using their anthropometric characteristics or
motion. It has gained a lot of attention in the gaming and
medical worlds, as well as in other fields, such as the automotive
and cultural industries. Human action recognition is one of
the tools used to achieve contactless communication between a
computer/machine and a human operator, and can be defined
as the conversion of a human/humanoid movement or signal
to a form understandable to a machine. Action recognition

2https://www.intel.com/content/dam/www/public/us/en/documents/pdf/the-

need-for-enabling-touchless-technologies-whitepaper.pdf
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enables the human operator to interrelate with a machine in
an environment characterized by the absence of means for
physical interaction.

2.2. Movement-Based Implicit and Explicit
Interaction
With a view to more natural HRC, the adaptation of robots, in
accordance with the temporal and spatial profile of the human
operator, has evolved into a very meaningful research topic.
Humans can be involved, beyond their traditional offline role, as
they can now interact with a cobot either explicitly or implicitly
(El Zaatari et al., 2019). Explicit interaction, on the one hand, is
what is referred to as direct communication between the robot
and the human. Implicit interaction, on the other, involves an
action (or practical behavior), which represents a message in
itself, rather than a message being conveyed through language,
codified gestures (such as a thumbs-up or nod of the head)
(Gildert et al., 2018) or other non-verbal, sensorimotor forms of
communication to send coordination signals (Pezzulo et al., 2013;
Vesper and Sevdalis, 2020).

Temporal adaptation can be achieved either explicitly or
implicitly. There is research where explicit interaction for
temporal adaptation is achieved through the use of a button3 or a
smartwatch (Michalos et al., 2018), thanks to which the operator
can inform the robot that he/she has executed a task. However,
if judged according to the previously-given definitions of HRI,
this case matches more with human-robot co-operation, as the
insertion of a button makes the interaction less natural. In the
research of Cherubini et al. (2016), force feedback and pointing
gestures are introduced as a means of HRC, in order to adapt
the temporal profile of the robot and create hybrid interaction. In
the present case, a totally implicit interaction is presented from
our previous research (Coupet et al., 2019), which uses gesture
recognition as a means to inform the robot about the percentage
rate of completion of the human gesture, in order for it to
react correspondingly. Such implicit interaction scenarios are
also implemented outside of industrial workspaces, as described
by Gabler et al. (2017) and Vogt et al. (2017).

The spatial adaptation of a robot to an industrial environment
is commonly presented as collision avoidance between the
robot and the human operator who share the same workspace
(Mohammed et al., 2017; Safeea et al., 2019). Apart from
their applications in industry, such adaptations are reported
in other research, such as that of Canal et al. (2018), where
the creation of a daily living assistant is presented. This
research describes a cobot that is able to readjust its trajectories
according to user movements and can thus handle incidents
which are unpredictable. In the context of the present article, a
spatiotemporal adaptation of a cobot, working according to the
desired handover positions and rhythm of a human operator, is
described. The goal of this research is to improve the perception
of robots, using professional gesture recognition in cooperation
with ergonomic parameters, with a view to creating a better and
more natural HRC.

3http://roboticsandautomationnews.com/2017/03/04/bmw-shows-off-its-smart-

factory-technologies-at-its-plants-worldwide/11696/

2.3. Machine Learning for Professional
Gesture Recognition
A significant amount of scientific work aims at making machines
smarter, improving their perception, enabling them to interpret
human behavior, and to learn and react in a way similar to the
human brain. In order to achieve these goals, solid results in
the field of activity and, more specifically, in the field of gesture
recognition are necessary, since this will permit more natural
Human-Robot Collaboration (HRC). Indeed, an essential goal
of the research community is the development of algorithms
that can accurately recognize and understand human actions.
Research on human action recognition focuses mainly on two
strategies; namely, Pose- (Skeleton-) based recognition and
Appearance-based recognition methods.

2.3.1. Pose-Based Methods for Gesture Recognition
The main goal of pose-based methods is gesture recognition
through the extraction of feature vectors which provide input
to the corresponding ML algorithm. Essentially, those features
are a set of coordinates able to describe the pose of a person
and give explicit details about their position within a space.
Pose estimation is usually performed using RGB-D cameras,
such as the Kinect camera4, or optical hand tracking sensors
such as the LeapMotion sensor5, algorithms, and modules such
as Openpose (Cao et al., 2021), Alphapose (Fang et al., 2017),
and Densepose (Güler et al., 2018), that use Deep Learning
architectures themselves, performing either 2D or 3D pose
estimation for both offline and online purposes, for the extraction
of body joints. In general, recovering 3D pose from RGB images
is considered more difficult than 2D pose estimation, due to the
larger 3D pose space and other ambiguities. A number of factors
can cause these ambiguities, such as body occlusions (Cheng
et al., 2019), skin color, clothing, an overloaded background or
quality of lighting (Rahmat et al., 2019).

Stochastic methods, such as Hidden Markov models (HMMs)
(Borghi et al., 2016; Bui et al., 2018) and Random regression
forests (Canavan et al., 2017), as well as DL methods, such as
Recurrent Neural Networks (RNNs) (Shahroudy et al., 2016;
Chalasani et al., 2018) have been used in various implementations
for gesture classification. In the works cited, the aforementioned
ML methods were used for the temporal correlation of the body
features, leading to satisfactory classification results. Yan et al.
(2018), in an attempt to create an algorithm that automatically
learns both the spatial and temporal patterns from data, leading
to a stronger generalization capability of the algorithm, propose
a novel model of dynamic skeletons called Spatial-Temporal
Graph Convolution Networks. Even though satisfactory results
can be achieved, extracting features from data can lead to the loss
of important information. The estimation of the human joints,
and thus the skeletization of the whole body, must not only be
absolutely accurate, but must be able to anticipate estimation
problems caused by any of the factors mentioned previously (i.e.,
lighting, occlusions etc.). Thus, what constitute the challenges
in these methods is not only the way that classification is

4https://en.wikipedia.org/wiki/Kinect
5https://developer.leapmotion.com/
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performed, but also the way in which accurate pose-estimation
is to be accomplished.

2.3.2. Appearance-Based Methods for Gesture

Recognition
In contrast with Pose-based recognition methods, Appearance-
based ones consider visual cues (i.e., color and edges), to reach a
gesture recognition result. Action recognition with these kinds
of methods, can achieve results end-to-end, through mostly
using sensors that extract visual information, such as RGB-D
or thermal cameras. The end-to-end results are obtained by the
hierarchical analysis of the characteristics of the visual input
(edges, lines etc.) and algorithms, such as 3D CNNs (Tran et al.,
2015), two stream fusion networks (Feichtenhofer et al., 2016)
and inflated 3D convolution (I3D) (Carreira and Zisserman,
2017). One could say that the two-stream (RGB and optical
flow) I3D models, based on 2D ConvNet Inflation, were a
breakthrough in this field, as such models made it possible to
learn seamless spatiotemporal feature extractors from videos,
while leveraging successful ImageNet architecture designs and
even their parameters.

There are many cases where the two categories of Pose-
based recognition and Appearance-based recognition methods
have been combined. Song et al. (2016) propose a multi-modal,
multi-stream DL framework for egocentric activity recognition,
using video and sensor data. They extend a multi-stream
CNN to learn spatial and temporal features from egocentric
videos, by using a multi-stream LSTM architecture to learn the
features from multiple sensor streams (accelerometer, gyroscope
etc.). Cao et al. (2017) perform egocentric gesture recognition,
combining traditional CNN architectures with spatiotemporal
transformer modules in order to address problems that arise
from the global camera motion, caused by the spontaneous
head movement of the device wearer. More specifically, a
spatiotemporal transformer module (STTM) is proposed, that is
able to transform 3D feature maps to a canonical view in both
spatial and temporal dimensions. The challenge of capturing and
recognizing images, from an egocentric view, lies in the fact that
we can identify two parallel movements, that of the background
and of the person themselves, and that of the camera that follows
the motion of the head, with the motion of the head not always
aligned to the motion of the rest of the body.

2.3.3. Human-Robot Collaboration With Artificial

Intelligence
Cobots are becoming ever more present in industrial
environments, as an automated solution, enabling industrial
workspaces to become more cost-effective, flexible, and
ergonomic. For this to be accomplished successfully, cobots
need to be equipped with tools that will make them adjust to
the workspace and help the industrial operator, without creating
an extra burden during the work process. These tools include
ML algorithms, such as Markov chains or HMMs, and DL
architectures, such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs) and deep Reinforcement
Learning (RL) for gesture recognition, voice detection, working
environment surveillance, to mention only a few.

Machine learning architectures such as Markov chains or
HMMs are known for their applications in signal processing
and pattern detection. They are used to estimate the probability
of going from one state of a system to another and, therefore,
lead to data classification. The limitation of these methods is
connected to the fact that inserting images as input to be classified
according to their state probabilities, demands preprocessing.
This preprocessing concerns the extraction of features for the
creation of vectors that will constitute the required input.

Many research projects (Liu and Hao, 2019; Sharkawy
et al., 2019; Sharkawy et al., 2020) have used such approaches
to detect a collision based on robot sensor stream data,
or perform continuous gesture recognition (Tao and
Liu, 2013). In order to enable a smooth Human-Robot
collaboration, where the robot is able to synchronize, adapt
its speed and detect any unexpected incident, Coupeté (2016)
implements gesture recognition of professional gestures in
an automotive assembly-line using Discrete HMMs and
inertia sensors to finetune the results. Dröder et al. (2018)
use an ML-enhanced robot control strategy, combining
also a nearest neighbor approach, for obstacle detection
in an HRC scenario. All of the cases mentioned above,
require either the use of specific sensors that provide with-
time-series, or involve time-consuming pre-processing, as
previously discussed.

On the other hand, DL architectures, such as CNNs and
RNNs, are widely used nowadays in finance, robotics and
medicine. Such methods require a large amount of data in order
to be trained properly and, in most cases, require a great deal of
computational power and time. However, in some DL methods,
such as CNNs, preprocessing is not necessary, ensuring there is
no loss of information.

El-Shamouty et al. (2020), in trying to minimize the risk of
accidents in HRC scenarios, propose a deep RL framework that
encodes all the task and safety requirements of the scenario into
RL settings, and also takes into account components such as
the behavior of the human operator. Liu and Hao (2019) work
on a scenario of multimodal CNNs and use a Leap Motion
sensor for hand motion detection, as well as voice and body
posture recognition. Amin et al. (2020) aim to upgrade safety
and security in an HRC scenario, by using a combination of
human action recognition and tactile perception in order to
distinguish between intentional and incidental interactions if
physical contact between human operators and cobots takes
place. A Panda robot, along with a 3D-CNN for human
action recognition and a 1D-CNN for contact-type detection,
was deployed.

Most of the methods presented above are focused on specific
factors (safety, accident prevention, fast response from a cobot in
an HRC laboratory-implemented scenario), without considering
all the limitations, as well as the spatiotemporal variations that
might occur in a real-life scenario. Different users of the same
set-up have different anthropometric characteristics and different
behaviors when asked to perform the same action. The aim in
the present work, however, is also to examine the contribution of
an egocentric gesture recognition module with a Deep Learning
architecture in an HRC industrial scenario.
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FIGURE 1 | Evolution of Human-Robot Interaction (HRI) toward natural collaboration through human-centered Artificial Intelligence.

Figure 1 illustrates the potential of Human-centered AI
in contributing toward a more natural HRC. The more
anthropocentric the information that is extracted, the richer the
perception of the robot is. The more its perception is enriched,
the more it can predict human actions. In order for the robot to
collaborate with the human, it has to understand not only its tasks
but also human actions and intentions. At the beginning (level 0),
the introduction of traditional industrial robots is the baseline,
and the most common case in industry currently. There is no
interaction between the robot and the operator and the robot
completes a task very quickly and precisely. The first step toward
interaction (level 1) was achieved by giving the robot information
about the human’s presence inside its workspace. Both spatial and
temporal profiles remain constant and predefined, but when it
perceives that an operator is inside its workspace, it reacts either
by protectively stopping its motion or by reducing its velocity.
Moreover, the human action and gesture recognition (level
2), converts the temporal profile to dynamic, adapting to the
operator’s rhythm. In the present research, the development of a
dynamic spatiotemporal HRC framework is presented, receiving
the human’s actions and poses as input parameters (level 3).

3. PILOT SCENARIO

The use-case that was used for this research was derived from
industry and, in particular, from Arçelik’s TV assembly factory.
In the actual assembly line, the task is executed manually by two
different operators. The first operator has the task of picking
up the electronic cards and placing them on the TV panel. The
electronic cards are divided into two different types: the power
supply (PSU) and themain board (chassis), that are located in two
different boxes next to the conveyor belt. The second operator
is responsible for the screwing of the cards onto the TV. The

insertion of a temporal and spatial adjustable cobot, which can
perform the first part of the operation, is proposed.

Factories in the Industry 4.0 era need the high efficiency and
repeatability of the robots, together with the flexibility and variety
of products that a human operator can provide. The parallel
operation of a cobot and an operator on an assembly line was
examined. The experiments were as follows:

1. Physical Interaction
2. Physical Interaction and Spatial adaptation (Operator’s

pose estimation)
3. Physical Interaction, Spatial adaptation (Operator’s pose

estimation), and Sound notification
4. Physical Interaction and Gesture recognition
5. Combination of spatiotemporal adaptation and

sound feedback

Initially, the operator interacts with the robot only physically
(pHRC). This is accomplished through a Force Sensor (FS)
which is placed on the robotic arm, just above the end-effector
(Gripper). Every time the operator finishes with a task, s/he
presses the FS in order to inform the robot and make it advance
to the next position. The operator presses the FS to start the
routine. When the robot grasps the card, it brings the card to
a particular position. Then, the operator presses the FS again to
release the card and the robot advances to a waiting position. The
operator decides if the card is functional or not and presses the
FS accordingly. If the FS is pressed on the horizontal axis, the
card is not functional and the robotic arm returns to take the next
card from the same box. If otherwise, and the card is functional,
the operator presses the FS at the vertical axis, as always, and the
robotic arm continues and grasps a card from the second box.
When the operator takes the first card, s/he places it on the TV
board and s/he screws it in place. The same procedure is followed
also for the second card and when it is well-positioned on the TV,
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the operator presses the FS to inform the robot that the routine
is finished.

The physical interaction that has just been described is
complemented with a pose estimationmodule, during the second
experiment. The robotic arm does not place the cards in a
particular position, as previously, but instead is spatially adapted
to the anthropometric characteristics of each operator. This
procedure improves the pose of the operator ergonomically. The
skeleton of the operator is extracted, and the position and velocity
of each wrist is recorded. When the human’s hand is motionless
and in a position which is reachable for the robot, the robotic arm
records it and approaches it holding the card. A natural HRC
also demands the exchange of information. Thus, for the third
experiment, a sonic notification is inserted. This notification is
activated when the operator asks for the card at a position that is
not reachable for the robot.

Gesture recognition is implemented in the fourth experiment.
Physical interaction is used only for the release of the card.
Each card is delivered to a particular position, with the aim of
evaluating the added value of the gesture recognition module
in the HRC scenario. The camera that records the operator’s
gestures is placed on the operator’s helmet, thus offering an
egocentric view. The final experiment brings all of the 4 modules
together. Physical interaction is used for the release of the card,
pose estimation for the spatial adaptation of the robotic arm,
with sound notification and gesture recognition used in the ways
previously referred to. The aim of the final experiment is the
evaluation of all the modalities together, in order to see what the
positive contribution is for the human operator.

Through the execution of the aforementioned five
experiments, this research aims to evaluate the dynamic
temporal profile that is achieved through the implementation
of gesture recognition and the dynamic spatial profile that is
achieved through the implementation of pose estimation. In
addition, every experiment is executed twice, in order to indicate
the compliance of the robot to unpredicted incidents (actions
not corresponding with the work sequence). In Figure 2, the
architecture of the system is presented. Physical interaction
demands that the operator stop his/her task in order to inform
the robotic arm about the work sequence. The cycle time is
therefore expected to increase. The insertion of pose estimation
is expected to improve the handover position of the card for
each user; however, it will necessarily increase the cycle time
because of the path calculation for the position of the operator’s
hand. Sonic notification is supposed to decrease the average
cycle time, as each operator knows where to place the hand in
order to ask for the card. Adding gesture recognition will reduce
the cycle time as the operator interacts more implicitly with the
robotic arm in comparison with other types of interaction. Thus,
it is expected that experiments that contain gesture recognition
will improve the naturalness of the HRC scenario, with users’
responses gathered via questionnaires. The hypotheses that are
extracted from the above expectations are the following:

H1: Can gesture recognition facilitate the temporal adaptation
of the robot for reducing the cycle time in assembly lines?

H2: Can human pose estimation facilitate the spatial adaptation
of the robot for reducing the range of motion of the operator
and improving the handover position?

4. POSE ESTIMATION OF HANDOVER
POSITION FOR ROBOTIC ARM

During the execution of the experiments “Pose Estimation”,
“Sonic Notification”, and “Combination”, pose estimation is
used as a mean of interaction between human and robot.
The OpenPose6 framework is used for the skeleton extraction
of the operator. This framework detects the body key points
on RGB images and concludes with the extraction of 2D
positions for each body joint, using DL architectures. Pose
estimation, in the context of these experiments, was used
both to estimate the position of the operator’s right hand
and to calculate its velocity. The coordinates of the right
wrist, as extracted from the framework, are used. The camera
that is used for the pose estimation is placed parallel to the
operator, next to the conveyor belt. The framework extracts
the position of the wrist in the image frame counted in
pixels (X,Y) and an estimation of the distance on the Z
axis is counted in meters. The procedure of providing the
robot with the coordinates of the operator’s wrist consists of
two steps:

1. The first step is the conversion of the camera pixels to meters.
Initially, the Intel-RealSense RGB-D camera is positioned so
that the X and Y axes of the camera are parallel to the X and
Z axes of the robot, accordingly. Using the parameters of the
RGB-D camera that was used (focal length, principal point
and distortion coefficients) it was possible to convert pixels to
meters for each different depth value. The equations that were
used are the following:

x =
(X − cx) ∗ z

fx
y =

(Y − cy) ∗ z

fy
(1)

Where cx, cy is the central - principal point of the
camera (956, 538) and fx, fy is the focal point of the
camera (973, 973). The camera that was used has no
distortion coefficient.

2. As the position of the operator’s wrist was defined in meters
for the coordinate system (CS) of the camera (XC, YC, ZC),
the second step was the transformation of this CS to the robot
CS. For this transformation, the homogeneous transformation
matrix was used. For the X axis there is only transfer for d1, for
the Y axis there is rotation of 90o and transfer for d2, and for
the Z axis there is rotation of 90o and transfer for d3. Using
the direction cosines of the initial point of camera CS to robot
CS, the homogeneous transformation matrix is calculated and

6https://github.com/CMU-Perceptual-Computing-Lab/openpose
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FIGURE 2 | Architecture of the system.
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Figure 3 shows the experimental setup during the
execution of the experiments. Figure 3i presents the
view of the camera that is used for the pose estimation.
The skeleton that is executed through OpenPose during
the 2nd, 3rd, and 5th experiment is demonstrated. In the
meantime in Figure 3ii the egocentric view that is used
for gesture recognition during the 4th and 5th experiment
is presented.

5. EGOCENTRIC GESTURE RECOGNITION
USING 3DCNNS

For the temporal adaptation of the cobot to the behavior of
the human operator, a gesture recognition module was used
in the experiments “Gesture Recognition” and “Combination”,
which are described in detail below. Briefly, the gestures and
postures of different human operators, during the TV assembly
routine in an assembly line, were captured with a GoPro RGB
camera, segmented and used for the training of a Deep Neural

network with Convolutional Layers. The goal of this module
was the exploration of the contribution of gesture recognition
to an HRC professional scenario. The initial step for this
module was the creation of a collaboration protocol between
the human operator and the cobot. The parts of the use-case
described that included decision-making, were assigned to the
human operator, and those that did not, were assigned to the
cobot. The gesture recognition results were sent as IDs to
the cobot, which interpreted them and acted according to the
defined protocol.

5.1. Network Architecture
The DL method used for egocentric gesture recognition in
this work was 3D Convolutional Neural Networks (3DCNNs).
3DCNNs are the 3D equivalent of 2DCNNs, taking as input
a 3D volume or a sequence of 2D frames. Image sequences
with a size of c×l×h×w were used, where c was the number
of channels, l was length in number of frames, h and w were
the height and width of the frame, respectively. We also refer
to 3D convolution and pooling kernel size by d × k × k,
where d was kernel temporal depth and k was kernel spatial
size. All image frames were resized to 84 × 48, so the input
dimensions were finally 5 × 84 × 48 × 3. The network used
had 6 convolution layers and 3 pooling layers, 1 fully-connected
layer and a softmax loss layer to predict action labels. The number
of filters for 4 convolution layers from 1 to 6 were 32, 32, 64,
64, 64, and 64, respectively. All convolution kernels had a size
of 3 × 3 × 3, where d = 3, k = 3. All of these convolution
layers were applied with appropriate padding (both spatial and
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FIGURE 3 | (i) View of the experimental setup from the camera that is used for pose estimation. (ii) Egocentric view of the experimental setup from the camera that is

placed on the head of the user.

FIGURE 4 | Presentation of the TV assembly dataset, consisting of 11 classes in total, 6 gestures, and 5 postures.

temporal) and stride 1; thus, there was no change in terms of
the size from the input to the output of these convolution layers.
The standard ReLu activation function was used. All pooling
layers were max pooling, with kernel size 3 × 3 × 3. The
fully-connected layers had 512 outputs and dropout was not
used. The output of the network was a softmax with 11 nodes,
like the number of the gesture and pose classes. This network
proved to be the most effective, in terms of recognition accuracy,
after many experiments with network parameters and layers
were performed.

5.2. Industrial Dataset and Gestural
Vocabulary
The performance of 3DCNNs was evaluated by recording
an egocentric dataset, inspired by an industrial TV assembly
scenario. The main routine in assembling a TV is separated into

sub-tasks, performed by either a human operator or a robotic
arm. The objects that are involved in the assembly routine are a
TV frame and two TV cards, one green and one gold. The human
operator only performs gestures to interact with the robotic arm,
while physical interaction (activation of the force torque sensor)

is used only for the TV cards to be released by the gripper of
the cobot.

The dataset includes RGB sequences of images recorded

at a resolution of 848 × 480 and 20 frames per second,
presenting 13 users performing six different gestures that
correspond to six different commands. These commands, given
to the robotic agent by the human operator, along with five
postures that were captured during the TV assembly routine,
consist of a total of 11 classes, which are used as input to
the classification algorithm. The gestural vocabulary is given
in Figure 4.
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FIGURE 5 | Work-flow of the HRC system.

Gestures are performed in a predefined working space, with
a conveyor between the robotic agent and the human operator.
A GoPro camera7 is mounted with a headband on the head of
the operator, providing an egocentric view of the TV assembly
process. There are two main challenges connected to capturing
a dataset from an egocentric view. The first challenge concerns
the “double” movement of the hands and the head. The hands of
the operator move during the execution of the gesture, while the
camera moves along with the head, and is therefore not always
in accordance with the hands. The second challenge concerns
the fact that due to the short distance, from the camera to the
hands, and the field-of-view the camera has, the hands are usually
prominent in the frame, but can also be partly, or even totally, out
of the field-of-view.

More specifically, during the performance of the TV assembly
scenario, the operator performs Gesture 1 (G1) to indicate the
start of the assembly routine to the cobot. The cobot goes above
the box with the TV cards, then toward the green card, takes it
and hands it to the operator, who checks the card for functionality
problems. In cases where this particular card is not functional
(e.g., is broken, or has a missing part) the human operator
performs Gesture 10 (G10) to notify the cobot, which in turn
fetches the next green card. The operator verifies that the new
green card functions and performs Gesture 2 (G2) to confirm
the functionality of the card to the cobot. The operator places the
green card (Posture G3) on the TV frame and starts screwing it
in place (Posture G4). At the same time, the cobot approaches
the gold card and gives it to the operator, as soon as the screwing
procedure with the green card has finished. The operator then
performs Gesture 8 or 11 (G8 or G11), depending on whether the
gold card is functional or not. The above steps are repeated until
the two cards are placed appropriately on the TV frame, and the
TV is assembled. Finally, the human operator performs Gesture 6
(G6) to confirm the end of the assembly routine, until a new one
starts again with Gesture 1 (G1). The captured gestures have the
same duration, on average, apart from G4 and G5, during which
the operator screws the green and the gold cards respectively.

7https://gopro.com/en/fr/shop/cameras/hero9-black/

CHDHX-901-master.html?gclsrc=aw.ds&&gclid=

Cj0KCQiAjKqABhDLARIsABbJrGnysxveH64ikG8aUbTJACoVucx259TEujqz_

3cDlwFAZuE5Yhgi5zKoaAmbHEALw_wcB

To ensure the safety of the human operator, errors must be
avoided; thus, two control layers were employed in decision-
making. The recognized gesture ID was taken into consideration
only if the same recognition accuracy result, with a probability
of 100%, was extracted for twenty consecutive frames. The time
between the capture of the frame, up to the correct classification
of a gesture, was between 0 and 800 ms, thus leading to the
conclusion that no important latency was observed during the
performance of the HRC scenario. The extracted recognition
result was transformed to an ID from 1 to 11 and the result was
then sent to the cobot, through the use of a UDP communication
protocol. At this point, the second layer of security was added.
The thought behind this specific layer was based on the idea of
a specific sequence performed during assembling a TV, without
any important variations to be taken into consideration. Thus,
the received accuracy result was checked by the cobot and was
accepted only in cases where it corresponded with the expected
gesture ID that was defined according to the work-flow and the
scenario presented in Figure 5.

5.3. Gesture Recognition Results
For the evaluation of the performance of the gesture recognition
algorithm and the proposed methodology, the metrics of
accuracy and f − score were calculated. The f − score metric
is derived by a combination of the metrics recall and precision.
Those metrics are defined as shown below:

precision =
#(true_positives)

#(true_positives)+ #(false_positives)
(3)

recall =
#(true_positives)

#(true_positives)+ #(false_negatives)
(4)

f − score = 2
precision ∗ recall

precision+ recall
(5)

Concerning the accuracy, if ŷi is the predicted value of the i-th
sample and yi is the corresponding true value, then the fraction
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of correct predictions over nsamples is defined as:

accuracy(y, ŷ) =
1

nsamples

nsamples−1
∑

i=0

1(ŷi = yi) (6)

The network presented was initially trained on the TV assembly
custom dataset that was created as part of this work. The dataset
was split into training and validation sets with a ratio of 80:20.
The network was trained from scratch with a batch size of 32
frames and an Adam optimizer for 40 epochs. The accuracy
results for offline gesture recognition, with a sliding window of
5 frames can be found in Table 1.

After performing the same experiment, using only new users
to whose gestures the recognition module was not trained
(Table 1), it was observed that the network possibly needed to
be trained to a larger amount of data in order to be able to
distinguish the differences between the hands of the operator
for each gesture. For this to be achieved, an egocentric gestural
dataset, that was created during the work of Chalasani et al.
(2018), was used for transfer learning. The dataset consisted of
10 classes of gestures captured in an egocentric view in front of a
green background. The specific dataset included three iterations
per user, for 22 users in total. Even though the size of this dataset
cannot be considered appropriate for transfer learning, it had the
advantage of being easily customized and turned into a larger
dataset. In order for this to be achieved, around 100 images
that provided a view of the TV assembly background (TV frame
and TV cards), from different angles, were recorded. The green
background of the original dataset was removed and replaced by
a custom background, leading to a new, larger dataset, to be used
for transfer learning. The process involved in the preparation of
this dataset is shown in Figure 6.

To reach the final number of layers to be frozen, several
experiments were performed. It was noticed that freezing
network layers did not improve the recognition accuracy results,
so after the initial training of the network with the improved
dataset from Chalasani et al. (2018), the network was retrained,
using the egocentric TV assembly dataset. The 80:20 approach
was used again, and the stratification parameter was deployed
to split it in such a way that the proportion of values, in the
training set, would be the same as the proportion of values in
the test set, leading to a balanced proportion in the classes within
each. The recognition accuracy results, along with the f-score,
with both the 80:20 approach and the testing of the network with
completely new users, are shown in Table 1. Two diagrams of the
accuracy and loss for an experiment using transfer learning to
perform gesture recognition, with 40 epochs in total, with the
80:20 method is shown in Figure 7 for the visualization of the
convergence of the training and testing phases.

It was thus observed that transfer learning led to an
improvement of 11% in the accuracy results, in cases where new
users were introduced to the dataset, which is rather significant.
After running the same experiment, using early stopping, the
accuracy increased to 98.5%. Also, in Figure 8, the confusion
matrices are presented with only new users in the testing set

TABLE 1 | Recognition accuracy and f-score with and without transfer learning.

Accuracy (%) F-score (%)

Test with

no new users

No transfer learning 99.8 99.8

Transfer learning 99.9 99.8

Test with

new users

No transfer learning 84.68 60

Transfer learning,

40 epochs
95.7 97.2

Transfer learning,

early stopping
98.5 98.6

without the use of transfer learning (above) and with transfer
learning (below).

In the two confusion matrices presented, a significant total
improvement of 11% is observed, as already mentioned. More
specifically, for each gesture, in the case where transfer learning
was not used, G1 and G2 were not recognized correctly at all,
while when transfer learning is used, the recognition level rises to
100%. Even if these gestures are considered as simple and rather
static, transfer learning was required for the 3DCNN network to
be able to perform accurate recognition. Concerning G5 (Screw
gold card) and G9 (Place gold card), satisfactory results can be
observed even without transfer learning, which can be explained
by the fact that these two classes have the characteristic of the
introduction of the gold card, which makes them much more
discrete for the network than G1, G2, G3, G4, and G10.

We can indeed foresee that when the learning base
contains examples of an operator’s gestures, his/her future
gestures will be better recognized by the system. However,
since the implementation of 3DCNNs is a method with high
computational time demands, one of the goals of this work is to
examine if the proposed gesture recognition module can be used
in the assembly-plant directly, without any further training. At
the same time, we had to ask ourselves howmany iterations of the
same operator were necessary in order to have an improvement
in the recognition rate. InTable 2 and Figure 9, the improvement
rates in recognition accuracy are presented in the cases where 1, 3,
6, or 9 iterations of the test user were added in the training phase.
The baseline for these experiments is the result extracted when
there are no iterations for this operator in the training set. At that
point, a recognition accuracy of 95.76% was achieved, leading
to the conclusion that, indeed, the proposed gesture recognition
module could be used in an assembly line, without the need for
it to be trained with samples from each new human operator.
The rest of the results extracted provide an idea of what can be
deemed a sufficient amount of data to be used in the training
phase for the desired recognition results. In this particular case, it
was the number of 3 sets that gave the best results and reached an
accuracy level of up to 99.8%.

Other experiments performed using the same network
architecture, but with a TV assembly dataset recorded not from
an egocentric, but from a top view, provided results that reached
up to 96% with an 80–20 approach. Thus, the results with only
new users in the test set were much lower than the ones provided
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FIGURE 6 | Preparation process of the dataset used for transfer learning.

FIGURE 7 | Accuracy and loss diagrams of the experiment with transfer

learning, trained for 40 epochs in total.

in this work. This result enforces the added value of an egocentric
dataset, as in the top-view it was observed that in many frames,
important information for the gesture recognition module was
either occluded or out of the frame.

The results presented are compared to the work of Coupeté
et al. (2016) that used a Hidden Markov Models gesture
recognition engine, in a HRC assembly scenario. The authors
in this work, deployed Nearest Neighbors (k-NNs), geodesic
distances, as well as Hidden Markov Models, to perform gesture

recognition, reaching recognition accuracy results of 85%, with
a split of the training and testing data using the 80:20 method,
while when testing with unknown operators, the accuracy results
concluded to an accuracy of 80% in total. The method presented
in this specific paper, outperforms the recognition results of
Coupeté et al. (2016), showing very satisfying results.

6. CONTROL OF THE ROBOT AND
EVALUATION OF HRC SCENARIO

The cobot used in this scenario was the UR38 robotic arm from
Universal Robots. The external parts that were used for grasping
the cards and for the introduction of physical interaction were
from ROBOTIQ (gripper: 2F-1409 & force torque sensor: FT-
300-S10). For the control of the robotic arm, Robot Operating
System (ROS) was used. Official ROS packages were used, in this
instance, both for the control of the robotic arm (UR311) and for
the control of external parts (gripper & force sensor12).

As mentioned previously, during the execution of every
experiment, there were two different types of robot goal points.
First of all, there were the predefined points, like the waiting
position or the handover position in the experiments “Physical
Interaction” and “Gesture Recognition”. On the other hand, when
pose estimation was inserted, goal points that were estimated
on-the-fly were sent to the robot. ROS provides plenty of
libraries for the control of the robot. One of them, named
ActionLib was used to allow the motion of the robot through
a series of predefined poses. To be more specific, it takes a
series of robot poses to form a ROS action. To achieve tasks
using actions, the notion of a goal that can be sent to an
ActionServer by an ActionClient is introduced. The goal is a
PoseStamed message that contains information about where the
robot should move within its environment. For each position,
it computes the inverse kinematics solution to find the joint
angles corresponding to the end effector position. Through
this procedure, it creates a smooth trajectory and passes it to
the drivers of the robot for execution. For experiments with

8https://www.universal-robots.com/products/ur3-robot/
9https://robotiq.com/products/ft-300-force-torque-sensor
10https://robotiq.com/products/2f85-140-adaptive-robot-gripper
11https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
12https://github.com/ros-industrial/robotiq
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FIGURE 8 | Confusion matrices with only new users in the test set. Without transfer learning (top) and with transfer learning (bottom).
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TABLE 2 | Contribution of the number of sets from the new user in improving

recognition accuracy.

Number of added sets

Improvement rates

of recognition

1 3 6 9

+2.2% +1.9% +0% +0.2%

pose estimation MoveIt13, a motion planning framework named
Open Motion Planning Library (OMPL) was used. From the
aforementioned pose estimation procedure, the position of the
operator’s hand was perceivable and was sent to the robot in the
Cartesian space. Therefore, for the specific motion of the robot,
the Cartesian path was computed using the MoveIt framework,
with specific constraints (same orientation of end effector and
safety restriction of velocity). Cartesian planning supports a type
of constraint that keeps the robot end effector upright, in order
to reduce the possibility of injuring the operator. Cartesian path
planning, through the MoveIt framework, satisfied the use-case
constraints, as the end effector moved along a straight line, using
waypoints interpolation.

Common metrics derived from the literature were used for
the evaluation of the proposed Human-Robot Interaction (HRI)
system as a whole, the effectiveness of the cobot, and the
opinion of the human operators about the Human-Robot (HR)
interaction. The evaluation of the system as a whole was able
to be measured by specific metrics, such as the efficiency of the
robotic arm. This included the time it took for the cobot to move,
in relation to the time that the whole routine needed. Had this
been extremely small, then this would have revealed that the
specific cobot could be used in two assembly lines in parallel,
thus speeding up the production process. The evaluation of the
effectiveness of the robot was able to be measured by metrics
such as neglect tolerance (NT), which is concerned with the
amount of time that a human can ignore a cobot, and also robot
attention demand (RAD), which measures the attention that the
cobot demands from the operator, depending on the degree of
Interaction Effort (IE) that is expected from the user. The smaller
this number is, the more realistic the interaction between the
human and the cobot is.

The NASA Task Load Index (TLX)14, is widely used as
a subjective workload assessment tool, which rates perceived
workload (both mental and physical) in order to assess a task.
A version adapted to the specific use case was implemented,
in order to evaluate the workload of the task of screwing of
electronic cards on a frame. In addition, for every experiment,
users were questioned about the relationship that was developed
between the robotic arm and them. Finally, users responded
concerning which experiment provided the most natural and
realistic collaboration.

13https://moveit.ros.org/
14https://humansystems.arc.nasa.gov/groups/tlx/

7. RESULTS

Every experiment was executed twice by 14 operators (the
group consists of 4 women and 10 men, aged from 23 to
44 with little and medium experience of the execution of
TV assembly). During each execution, the operator followed a
particular sequence of actions. Initially, s/he asked for the first
green card. The robotic arm brought it and the operator checked
to see whether the card was functional or not. S/he informed
the robotic arm, concerning the functionality of the card, and it
reacted accordingly. When the operator had a functional card,
s/he started screwing it in place. When the operator was finished,
s/he asked for the second card and the robotic arm brought it.
The same sequence of actions was executed until both cards were
screwed onto the TV panel.

In the first execution of each experiment, for each operator,
the first card of both types (green and gold) was deliberately
not functional. As mentioned before, the operator had to inform
the robotic arm about the functionality of the electronic cards,
depending on the type of interaction that was used in each
experiment. In the second execution, every card (of both types)
delivered was functional. The purpose of these two types of
experiments was to present the adaptation of the robotic arm
with a predicted interruption in the procedure. The cycle time
for each experiment is presented in Figure 10 by a whisker plot
showing and comparing distributions. Experiments with non-
functional cards of both kinds are referred to as Form A and
the ones with both cards functional are referred to as Form B. A
one-way ANOVA for experiments of Form B revealed that there
is not a statistically significant difference in cycle time between
different types of interaction [F(between groups df, within groups
df) = [0,29], p = [0,88]]. This can be justified as the time of
interaction is small and the main parameter that affects the
cycle time is the duration of card-screwing operation. However,
the questionnaires, which are presented later, proved that the
insertion of gesture recognition and pose estimation improves
the sense of collaboration and reduce the motion of every user.
A second one-way ANOVA test for experiments of Form A is
executed and confirms that cycle time changes significantly for
different types of interaction (F = [10,71], p = [9,91e-06]). During
the execution of the experiments of Form A, the completion of
the routine, when gesture recognition was implemented, lasted
20% less than the experiment “Physical Interaction” and about
13% less than the experiments where pose estimation was used.

Figure 10 presents the adaptation of the average cycle time
of the routine, depending on the sequence followed. The
cycle time of the routine is dynamic and from Figure 10 one
more interesting result appears. The fastest execution of the
routine takes place when gesture recognition is used as the
means of interaction between the operator and the robotic
arm. Furthermore, it is important to mention that in Figure 10,
the gap between the cycle time of the experiments of Form
A and B appears to be about 20% less in the experiment
“Gesture Recognition”. This metric is an indication that the
implementation of gesture recognition in this HRC scenario can
reduce the cycle time of the routine, even though predicted or
unpredicted incidents occur.
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FIGURE 9 | Performance improvement according to the number of gesture examples that are added in the training set and provided by a given user.

FIGURE 10 | Dynamic cycle time depending on the sequence. Form A: Experiments where the first card of each kind is non-functional. Form B: Experiments where

every card is functional.

Figure 11 presents the average timeline of execution of each
experiment of Form A. The purpose of this figure is the
presentation of the task of each participant in this collaboration
and the way that they interact. By way of comparison of
each of the interaction types used, the response time for
each interaction is given. Response time, in order to facilitate

this comparison, is defined as the time from the beginning
of the motion of the operator up to the moment that the
robot starts moving. The average response time of Physical
Interaction (PI) in all experiments is 1.63 s, as compared
with 2.87 s, which is the response time for Pose Estimation.
Gesture recognition is located between these two and amounts
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FIGURE 11 | Average timeline of each experiment (Form A).

to 2.01 s. Despite the fact that PI seems to display the best
response time, in Figure 11 the average cycle time of the
experiment “Physical Interaction” seems to be greater. This

can be explained by the fact that the robot interacts more
implicitly and less explicitly (i.e., through direct commands from
the operator).
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In the experiment “Physical Interaction”, the operator has to
stop his routine and inform the robot about his current action
(by pressing the button) which is replaced by recognition of
professional gestures and pose estimation in later experiments.
These two modules make the execution of the experiment faster.
In the case of the experiments “Pose Estimation” and “Sonic
Notification”, the information about the completion of screwing
each card is provided to the robotic arm by the position of
the operator’s hand (the operator lets go of the screwdriver)
and in the case of gesture recognition, the robotic arm is
constantly provided with information about the actions that are
being executed by the operator. In every experiment, there is a
particular sequence of actions that is followed by the operator,
which is a safeguard for the smooth execution of the routine.

In Table 3, the metrics that are used for the evaluation of
the HRC scenario are presented. Initially, the efficiency of the
robot (i.e., the percentage of time that the robot moves while
running a program-routine) is measured. During the execution
of experiment 1 and 4, the handover position is predefined
and the time that the robot moves during the execution of the
experiment doesn’t change (it is represented by an * symbol
in Table 3). The control box of the robotic arm certifies that
while the robotic arm is in motion, the power demanded is
approximately 100 W, whereas during the time that the robotic
arm remains motionless, it is about 75 W. Thus, this metric
informs the operator concerning the time during which the robot
is moving and, therefore, concerning the power demands of the
robot. As the cycle time of the routine of the experiment “Gesture
Recognition” is lower and the efficiency of the robot remains at the
same level, the motion time of the robot is less, compared to the
other experiments. However, by adding the gesture recognition
module to within the scenario, and thus a new computer that
exploits its GPU to almost its maximum capacity, as well as a
camera that provides streaming in real-time, this increases the
total power demand by 60 W. As the routine for the whole
TV assembly scenario using gesture recognition lasts 136 s, this
means an increase of 2.28 Wh for every TV assembled.

Neglect Tolerance (NT) and Interaction Effort (IE), that were
mentioned previously, are also presented in Table 3 with their
standard deviation in parenthesis. Robot Attention Demand
(RAD) is calculated using the following equation:

RAD =
IE

NT + IE
(7)

This metric provides us with information about how many times
the operator has paid attention to the robot and has provided it
with commands concerning the next step of the routine. As NT
contains the time when the screwing of cards is executed, RAD
is a metric that depends on the rhythm of each operator. The
greater the value of NT is, the less rich information the robot
receives about the human’s actions and intentions. Moreover,
the larger the RAD, the more the robot is able to understand
and adapt to its partner. The average, as presented in Table 3

and its standard deviation in parenthesis, shows that RAD is
stable among the last four experiments, despite the fact that NT
is significantly smaller during the experiments in which gesture

recognition is implemented. The reason that RAD is smaller
during the execution of the experiment “Physical Interaction” is
that theNT is greater, as the operator interacts only explicitly with
the robotic arm.

During the execution of the experiments without spatial
adaptation (SA), the operator receives the cards from a particular
handover position (PHP). The KPI that is proposed in equation
8 indicates the percentage of robot spatial adaptation in the
case of every operator. For the calculation of the KPI, the
distance from the waiting point (WP), to the particular handover
position for the experiments that is stable, is compared to
the adaptable handover position (AHP) for the experiments in
which pose estimation is implemented. Distances are measured
in centimeters. The higher the adaptation rate, the greater the
effort that was demanded of the operator during the experiments,
without spatial adjustment. As Table 4 shows, operators 3 and
12 asked for the card to be brought closer to the particular
handover position and as a result the robotic arm had to adapt
less than for the other operators. This KPI could also be useful
for discovering the position that each individual user prefers as
the handover position.

SA(%) =
‖AHP −WP‖ − ‖PHP −WP‖

‖PHP −WP‖
(8)

Where SA: spatial adaptation, AHP: adapted handover position,
WP: waiting point and PHP: particular handover position.

Human factors (or ergonomics) are defined by ISO 26800
as the “scientific discipline concerned with the understanding
of interactions among human and other elements of a system,
and the profession that applies theory, principles, data, and
methods to design in order to optimize human well-being and
overall system performance”. In order to achieve an optimal
level of collaboration, it is essential to take into account the
opinion of the human involved in operations with the robot.
To evaluate the execution of the experiments users responded
to two different questionnaires. Initially the workload of the TV
assembling task was estimated through the NASA-TLX. This tool
consists of a questionnaire with six items for evaluation: mental
demand, physical demand, temporal demand, effort, frustration
and performance.

11 out of 14 participants replied that the task they undertook
was neither physically nor mentally demanding. In addition,
none of the them felt that the pace of the task was hurried. Thus,
the reason that a cobot is used to substitute a human operator
for this task is the need for repeatability and the fact that a
cobot can not only repeat the same task many times, but can
perform the task precisely and fast. Every participant was able
to accomplish all the experiments and responded that they did
not find it difficult to interact with the robot and understand its
reactions. Due to the inexperience of some users, some errors
occurred during the execution of the experiments; however, this
did not affect the accomplishment of the task, as the robotic arm
was following a particular sequence of actions.

In addition, the participants were asked to categorize the type
of HRI of each experiment and to characterize the relationship
between the robot and the operator during the execution of each
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TABLE 3 | Average of HRC metrics for each experiment. Neglect Tolerance (s), Interaction effort (s), Robot Attention Demand (RAD), and Efficiency of the robot(%) (*no

spatial adaptation).

Neglect tolerance Interaction effort RAD Efficiency of the robot

Physical interaction 118.9 (σ : 5.4) 15.5 (σ : 3.2) 0.12 (σ : 0.001) 23*

Pose estimation 90.6 (σ : 3.8) 27.6 (σ : 4.1) 0.23 (σ : 0.001) 31 (σ : 0.3)

Sound notification 88.8 (σ : 4.1) 30.9 (σ : 4.7) 0.26 (σ : 0.002) 30 (σ : 0.8)

Gesture recognition 61.4 (σ : 3.2) 23.1 (σ : 2.6) 0.27 (σ : 0.001) 28*

Combination 88.1 (σ : 3.6) 30.0 (σ : 4.0) 0.25 (σ : 0.001) 29 (σ : 0.4)

TABLE 4 | Spatial adaptation (%) of each operator.

Operators 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Spatial adaptation 40.2 33.9 19.6 45.6 36.5 40.2 41.9 39.5 27.5 28.9 33.1 21.5 39.2 23.9

experiment. In section 2.1, the categories of HRI are analyzed
(Coexistance, Synchronized Cooperation and Collaboration). In
the first part of Figure 12, the types, from among which the
participants chose the category of HRI, are presented. The
majority of the respondents thought that the implementation
of gesture recognition in the experiment “Gesture Recognition”
and “Combination” strengthened the sense of collaboration, while
they felt that the first three experiments belonged to the category
of synchronized cooperation. All the participants considered that
with only “Physical Interaction”, the robotic arm was simply
following the human operator, which led to slower execution
of the task. Finally, as was mentioned before, the aim of this
research is to convert the robot from a useful machine to a
real collaborator. When only physical interaction was used (1st
experiment) most of the users felt that the robot had a supporting
role. However, 9 out of 14 participants declared that the insertion
of “Pose estimation” or “Gesture Recognition” made them feel that
their contribution to the task was equal to that of the robot.

8. DISCUSSION

The proposed methodology and the experiments concerning
the contribution of different modalities to an HRC scenario,
concludes by showing great potential for the future. Both
hypotheses that were defined at the beginning of this work, are
evaluated. Through the experiments performed, it was validated
that on what concerns the temporal adaptation of the robotic
arm, the insertion of gesture recognition reduces the cycle time
of the routine of every operator (by 20% on average), adding a
relatively small increase in energy consumption by the system.
The second hypothesis was concerned with the implementation
of pose estimation in order to achieve the spatial adaptation
of the robotic arm. According to the results collected, the
hypotheses presented are both valid. For 9 of the 14 operators,
the percentage of spatial adaptation is more than 30%, which
shows the importance of this modality regarding reducing the
operator’s effort.

Concerning the different modalities, gesture recognition
is proved to be capable of accelerating an assembly line

and of providing the human operator with a sense of
true cooperation with the cobot and not just coexistence.
Meanwhile, pose estimation offers the prospect of converting
the cobot to a partner who adapts to every operator. A
significant observation for pose estimation is that robot
attention demand is increasing while the average motion time
of the robot decreases in contrast to physical interaction.
The argument given above proves that the cobot possesses
more information about the human operator and as a
result it moves less during the routine, as it can predict
human’s motions.

In both gesture recognition and pose estimation modules,
the response time is satisfactory, within a challenging task, that
facilitates the spatiotemporal adaptation. A great improvement
in the accuracy of gesture recognition was noted after the
implementation of transfer learning, proving that the initial
amount of acquired data was not sufficient, even after a
few sessions of recording. 3DCNNs have to be robust and
extract confident results, even in real-time, with operators
that the network has not been trained with. Egocentric
gesture recognition might be a challenging task, but it can
lead to impressive results, independent of anthropometric
characteristics and clothing. The most important observation
that the gestural module provided, was the fact that it can
be used in a real-life assembly line with great results, without
retraining the network each time that a new human operator
was introduced to it. Even though handling data from an
egocentric point of view was a challenging task in order
for an accurate classification to be performed, and for the
safety of the human operator to be ensured, it provided great
potential for the future. Apart from this, the TV assembly
dataset created can be enriched with more classes in an
egocentric view from different professional environments, in
order for the proposed approach to respond to different
professional setups.

The operator’s sense of collaboration with the cobot
improved significantly because of the sonic notification. It
could be enriched with many different kinds of messages;
however, due to the fact that this use-case is intended for
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FIGURE 12 | (i) Categories of Human-Robot Interaction, (ii) Relationship between robot and human operator.

an industrial environment, simplicity has to be preserved.
Furthermore, the existence of many different sonic notifications
could create comprehension problems in the case of many
parallel assembly lines. The questionnaire validated the fact
that the task was neither mentally nor physically demanding.
The reason that it was used for this research was its
repetitiveness, because robots tend to take over the dull,
dirty, dangerous and dear (i.e., costly) tasks from humans,
otherwise known as the 4 Ds of robotization. Finally, according
to the answers of the participants, the implementation of
pose estimation made them feel that they participated equally
with the robot in the routine of TV assembly, while gesture
recognition enhanced the sense of collaboration in contrast to
synchronized cooperation.

9. CONCLUSION AND FUTURE WORK

In this paper, an HRC scenario is defined and different
modalities are evaluated concerning the cycle time of the
execution of a TV assembly routine and the naturalness
of this collaboration, according to the human operators.
The insertion of gesture recognition accelerates the
execution of the proposed routine by about 20%, reducing,
in parallel, the effort required of the operator, in order
to perform.

In this research, a new KPI regarding spatial adaptation
is proposed and shows that the insertion of a cobot with a
dynamic spatial profile that adjusted to the operators, changes
the handover position of the experiment by up to 40%.
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The ergonomic parameters of a task can be analyzed and
the robot adjusts its motion not only to avoid collisions
with the operator, but also in order to ergonomically
improve the pose of the operator during the execution of
their task.

Moreover, this paper opens up potential for investigating
industrial HRC scenarios and proposing intelligent and efficient
solutions on the road to Industry 4.0. This research could
have been enriched with experiments executed by professional
users from the industry; however, due to the conditions
imposed by Covid-19 restrictions, this was impossible. Our
future work will be focused on the upgrading of the robot’s
perception of the user and their environment, with an
aim to improving their collaboration. To this end, the
way that the robot can make best use of pose estimation
is investigated. Finally, the fact that the robot is able
to perceive through pose estimation, and to follow the
position and every action of the operator in real time,
undoubtedly improves their collaboration and further facilitates
the insertion of robots in common industrial work-spaces with
human operators.
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