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Robotic leg prostheses and exoskeletons can provide powered locomotor assistance to

older adults and/or persons with physical disabilities. However, the current locomotion

mode recognition systems being developed for automated high-level control and

decision-making rely on mechanical, inertial, and/or neuromuscular sensors, which

inherently have limited prediction horizons (i.e., analogous to walking blindfolded).

Inspired by the human vision-locomotor control system, we developed an environment

classification system powered by computer vision and deep learning to predict

the oncoming walking environments prior to physical interaction, therein allowing

for more accurate and robust high-level control decisions. In this study, we first

reviewed the development of our “ExoNet” database—the largest and most diverse

open-source dataset of wearable camera images of indoor and outdoor real-world

walking environments, which were annotated using a hierarchical labeling architecture.

We then trained and tested over a dozen state-of-the-art deep convolutional neural

networks (CNNs) on the ExoNet database for image classification and automatic feature

engineering, including: EfficientNetB0, InceptionV3, MobileNet, MobileNetV2, VGG16,

VGG19, Xception, ResNet50, ResNet101, ResNet152, DenseNet121, DenseNet169,

and DenseNet201. Finally, we quantitatively compared the benchmarked CNN

architectures and their environment classification predictions using an operational

metric called “NetScore,” which balances the image classification accuracy with the

computational and memory storage requirements (i.e., important for onboard real-time

inference with mobile computing devices). Our comparative analyses showed that the

EfficientNetB0 network achieves the highest test accuracy; VGG16 the fastest inference

time; and MobileNetV2 the best NetScore, which can inform the optimal architecture

design or selection depending on the desired performance. Overall, this study provides

a large-scale benchmark and reference for next-generation environment classification

systems for robotic leg prostheses and exoskeletons.
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INTRODUCTION

There are currently hundreds of millions of individuals
worldwide with mobility impairments resulting from aging
and/or physical disabilities (Grimmer et al., 2019). Fortunately,
newly-developed robotic leg prostheses and exoskeletons can
replace the propulsive function of amputated or impaired
biological limbs and allow users to perform daily locomotor
activities that require net positive power generation using
motorized hip, knee, and/or ankle joints (Tucker et al., 2015;
Young and Ferris, 2017; Laschowski and Andrysek, 2018; Krausz
and Hargrove, 2019). However, the control of these wearable
robotic devices is extremely difficult and often considered one of
the leading challenges to real-world deployment (Tucker et al.,
2015; Young and Ferris, 2017).

Most robotic leg prostheses and exoskeletons use a
hierarchical control architecture, including high, mid, and
low-level controllers (Tucker et al., 2015; Young and Ferris,
2017) (Figure 1). The high-level controller is responsible for
state estimation and predicting the user’s locomotor intent.
The mid-level controller converts the locomotor activity into
mode-specific reference trajectories using dynamic equations of
the biomechatronic system; this level of control often consists
of individual finite-state machines with discrete mechanical
impedance parameters like stiffness and damping coefficients,
which are heuristically tuned for different locomotor activities
to generate the desired device states. The low-level controller
uses standard controls engineering algorithms like proportional-
integral-derivative (PID) control to calculate the error between
the measured and desired device states and command the robotic
actuators to minimize the error via reference tracking and
closed-loop feedback control (Tucker et al., 2015; Young and
Ferris, 2017; Krausz and Hargrove, 2019).

High-level transitions between locomotor activities remain
a significant challenge. Inaccurate and/or delayed decisions
could result in loss-of-balance and injury, which can be
especially problematic when involving stairs. Switching between
different mid-level controllers is supervised by the high-level
controller, which infers the locomotor intent using either sensor
data (i.e., for devices under research and development) or
direct communication from the user (i.e., for commercially
available devices) (Figure 1). For instance, the Össur Power Knee
prosthesis and the ReWalk and Indego powered exoskeletons
require the users to perform exaggerated movements or use
hand controls to manually switch between locomotion modes
(Tucker et al., 2015; Young and Ferris, 2017). Although highly
accurate in communicating the user’s locomotor intent, manual
high-level control and decision making can be time-consuming,
inconvenient, and cognitively demanding (Karacan et al., 2020).
Researchers have thus been working on developing automated
locomotion mode recognition systems using pattern recognition
algorithms and data from wearable sensors like inertial
measurement units (IMUs) and surface electromyography
(EMG), therein shifting the high-level control burden from the
user to an intelligent controller (Figure 2).

Mechanical sensors embedded in robotic leg prostheses and
exoskeletons can be used for state estimation by measuring

the joint angles and angular velocities, and interaction forces
and/or torques between the human and device, and between
the device and environment. IMU sensors can measure angular
velocities, accelerations, and direction of body segments.
Although mechanical and inertial sensors can allow for fully
integrated control systems, these sensors only respond to
the user’s movements. In contrast, the electrical potentials of
biological muscles, as recorded using surface EMG, precede
movement initiation and thus could predict locomotion mode
transitions with small prediction horizons. EMG signals could
also be used for proportional myoelectric control (Nasr et al.,
2021). Fusing information from mechanical and/or inertial
sensors with surface EMG, known as neuromuscular-mechanical
data fusion, can improve the locomotion mode recognition
accuracies and decision times compared to implementing
either system individually (Huang et al., 2011a,b; Du et al.,
2012; Wang et al., 2013; Liu et al., 2016; Krausz and
Hargrove, 2021). However, neuromuscular-mechanical data
are user-dependent, therein often requiring time-consuming
experiments to amass individual datasets, and surface EMG
require calibration and are susceptible to fatigue, changes in
electrode-skin conductivity, and crosstalk between adjacent
muscles (Tucker et al., 2015; Young and Ferris, 2017). Despite
the advances in automated intent recognition using mechanical,
inertial, and/or neuromuscular sensors, further improvements
in the system performance are desired for safe and robust
locomotor control.

LITERATURE REVIEW

Taking inspiration from the human vision-locomotor control
system, supplementing neuromuscular-mechanical data with
information about the oncoming walking environment could
improve the automated high-level control performance
(Figure 2). Environment sensing would precede modulation
of the user’s muscle activations and/or walking biomechanics,
therein allowing for more accurate and robust high-level
control decisions by minimizing the decision space. During
human locomotion, the central nervous system acquires state
information from biological sensors (e.g., the eyes) through
ascending pathways, which are used to actuate and control the
musculoskeletal system through feedforward efferent commands
(Patla, 1997; Tucker et al., 2015). However, these control
loops are compromised in persons using assistive devices due
to limitations in the human-machine data communication.
Environment sensing and classification could artificially
restore these control loops for automated high-level control.
Environment information could also be used to adapt the
mid-level reference trajectories (e.g., increasing the actuator joint
torques for toe clearance corresponding to an obstacle height)
(Zhang et al., 2020); optimal path planning (e.g., identifying
opportunities for energy recovery) (Laschowski et al., 2019a,
2021a); and varying foot placement based on the walking surface
(Leo and Farinella, 2018).

One of the earliest studies fusing neuromuscular-mechanical
data with environment information for prosthetic leg control
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FIGURE 1 | Hierarchical control architecture of robotic leg prostheses and exoskeletons, including high, mid, and low-level controllers. The high-level controller selects

the desired locomotion mode using either (A) manual communication from the user (i.e., for commercially available devices) or (B) automated systems (i.e., for devices

under research and development).

came from Zhang et al. (2011), Huang et al. (2011a), Du et al.
(2012), Wang et al. (2013), Liu et al. (2016),. Different walking
environments were statistically modeled as prior probabilities
using the principle of maximum entropy and incorporated into
the discriminant function of an LDA classification algorithm. The
group simulated different walking environments by adjusting
the prior probabilities of each class, which allowed their
locomotion mode recognition system to adapt to different
environments. Using these adaptive prior probabilities based
on terrain information significantly outperformed (i.e., 95.5%
classification accuracy) their locomotion mode recognition
system based on neuromuscular-mechanical data alone with
equal prior probabilities (i.e., 90.6% accuracy) (Wang et al.,
2013). These seminal papers showed (1) how environment
information could be incorporated into an automated high-
level controller; (2) that including such information could
improve the locomotion mode recognition accuracies and
decision times; and (3) that the controller could be relatively
robust to noisy and imperfect environment predictions such that

the neuromuscular-mechanical data dominated the high-level
decision making (Huang et al., 2011a; Du et al., 2012; Wang et al.,
2013; Liu et al., 2016).

Several researchers have explored using wearable radar
detectors (Kleiner et al., 2018) and laser rangefinders (Zhang
et al., 2011; Wang et al., 2013; Liu et al., 2016) for active
environment sensing. Unlike camera-based systems, these
sensors circumvent the need for computationally expensive
image processing and classification. Radar can measure distances
through non-conductingmaterials like clothing and are invariant
to outdoor lighting conditions and surface textures. Using a leg-
mounted radar detector, Herr’s research group (Kleiner et al.,
2018) measured stair distances and heights within 1.5 cm and
0.34 cm average accuracies, respectively, up to 6.25m maximum
distances. However, radar reflection signatures struggle with
source separation of multiple objects and have relatively low
resolution. Huang and colleagues (Zhang et al., 2011; Wang et al.,
2013; Liu et al., 2016) developed a waist-mounted system with
an IMU and laser rangefinder to reconstruct the geometry of the
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FIGURE 2 | An automated locomotion mode recognition system for robotic leg prostheses and exoskeletons, also known as an intent recognition system or intelligent

high-level controller. These systems can be supplemented with an environment recognition system to predict the oncoming walking environments prior to physical

interaction, therein minimizing the high-level decision space. The photograph (right) is the lead author wearing our robotic exoskeleton.

FIGURE 3 | Photograph of the lead author walking with our robotic

exoskeleton with vision-based environment sensing superimposed.

oncoming walking environments between 300 and 10,000mm
ranges. Environmental features like the terrain height, distance,
and slope were used for classification via heuristic rule-based
thresholds. The system achieved 98.1% classification accuracy
(Zhang et al., 2011). While simple and effective, their system
required subject-specific calibration (e.g., the device mounting
height) and provided only a single distance measurement.

Compared to radar and laser rangefinders, cameras can
provide more detailed information about the field-of-view and
detect physical obstacles and terrain changes in peripheral
locations (Figure 3). Most environment recognition systems
have used RGB cameras (Krausz and Hargrove, 2015; Diaz
et al., 2018; Khademi and Simon, 2019; Laschowski et al.,
2019b, 2020b, 2021b; Novo-Torres et al., 2019; Da Silva et al.,
2020; Zhong et al., 2020) or 3D depth cameras (Krausz et al.,
2015, 2019; Varol and Massalin, 2016; Hu et al., 2018; Massalin
et al., 2018; Zhang et al., 2019b,c,d, 2020; Krausz and Hargrove,
2021; Tschiedel et al., 2021) mounted on the chest (Krausz
et al., 2015; Laschowski et al., 2019b, 2020b, 2021b), waist
(Khademi and Simon, 2019; Krausz et al., 2019; Zhang et al.,
2019d; Krausz and Hargrove, 2021), or lower-limbs (Varol and
Massalin, 2016; Diaz et al., 2018; Massalin et al., 2018; Zhang
et al., 2019b,c, 2020; Da Silva et al., 2020; Zhong et al., 2020)
(Table 1). Few studies have adopted head-mounted cameras for
biomimicry (Novo-Torres et al., 2019; Zhong et al., 2020). Zhong
et al. (2020) recently compared the effects of different wearable
camera positions on classification performance. Compared to
glasses, their leg-mounted camera more accurately detected
closer walking environments but struggled with incline stairs,
often capturing only 1–2 steps. Although the glasses could
detect further-away environments, the head-mounted camera
also captured irrelevant features like the sky, which reduced the
classification accuracy. The glasses also struggled with detecting
decline stairs and had larger standard deviations in classification
predictions due to head movement.
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TABLE 1 | Experimental datasets used for image classification of walking environments for robotic leg prostheses and exoskeletons.

Reference Camera Body position Dataset size Image resolution Classes

Da Silva et al. (2020) RGB Lower-limb 3,992 512×512 6

Diaz et al. (2018) RGB Lower-limb 3,992 1,080 × 1,920 6

Khademi and Simon (2019) RGB Waist 7,284 224 × 224 3

Krausz and Hargrove (2015) RGB Head 5 928 × 620 2

Krausz et al. (2015) Depth Chest 170 80 × 60 2

Krausz et al. (2019) Depth Waist 4,000 171 × 224 5

Laschowski et al. (2019b) RGB Chest 34,254 224 × 224 3

Laschowski et al. (2020b) RGB Chest 922,790 1280×720 12

Massalin et al. (2018) Depth Lower-limb 402,403 320 × 240 5

Novo-Torres et al. (2019) RGB Head 40,743 128 × 128 2

Varol and Massalin (2016) Depth Lower-limb 22,932 320 × 240 5

Zhang et al. (2019b,c) Depth Lower-limb 7,500 224 × 171 5

Zhang et al. (2019d) Depth Waist 4,016 2048-point cloud 3

Zhang et al. (2020) Depth Lower-limb 7,500 100 × 100 5

Zhong et al. (2020) RGB Head and lower-limb 327,000 1,240 × 1,080 6

Note that the ExoNet database was published in Laschowski et al. (2020b).

TABLE 2 | Previous environment recognition systems that used heuristics, statistical pattern recognition, or support vector machines for image classification of walking

environments.

Reference Feature extractor and classifier Computing devices Test accuracy (%) Computation

time (ms)

Da Silva et al. (2020) Local binary pattern and random forest NVIDIA Jetson TX2 90.0 200

Diaz et al. (2018) SURF features and bag-of-words model Intel Core i7-2600 CPU (3.40GHz) 86.0 N/A

Krausz and Hargrove (2015) Hough transform with Gabor filter or canny edge detector Intel Core i5 N/A 8000

Krausz et al. (2015) Heuristic thresholding and edge detector Intel Core i5 98.8 200

Krausz et al. (2019) Regions-of-interest and linear discriminate analysis Intel Core i7-8750H (2.2GHz) N/A N/A

Massalin et al. (2018) Cubic kernel support vector machine Intel Core i7-2640M (2.8GHz) 94.1 14.9

Varol and Massalin (2016) Support vector machine Intel Core i7-2640M (2.8GHz) 99.0 14.9

Note that each classifier was developed and tested on different image datasets (see Table 1). The computation times are reported per image.

For image classification, researchers have traditionally used
statistical pattern recognition and machine learning algorithms
like support vector machines, which require hand-engineering
(Krausz et al., 2015, 2019; Varol and Massalin, 2016; Diaz et al.,
2018; Hu et al., 2018; Massalin et al., 2018; Da Silva et al., 2020;
Krausz and Hargrove, 2021) (Table 2). Hargrove’s research group
(Krausz et al., 2015, 2019) used standard image processing and
rule-based thresholds to detect convex and concave edges and
vertical and horizontal planes for stair recognition. Although
their algorithm achieved 98.8% classification accuracy, the
computations were time-consuming (i.e.,∼8 seconds/frame) and
the system was evaluated using only five images. In another
example, Huang and colleagues (Diaz et al., 2018) achieved
86% image classification accuracy across six environment classes
using SURF features and a bag-of-words classifier. Varol’s
research group used support vector machines for classifying
depth images, which mapped extracted features into a high-
dimensional space and separated samples into different classes
by constructing optimal hyperplanes with maximum margins
(Varol and Massalin, 2016; Massalin et al., 2018). Their system

achieved 94.1% classification accuracy across five locomotion
modes using a cubic kernel SVM and no dimension reduction
(Massalin et al., 2018). The average computation time was
∼14.9ms per image. Although SVMs are effective in high-
dimensional space and offer good generalization (i.e., robustness
to overfitting), these algorithms require manual selection of
kernel functions and statistical features, which can be time-
consuming and suboptimal.

The latest generation of environment recognition systems
has used convolutional neural networks (CNNs) for image
classification (Rai and Rombokas, 2018; Khademi and Simon,
2019; Laschowski et al., 2019b, 2021b; Novo-Torres et al., 2019;
Zhang et al., 2019b,c,d, 2020; Zhong et al., 2020) (Table 3).
Deep learning replaces manually extracted features with
multilayer networks that can automatically and efficiently
learn the optimal image features from training data. One of
the earliest studies came from Laschowski et al. (2019b), who
designed and trained a 10-layer convolutional neural network
using five-fold cross-validation, which differentiated between
three environment classes with 94.9% classification accuracy.
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TABLE 3 | Previous environment recognition systems that used convolutional neural networks for image classification of walking environments.

Reference Operations (billions) Parameters (millions) Computing Devices Test Accuracy (%) Inference Time (ms)

Khademi and Simon (2019) 7.7 27 Titan X 99.6 50

Laschowski et al. (2019b) 1.2850 4.73 TITAN Xp 94.9 0.9

Novo-Torres et al. (2019) 0.0011 1.13 Geforce GTX 965M 90.0 5.5

Zhang et al. (2019b) 0.0130 0.22 GeForce GTX 1050 Ti 96.8 3.1

Zhang et al. (2019c) 0.0130 0.22 Quadro P400 98.9 3.0

Zhang et al. (2019d) 0.0215 0.05 GeForce GTX 1050 Ti 98.0 2.0

Zhang et al. (2020) 0.0130 0.22 Quadro P400 96.0 3.0

Zhong et al. (2020)† 0.0544 2.20 Jetson TX2 95.4 12.7

Note that each network was trained and tested on different image datasets (see Table 1). The computing hardware were all developed and manufactured by NVIDIA. The number of

operations is expressed in multiply-accumulates. The inference times are reported per image.
†used MobileNetV2 for feature extraction and a Bayesian neural network (gated recurrent unit) for the environment classification.

The convolutional neural network from Simon’s research
group (Khademi and Simon, 2019) achieved 99% classification
accuracy across three environment classes using transfer learning
of pretrained weights. Although CNNs typically outperform
SVMs for image classification and bypass the need for manual
feature engineering (LeCun et al., 2015), deep learning requires
significant and diverse training data to prevent overfitting and
promote generalization. The lack of an open-source, large-
scale image dataset of walking environments has impeded the
development of environment-adaptive control systems for
robotic leg prostheses and exoskeletons. To date, researchers
each individually collected training data to develop their image
classification algorithms. These repetitive measurements are
time-consuming and inefficient, and individual private datasets
have prevented direct comparisons between classification
algorithms from different researchers (Laschowski et al.,
2020a).

Motivated by these limitations, our research group has been
developing large-scale environment sensing and classification
systems powered by computer vision and deep learning. To
support this initiative, we recently published the “ExoNet”
database—the largest and most diverse open-source dataset of
wearable camera images of real-world walking environments
(Laschowski et al., 2020b). In the current study, we first
review the development of our ExoNet database (section
Environment Sensing). We then made the following original
contributions: (1) trained and tested over a dozen state-of-
the-art deep convolutional neural networks on the ExoNet
database for image classification and automatic feature
engineering (section Environment Classification); and (2)
quantitatively compared the benchmarked CNN architectures
and their environment classification predictions using an
operational metric called “NetScore,” which balances the
image classification accuracy with the computational and
memory storage requirements (i.e., important for onboard real-
time inference with mobile computing devices) (section
NetScore Evaluations). Overall, this study provides a
large-scale benchmark and reference for next-generation
environment classification systems for robotic leg prostheses
and exoskeletons.

MATERIALS AND METHODS

Environment Sensing
In this section, we review the development of our ExoNet
database (Laschowski et al., 2020b). One subject (sex: male;
weight: 77 kg; height: 1.8m; age: 30 years) was instrumented
with a wearable smartphone camera system (iPhone XS Max)
(Figure 4). Compared to lower-limb systems (Zhang et al., 2011,
2019b,c, 2020; Varol and Massalin, 2016; Diaz et al., 2018; Hu
et al., 2018; Kleiner et al., 2018; Massalin et al., 2018; Rai
and Rombokas, 2018; Da Silva et al., 2020), our chest-mounted
camera can provide more stable video recording and allow users
to wear pants and dresses without obstructing the visual field-
of-view. The chest-mount height was ∼1.3m from the ground
when the participant stood upright. The smartphone weighs
0.21 kg and has an onboard rechargeable lithium-ion battery,
512-GB of memory storage, and a 64-bit ARM-based integrated
circuit (Apple A12 Bionic) with a six-core CPU and four-core
GPU; these hardware specifications can theoretically support
onboard deep learning inference for real-time environment
classification. The relatively lightweight and unobtrusive nature
of the wearable camera system allowed for unimpeded human
locomotion. Ethical review and approval were not required for
this research study in accordance with the University ofWaterloo
Office of Research Ethics.

Whereas most environment recognition systems have been
limited to controlled indoor environments and/or prearranged
walking circuits (Zhang et al., 2011, 2019b,c,d; Du et al., 2012;
Wang et al., 2013; Krausz et al., 2015, 2019; Liu et al., 2016;
Hu et al., 2018; Kleiner et al., 2018; Rai and Rombokas, 2018;
Khademi and Simon, 2019; Krausz and Hargrove, 2021), our
participant walked around unknown outdoor and indoor
real-world environments while collecting images with occlusions
and intraclass variations (Figure 5). We collected data at various
times throughout the day to include different lighting conditions.
Similar to human gaze fixation during walking (Li et al., 2019),
the visual field-of-view was 1–5m ahead of the participant,
thereby showing the oncoming walking environment rather
than the ground directly underneath the subject’s feet. Images
were sampled at 30Hz with 1280 × 720 resolution. We recorded
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FIGURE 4 | Development of the “ExoNet” database, including (A) a photograph of the wearable camera system used for large-scale data collection; (B) examples of

the high-resolution RGB images of walking environments; and (C) a schematic of the 12-class hierarchical labeling architecture.

over 52 h of video, amounting to ∼5.6 million images. The same
environment was never sampled twice to maximize diversity in
the dataset. Images were collected during the summer, fall, and
winter seasons to capture different weathered surfaces like snow,
grass, and multicolored leaves. The image database, which we
named ExoNet, was uploaded to the IEEE DataPort repository
and is publicly available for download (Laschowski et al., 2020b)
at https://ieee-dataport.org/open-access/exonet-database-
wearable-camera-images-human-locomotion-environments.
The size of the video files is∼140 GB.

For the subject’s self-selected walking speed, there were
relatively minimal differences between consecutive images
sampled at 30Hz. We therefore downsampled and labeled the
images at 5 frames/second to minimize the demands of manual
annotation and increase the diversity in image appearances.
Similar to the ImageNet dataset (Deng et al., 2009), the ExoNet
database was human-annotated using a hierarchical labeling
architecture. Images were mainly labeled according to common
high-level locomotion modes of robotic leg prostheses and
exoskeletons, rather than a purely computer vision perspective.
For instance, images of level-ground terrain showing either
pavement or grass were not differentiated since both surface
textures would be assigned the same high-level locomotion mode
(i.e., level-ground walking). However, with advances in control
system designs, image classification of different walking surface
textures could be beneficial (e.g., adapting the impedance control
parameters online for different surface compliances).

Approximately 923,000 images were annotated using a novel
12-class hierarchical labeling architecture (Figure 4; Table 4).
The dataset included: 31,628 images of “incline stairs transition
wall/door” (I-T-W); 11,040 images of “incline stairs transition
level-ground” (I-T-L); 17,358 images of “incline stairs steady”
(I-S); 28,677 images of “decline stairs transition level-ground”

(D-T-L); 19,150 images of “wall/door transition other” (W-T-
O); 36,710 images of “wall/door steady” (W-S); 379,199 images
of “level-ground transition wall/door” (L-T-W); 153,263 images
of “level-ground transition other” (L-T-O); 26,067 images of
“level-ground transition incline stairs” (L-T-I); 22,607 images of
“level-ground transition decline stairs” (L-T-D); 119,515 images
of “level-ground transition seats” (L-T-E); and 77,576 images of
“level-ground steady” (L-S). These class labels were chosen and
assigned post hoc to capture the different walking environments
from the data collection. Similar to (Zhang et al., 2011; Wang
et al., 2013; Liu et al., 2016), we included an “other” class to
maintain the image classification performance when unlabeled
environments and/or objects like pedestrians, cars, and bicycles
were observable. Accordingly, the W-T-O and W-S classes
include obstructed fields-of-view from walls, doors, and other
close-up objects and/or environments.

Taking inspiration from Huang et al. (2011a), Du et al. (2012),
Wang et al. (2013), Liu et al. (2016), Khademi and Simon
(2019), our labeling architecture included both “steady” (S) and
“transition” (T) states (Figure 6). A steady state describes an
environment where an exoskeleton or prosthesis user would
continue to perform the same locomotion mode (e.g., an image
showing only level-ground terrain). In contrast, a transition state
describes an environment where an exoskeleton or prosthesis
high-level controller might switch between locomotion modes
(e.g., an image showing both level-ground terrain and incline
stairs). Manually labeling these transition states was relatively
subjective. For instance, an image showing level-ground terrain
was labeled “level-ground transition incline stairs” (L-T-I) when
an incline staircase was approximately within the visual field-
of-view. Although the ExoNet database was labeled by one
designated researcher, consistently determining the exact video
frame where an environment would switch between steady and
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FIGURE 5 | Examples of the wearable camera images of indoor and outdoor real-world walking environments in the ExoNet database. Images were collected at

various times throughout the day and across different seasons (i.e., summer, fall, and winter).
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TABLE 4 | The class distributions in the ExoNet database, the images of which

were annotated using a hierarchical labeling architecture.

Label Number of images Percent of dataset (%)

L-T-W 379,199 41.1

L-T-O 153,263 16.6

L-T-E 119,515 13.0

L-S 77,576 8.4

W-S 36,710 4.0

I-T-W 31,628 3.4

D-T-L 28,677 3.1

L-T-I 26,067 2.8

L-T-D 26,067 2.4

W-T-O 19,150 2.1

I-S 17,358 1.9

I-T-L 11,040 1.2

Total 922,790 100

A description of the class labels is provided in the text.

transition states was challenging; Huang et al. (2011a) reported
experiencing similar difficulties.

Environment Classification
Here we describe the design and training of the convolutional
neural networks used for image classification and automatic
feature engineering. Generally speaking, the CNN architectures
contain multiple stacked convolutional and pooling layers with
decreasing spatial resolutions and increasing number of feature
maps. Starting with an input image, the convolutional layers
perform convolution operations (i.e., dot products) between
the inputs and convolutional filters. The first few layers extract
relatively general features, like edges, while deeper layers learn
more abstract, problem-dependent features. The resulting feature
maps are passed through a nonlinear activation function. The
pooling layers spatially downsample the feature maps to reduce
the computational effort by aggregating neighboring elements
using either maximum or average values. The architectures
conclude with one or more fully connected layers and a

FIGURE 6 | Examples of both “steady” and “transition” states in the ExoNet hierarchical labeling architecture. The top and bottom rows are labeled as steady states

and the middle row is labeled a transition state. For each column, the left images show the lead author walking with our robotic exoskeleton and the right images

show the concurrent field-of-view of the wearable camera system (i.e., what the exoskeleton sees).
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loss function, which estimates the probability distribution (i.e.,
scores) of each labeled class. Like ourselves, most previous
CNN-based environment classification systems (Table 3) have
used supervised learning such that the differences between
the predicted and labeled class scores are calculated and the
learnable network parameters (i.e., weights) are optimized to
minimize the loss function via backpropagation and stochastic
gradient descent. After training, the CNNs perform inference
on previously unseen data to evaluate the generalizability of the
learned parameters.

We used TensorFlow 2.3 and the Keras functional API to
build, train, and test over a dozen deep convolutional neutral
networks on the ExoNet database, including: EfficientNetB0
(Tan and Le, 2019); InceptionV3 (Szegedy et al., 2015);
MobileNet (Howard et al., 2017); MobileNetV2 (Sandler
et al., 2018); VGG16 and VGG19 (Simonyan and Zisserman,
2014); Xception (Chollet, 2016); ResNet50, ResNet101, and
ResNet152 (He et al., 2015); and DenseNet121, DenseNet169,
and DenseNet201 (Huang et al., 2017). These architectures
were chosen because they have achieved state-of-the-art
image classification performance on other large-scale datasets
like ImageNet and are often used for comparative analyses
in computer vision (Canziani et al., 2016). During data
preprocessing, the images were cropped to an aspect ratio of 1:1
and downsampled to 256 × 256 using bilinear interpolation.
Random crops of 224 × 224 were used as inputs to the neural
networks; this method of data augmentation helped further
increase the sample diversity. The final densely connected layer
of each CNN architecture was modified by setting the number of
output channels equal to the number of environment classes in
the ExoNet database (n = 12). We used a softmax loss function
to predict the individual class scores. The labeled ExoNet
images were split into training (89.5%), validation (3.5%), and
testing (7%) sets, the proportions of which are consistent with
ImageNet (Deng et al., 2009), which is of comparable size. We
experimented with transfer learning of pretrained weights from
ImageNet but found no additional performance benefit.

Dropout regularization was applied before the final dense
layer to prevent overfitting during training such that the
learnable weights were randomly dropped (i.e., activations set
to zero) during each forward pass at a rate of 0.5. Images were
also randomly flipped horizontally during training to increase
stochasticity and promote generalization. We trained each CNN
architecture for 40 epochs using a batch size and initial learning
rate of 128 and 0.001, respectively; these hyperparameters were
experimentally tuned on the validation set. We explored different
combinations of batch sizes of 32, 64, 128, and 256; epochs of 20,
40, and 60; dropout rates of 0, 0.2, 0.5; and initial learning rates
of 0.01, 0.001, 0.0001, and 0.00001. The learning rate was reduced
during training using a cosine weight decay schedule (Loshchilov
and Hutter, 2016). We calculated the sparse categorical cross-
entropy loss between the labeled and predicted classes and used
the Adam optimizer (Kingma and Ba, 2015), which computes
backpropagated gradients using momentum and an adaptive
learning rate, to update the learnable weights and minimize the
loss function. During testing, we used a single central crop of 224
× 224. Training and inference were both performed on a Tensor

Processing Unit (TPU) version 3–8 by Google Cloud; these
customized chips can allow for accelerated CNN computations
(i.e., matrix multiplications and additions) compared to more
traditional computing devices.

NetScore Evaluations
Here we describe our “NetScore” evaluations. The development
of deep convolutional neural networks has traditionally focused
on improving classification accuracy, often leading to more
accurate yet inefficient algorithms with greater computational
and memory storage requirements (Canziani et al., 2016). These
design features can be especially problematic for deployment on
mobile and embedded systems, which inherently have limited
operating resources. Despite advances in computing devices
like graphics processing units (GPUs), the current embedded
systems in robotic leg prostheses and exoskeletons would struggle
to support the architectural and computational complexities
typically associated with deep learning for computer vision. To
facilitate onboard real-time inference, the ideal convolutional
neural network would achieve high classification accuracy with
minimal parameters, computing operations, and inference time.
Motivated by these design principles, we quantitatively evaluated
and compared the benchmarked CNN architectures (N ) and
their environment classification predictions on the ExoNet
database using an operational metric called “NetScore” (Wong,
2018):

�(N ) = 20 log

(

a (N )α

p (N )β m (N )γ

)

(1)

where a (N ) is the image classification accuracy during inference
(0–100%), p (N ) is the number of parameters expressed
in millions, m (N ) is the number of multiply–accumulates
expressed in billions, and α, β , and γ are coefficients that control
the effects of the classification accuracy, and the architectural and
computational complexities on the NetScore (�), respectively.
We set the coefficients to {α = 2;β = 0.5; γ = 0.5} to better
emphasize the classification accuracy while partially considering
the parameters and computing operations since neural networks
with low accuracy are less practical, regardless of the size and
speed. Note that the NetScore does not explicitly account for
inference time. The number of parameters p (N ) and multiply–
accumulates m (N ) are assumed to be representative of the
architectural and computational complexities, respectively, both
of which are inversely proportional to the NetScore.

RESULTS

Table 5 summarizes the benchmarked CNN architectures (i.e.,
number of parameters and computing operations) and their
environment classification performances on the ExoNet database
(i.e., prediction accuracies, inference times, and NetScores). The
EfficientNetB0 network achieved the highest image classification
accuracy (Ca) during inference (73.2% accuracy), that being
the percentage of true positives (47,265 images) out of the
total number of images in the testing set (64,568 images)
(

Ca =
True Positives
Total Images

× 100%
)

. In contrast, the VGG19 network
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TABLE 5 | The benchmarked CNN architectures and their environment classification performances during inference on the ExoNet database.

CNN architecture Operations (GMACs) Parameters (M) test accuracy (%) Inference time (ms) NetScore

EfficientNetB0 0.39 4.06 73.2 2.5 72.6

InceptionV3 2.84 21.83 71.9 4.1 56.3

MobileNet 0.57 3.24 71.1 1.6 71.4

MobileNetV2 0.30 2.27 72.9 2.2 76.2

VGG16 15.36 14.72 70.1 1.4 50.3

VGG19 19.52 20.03 69.2 1.6 47.7

Xception 4.55 20.89 70.4 2.3 54.1

ResNet50 3.86 23.61 69.5 2.5 54.1

ResNet101 7.58 42.68 70.1 4.2 48.7

ResNet152 11.29 58.40 71.6 5.6 46.0

DenseNet121 2.83 7.05 71.5 4.4 61.2

DenseNet169 3.36 12.66 70.7 5.7 57.7

DenseNet201 4.29 18.35 70.2 6.5 54.9

The test accuracies, parameters, and computing operations are expressed in percentages (0–100%), millions of parameters (M), and billions of multiply-accumulates (GMACs),

respectively. Training and inference were both performed on a Google Cloud TPU. The EfficientNetB0 network achieved the highest test accuracy, VGG16 the fastest inference time,

and MobileNetV2 the best NetScore and least number of parameters and computing operations (bolded).

produced the least accurate predictions, with an overall image
classification accuracy of 69.2%. The range of accuracies across
the benchmarked CNN architectures was thus relatively small
(i.e., maximum arithmetic difference of 4 percentage points).
We observed relatively weak statistical correlations between
both the number of parameters (Pearson r = −0.3) and
computing operations (Pearson r =−0.59) and the classification
accuracies on the ExoNet database across the benchmarked
CNN architectures.

Although the VGG16 and VGG19 networks have the largest
number of computations (i.e.,∼15.4 and∼19.5 billion multiply-
accumulates, respectively), they resulted in the fastest inference
times (i.e., on average 1.4 and 1.6ms per image). In comparison,
the DenseNet201 network has 72.1 and 78% fewer operations
than VGG16 and VGG19, respectively, but was 364 and 306%
slower. These performance trends concur with Ding et al.
(2021), who recently showed that (1) the number of computing
operations does not explicitly reflect the actual inference speed,
and (2) VGG-style architectures can run faster and more
efficiently on computing devices compared to more complicated
architectures like DenseNets due to their relatively simple designs
(i.e., consisting of basic convolutions and ReLU activations). Note
that our inference times were calculated on the Cloud TPU using
a batch size of 8. The relative inference speeds between the
benchmarked CNN architectures (i.e., their ordering from fastest
to slowest) may differ across different computing devices given
that some platforms are designed to accelerate certain operations
better than others (e.g., cloud computing vs. those designed for
mobile and embedded systems).

The ResNet152 network achieved one of the highest
image classification accuracies on the ExoNet database (71.6%
accuracy). However, it received the lowest NetScore (� = 46)
due to the disproportionally large number of parameters (i.e.,
containing more parameters than any other benchmarked CNN
architecture). Surprisingly, the EfficientNetB0 network did not

receive the highest NetScore (� = 72.6) despite achieving the
highest image classification accuracy on the ExoNet database
and the architecture having been designed using a neural
architecture search to optimize the classification accuracy and
computational complexity. The MobileNetV2 network, which
uses depthwise separable convolutions, received the highest
NetScore (� = 76.2), therein demonstrating the best balance
between the image classification accuracy (72.9% accuracy)
and the architectural and computational complexities. These
results suggests that, of the benchmarked CNN architectures, the
MobileNetV2 network might be the most applicable for onboard
real-time inference with mobile computing devices, as would be
the case for robotic leg prostheses and exoskeletons.

Tables 6–8 show the multiclass confusion matrix for
EfficientNetB0, MobileNetV2, and VGG16; the other
benchmarked CNN architectures displayed a similar interclass
trend. The matrix columns and rows are the predicted and
labeled classes, respectively. The diagonal elements are the
classification accuracies for each environment class during
inference, known as true positives, and the nondiagonal elements
are the misclassification percentages; the darker shades represent
higher classification accuracies. The networks most accurately
predicted the “level-ground transition wall/door” (L-T-W)
class with an average accuracy of 84.3 ± 2.1%, followed by the
“level-ground steady” (L-S) class with an average accuracy of
77.3 ± 2.1% and the “decline stairs transition level-ground”
(D-T-L) class with an average accuracy of 76.6 ± 2.4%. Note
that these accuracies, expressed in percentage points, are
averages ± one standard deviation across the benchmarked
CNN architectures. These results could be attributed to the
class imbalances among the training data such that there were
significantly more images of L-T-W environments compared to
other classes. However, some classes with limited images showed
relatively good classification performance. For instance, the
“incline stairs transition level-ground” (I-T-L) class includes only
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TABLE 6 | The multiclass confusion matrix for EfficientNetB0 showing the image classification accuracies (%) during inference on the ExoNet database.

D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E

D-T-L 78.8 0.6 0.3 0.0 0.0 0.0 1.0 4.5 10.6 0.2 2.6 1.4

W-S 0.2 72.1 9.2 0.0 0.3 0.2 0.0 0.3 15.2 0.1 1.9 0.5

W-T-O 0.4 21.9 43.2 0.0 0.4 0.2 0.1 0.1 19.2 0.4 8.8 5.5

I-S 0.0 0.3 0.1 62.1 33.9 1.9 0.0 0.0 0.5 0.6 0.5 0.0

I-T-W 0.0 2.0 0.7 16.8 69.0 2.8 0.0 0.2 1.5 5.8 0.6 0.6

I-T-L 1.0 0.5 0.2 2.5 5.7 77.9 2.2 0.2 6.4 1.5 1.2 0.7

L-S 0.1 0.4 0.0 0.0 0.0 0.1 79.9 0.3 11.9 0.6 6.4 0.2

L-T-D 5.5 0.4 0.6 0.0 0.3 0.1 1.0 53.3 28.3 2.8 4.3 3.6

L-T-W 0.3 1.5 0.4 0.0 0.0 0.1 3.7 0.4 86.5 0.3 4.4 2.3

L-T-I 0.1 1.0 0.2 1.0 3.9 0.4 3.8 0.7 23.3 49.1 12.1 4.4

L-T-O 0.3 0.6 1.1 0.0 0.1 0.1 13.7 0.5 28.8 0.7 47.5 6.6

L-T-E 0.3 0.5 0.3 0.0 0.0 0.1 0.8 0.5 14.0 0.6 10.1 72.7

The columns and rows are the predicted and labeled classes, respectively.

TABLE 7 | The multiclass confusion matrix for MobileNetV2 showing the image classification accuracies (%) during inference on the ExoNet database.

D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E

D-T-L 78.3 0.6 0.4 0.0 0.1 0.0 0.9 5.0 9.9 0.2 2.9 1.8

W-S 0.2 73.4 10.1 0.0 0.3 0.3 0.1 0.4 13.4 0.2 1.2 0.5

W-T-O 0.6 24.2 41.5 0.0 0.4 0.0 0.0 0.6 18.0 0.6 9.5 4.6

I-S 0.0 0.4 0.1 64.7 28.9 2.6 0.4 0.0 0.9 1.3 0.1 0.6

I-T-W 0.0 2.0 0.9 18.5 66.2 3.3 0.0 0.1 2.7 4.9 0.5 1.0

I-T-L 0.2 0.7 0.0 2.2 7.9 73.6 3.4 0.2 7.9 1.7 1.0 1.3

L-S 0.1 0.3 0.0 0.0 0.0 0.1 79.2 0.1 11.9 0.2 7.7 0.4

L-T-D 5.5 0.7 0.4 0.0 0.0 0.1 1.0 53.8 28.2 1.1 5.5 3.7

L-T-W 0.3 1.9 0.5 0.0 0.0 0.1 3.9 0.4 86.5 0.3 4.1 2.0

L-T-I 0.2 1.2 0.1 0.1 3.9 0.4 4.1 1.0 26.1 48.4 9.5 4.9

L-T-O 0.3 0.4 1.2 0.0 0.0 0.1 13.9 0.6 29.5 0.4 47.9 5.6

L-T-E 0.4 0.5 0.6 0.0 0.1 0.1 0.9 0.3 15.3 0.6 10.7 70.7

The columns and rows are the predicted and labeled classes, respectively.

TABLE 8 | The multiclass confusion matrix for VGG16 showing the image classification accuracies (%) during inference on the ExoNet database.

D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E

D-T-L 75.5 0.6 0.6 0.0 0.0 0.2 1.1 5.3 9.9 0.0 3.5 3.3

W-S 0.2 66.1 8.0 0.0 0.1 0.2 0.2 0.1 22.3 0.1 1.7 1.0

W-T-O 0.3 23.6 34.2 0.1 0.1 0.2 0.1 0.2 23.5 0.8 10.1 6.7

I-S 0.0 0.4 0.6 59.2 30.1 3.3 1.5 0.0 1.7 0.9 0.5 1.8

I-T-W 0.1 1.8 1.0 15.1 66.5 1.9 0.0 0.1 5.0 5.4 1.4 1.8

I-T-L 0.5 0.0 0.2 4.5 8.1 64.8 3.9 0.0 13.1 1.9 1.5 1.5

L-S 0.1 0.3 0.0 0.0 0.0 0.0 77.0 0.1 14.8 0.3 7.1 0.2

L-T-D 7.3 0.8 0.7 0.0 0.2 0.0 1.0 43.8 33.3 0.6 7.8 4.5

L-T-W 0.3 1.8 0.4 0.0 0.0 0.1 3.8 0.4 86.9 0.2 4.5 1.7

L-T-I 0.7 1.0 0.3 0.7 5.2 0.6 5.6 1.0 29.9 37.2 12.4 5.4

L-T-O 0.3 0.3 0.9 0.1 0.0 0.0 14.7 0.4 35.2 0.5 41.7 5.8

L-T-E 0.6 0.6 0.5 0.0 0.0 0.0 1.0 0.3 19.6 0.3 10.0 67.0

The columns and rows are the predicted and labeled classes, respectively.
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1.2% of the ExoNet database but achieved 71.2% ± 5.1% average
classification accuracy. Not surprisingly, the least accurate
predictions were for the environment classes that contain “other”
features—i.e., the “wall/door transition other” (W-T-O) class
with an average accuracy of 38.3 ± 3.5% and the “level-ground
transition other” (L-T-O) class with an average accuracy of
46.8 ± 2.4%. These results could be attributed to the greater
noise and randomness of the environments and/or objects in
the images.

In summary, our comparative analyses showed that the
EfficientNetB0 network achieves the highest image classification
accuracy on the ExoNet database during inference; VGG16
achieves the fastest inference time; and MobileNetV2 achieves
the best NetScore and has least number of parameters and
computing operations. These results can help inform the optimal
architecture design or selection depending on the desired
performance of an environment classification system for robotic
leg prostheses and exoskeletons.

DISCUSSION

Here we developed an advanced environment classification
system for robotic leg prostheses and exoskeletons powered by
computer vision and deep learning to predict the oncoming
walking environment prior to physical interactions, therein
allowing for more accurate and robust automated high-level
control decisions. We first reviewed our “ExoNet” database
(Laschowski et al., 2020b)—the largest open-source dataset of
wearable camera images of walking environments. Unparalleled
in both scale and diversity, ExoNet contains∼5.6 million images
of indoor and outdoor real-world walking environments, of
which ∼923,000 images were annotated using a hierarchical
labeling architecture. In terms of original contributions, we
then trained and tested over a dozen state-of-the-art deep
convolutional neural networks on the ExoNet database for image
classification and automatic feature engineering. Finally, we
quantitatively compared the benchmarked CNN architectures
and their environment classification predictions using an
operational metric called “NetScore,” which balances the image
classification accuracy with the computational and memory
storage requirements (i.e., important for onboard real-time
inference with mobile computing devices). Overall, this study
provides a large-scale benchmark and reference for next-
generation environment classification systems for robotic leg
prostheses and exoskeletons. Applications could also extend to
humanoids, autonomous legged robots, powered wheelchairs,
and assistive technologies for persons with visual impairments.

The use of deep convolutional neural networks for this
computer vision application was made possible because of the
ExoNet database. In addition to being open-source, the large scale
and diversity of ExoNet significantly distinguishes itself from
all previous research (Table 1). The ExoNet database contains
∼923,000 labeled images. In comparison, the previous largest
dataset, developed by Varol’s research group (Massalin et al.,
2018), contained ∼402,000 images. Whereas previous datasets
included fewer than six environment classes, the most common

being level-ground terrain and incline and decline stairs, the
ExoNet database uses a novel 12-class hierarchical labeling
architecture. These differences can have important practical
implications since deep learning requires significant and diverse
training data to prevent overfitting and promote generalization
(LeCun et al., 2015). Although combining closely related classes
in the ExoNet database (e.g., the W-T-O and W-S classes)
could improve the classification accuracy, these effects would
need to be explored in future research. The quality of our
images (1,280 × 720) is also considerably higher than previous
datasets (e.g., 224 × 224 and 320 × 240). Lower resolution
images have been shown to decrease the classification accuracy
of walking environments (Novo-Torres et al., 2019; Da Silva
et al., 2020). Although higher resolution images can increase the
onboard computational andmemory storage requirements, using
efficient CNN architectures with fewer computing operations like
EfficientNetB0 (Tan and Le, 2019) can allow for processing larger
images for relatively similar computational cost. As robotic leg
prostheses and exoskeletons begin to transition out of research
laboratories and into real-world environments, large-scale and
challenging datasets like ExoNet are needed to support the
development of next-generation image classification algorithms
for environment-adaptive locomotor control systems.

A potential limitation of the ExoNet database is the 2D nature
of the environment information. Many researchers have likewise
used a wearable RGB camera for passive environment sensing
(Krausz and Hargrove, 2015; Diaz et al., 2018; Khademi and
Simon, 2019; Laschowski et al., 2019b, 2020b; Novo-Torres et al.,
2019; Da Silva et al., 2020; Zhong et al., 2020). Although multiple
RGB cameras could be used to capture 3D information (i.e.,
comparable to how the human visual system uses triangulation
for depth perception) (Patla, 1997), each pixel in an RGB image
contains only light intensity information. Other researchers have
used depth cameras to explicitly capture images containing both
light intensity information and distance measurements (Krausz
et al., 2015, 2019; Varol and Massalin, 2016; Hu et al., 2018;
Massalin et al., 2018; Zhang et al., 2019b,c,d, 2020; Krausz and
Hargrove, 2021). These range imaging systems work by emitting
infrared light and measuring the light time-of-flight between
the camera and oncoming walking environment to calculate
distance. Depth sensing can uniquely extract environmental
features like step height and width, which can improve the mid-
level control of robotic leg prostheses and exoskeletons (e.g.,
increasing the actuator joint torques to assist with steeper stairs).

Despite these benefits, depth measurement accuracy typically
degrades in outdoor lighting conditions (e.g., sunlight) and with
increasing distance (Krausz and Hargrove, 2019; Zhang et al.,
2019a). Consequently, most environment recognition systems
using depth cameras have been tested in controlled indoor
environments and/or have had limited capture volumes (i.e.,
1–2m of maximum range imaging) (Krausz et al., 2015, 2019;
Varol and Massalin, 2016; Hu et al., 2018; Massalin et al.,
2018; Zhang et al., 2020). These systems often require an
onboard accelerometer or IMU to transform the 3D environment
information from the camera coordinate system into global
coordinates (Krausz et al., 2015; Zhang et al., 2019b,c,d, 2020;
Krausz and Hargrove, 2021). Furthermore, the application of
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depth cameras for active environment sensing could require
robotic leg prostheses and exoskeletons to have microcontrollers
with higher computing power and lower power consumption. In
such case, the current embedded systems would need significant
modifications to support the onboard real-time processing and
classification of depth images, as previously acknowledged by
Massalin et al. (2018). These practical limitations motivated
our decision to use RGB images for the environment sensing
and classification.

Our comparative analyses showed that the EfficientNetB0
network (Tan and Le, 2019) achieves the highest image
classification accuracy on the ExoNet database during inference
(73.2% accuracy). However, for online environment-adaptive
control of robotic leg prostheses and exoskeletons, higher
classification accuracies would be desired since even rare
misclassifications could cause loss-of-balance and injury.
Although we used deep convolutional neural networks that
are state-of-the-art in computer vision, the architectures
included only feedforward connections, thereby classifying
the walking environment frame-by-frame without knowledge
of the preceding classification decisions. Moving forward,
sequential information over time could be used to improve
the image classification accuracy and robustness, especially
during steady-state environments. This computer vision
technique is analogous to how light-sensitive receptors in the
human eye capture dynamic images to control locomotion (i.e.,
known as optical flow) (Patla, 1997). Sequential data could
be classified using majority voting (Wang et al., 2013; Varol
and Massalin, 2016; Massalin et al., 2018) or deep learning
networks like Transformers (Vaswani et al., 2017) or recurrent
neural networks (RNNs) (Zhang et al., 2019b). Majority
voting works by storing sequential decisions in a vector and
generates a classification prediction based on the majority of
stored decisions.

In comparison, recurrent neural networks process sequential
data while maintaining an internal hidden state vector that
implicitly contains temporal information. Training RNNs can be
challenging though, due to exploding and vanishing gradients.
Although these networks were designed to learn long-term
dependencies, research has shown that they struggle with storing
sequential information over long periods (LeCun et al., 2015). To
mitigate this issue, RNNs can be supplemented with an explicit
memory module like a neural Turning machine or long short-
term memory (LSTM) network, therein improving gradient
flow. Fu’s research group (Zhang et al., 2019b) explored the
use of temporal data for environment classification. Sequential
decisions from a baseline CNN were fused and classified using a
recurrent neural network, LSTM network, majority voting, and
a hidden Markov model (HMM). The baseline CNN achieved
92.8% image classification accuracy across five environment
classes. Supplementing the baseline network with an RNN,
LSTM network, majority voting, and HMM resulted in 96.5,
96.4, 95, and 96.8% classification accuracies, respectively (Zhang
et al., 2019b). While sequential data can improve the image
classification accuracy of walking environments, these decisions

often require longer computation times and thus could impede
real-time locomotor control.

For onboard real-time inference, the ideal convolutional
neural network would need to achieve high image classification
accuracy with minimal parameters, computing operations,
and inference time. Accordingly, we quantitatively compared
the benchmarked CNN architectures and their environment
classification predictions using “NetScore” (Wong, 2018),
which balances the image classification accuracy with the
computational and memory storage requirements. We
showed that MobileNetV2 (Sandler et al., 2018), which
uses depthwise separable convolutions, achieves the highest
NetScore (� = 76.2), therein demonstrating the best balance
between the classification accuracy (72.9% accuracy) and the
architectural and computational complexities. Researchers
previously demonstrated the ability of MobileNetV2 to perform
onboard real-time inference on a mobile computing device
(i.e., ∼75ms per image on a CPU-powered Google Pixel 1
smartphone) (Sandler et al., 2018). However, our classification
system could potentially yield even faster runtimes since (1)
the smartphone that we used (i.e., the iPhone XS Max) has an
onboard GPU, and (2) we reduced the size of the final densely
connected layer of the MobileNetV2 architecture from 1,000
outputs, as originally used for ImageNet, to 12 outputs, for
the ExoNet database. Compared to traditional CPUs, GPUs
have many more core processors, which permit faster and
more efficient CNN computations through parallel computing
(LeCun et al., 2015). Moving forward, we recommend using
the existing CPU embedded systems in robotic leg prostheses
and exoskeletons for locomotion mode recognition based on
neuromuscular-mechanical data, which is less computationally
expensive, and a supplementary GPU computing device for
environment classification; these recommendations concur with
those recently proposed by Huang and colleagues (Da Silva et al.,
2020).

Finally, future research is needed in multi-sensor data fusion.
Since the environmental context does not explicitly represent
the user’s locomotor intent, data from computer vision should
supplement, rather than replace, the automated locomotion
mode control decisions based on mechanical, inertial, and/or
neuromuscular sensors. Images from our wearable smartphone
camera could be fused with its onboard IMU measurements
to improve performance. For example, when an exoskeleton
or prosthesis user wants to sit down, the acceleration data
would indicate stand-to-sit rather than level-ground walking,
despite level-ground terrain being accurately detected within
the visual field-of-view (e.g., see the bottom right image
in Figure 6). Inspired by Zhang et al. (2011), Wang et al.
(2013), Diaz et al. (2018), Khademi and Simon (2019),
Da Silva et al. (2020), our smartphone IMU measurements
could also help minimize the onboard computational and
memory storage requirements via sampling rate control (i.e.,
providing an automatic triggering mechanism for the image
capture). Whereas faster walking speeds could benefit from
higher sampling rates for continuous classification, standing
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still does not necessarily require environment information
and thus the smartphone camera could be powered down or
the sampling rate decreased, therein conserving the onboard
operating resources. However, relatively few researchers have
fused environment data with mechanical and/or inertial
measurements for automated locomotion mode recognition
(Huang et al., 2011a; Zhang et al., 2011; Du et al., 2012;
Wang et al., 2013; Liu et al., 2016; Krausz et al., 2019;
Krausz and Hargrove, 2021) and only one study (Zhang et al.,
2020) has used such information for online environment-
adaptive control of a robotic prosthesis during walking (i.e.,
stepping over an obstacle). These limitations in systems
integration offer exciting challenges and opportunities for
future research.
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