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This study proposed a multiple degree-of-freedom (DoF) continuous wrist angle

estimation approach based on an electrical impedance tomography (EIT) interface. The

interface can inspect the spatial information of deep muscles with a soft elastic fabric

sensing band, extending the measurement scope of the existing muscle-signal-based

sensors. The designed estimation algorithm first extracted the mutual correlation of

the EIT regions with a kernel function, and second used a regularization procedure to

select the optimal coefficients. We evaluated the method with different features and

regression models on 12 healthy subjects when they performed six basic wrist joint

motions. The average root-mean-square error of the 3-DoF estimation task was 7.62◦,

and the average R2 was 0.92. The results are comparable to state-of-the-art with sEMG

signals in multi-DoF tasks. Future endeavors will be paid in this new direction to get more

promising results.

Keywords: wrist angle estimation, electrical-impedance-tomography, multi-DoF, Lasso, human-machine interface

1. INTRODUCTION

Human–machine interface with muscle signals for wrist kinematics recognition/decoding/
estimation is a key part in wearable exoskeletons, robotic prosthesis, and human–robot
collaborations (Farina et al., 2014; Accogli et al., 2017; Peternel et al., 2017; Fani et al., 2018;
Kapelner et al., 2019; Hussain et al., 2020). It is an effective way to bridge the gap between the
human sensorimotor system and robotic devices. Compared with the mechanical signals, such as
inertial measurement units, which respond to the human motions, the muscle signals convey their
sources. They can be extracted in advance of the actual motions (Scott, 2004). The recognized wrist
kinematic information can serve as the control inputs to the robotic controllers to provide motion
initiation/termination (Hussain et al., 2020), targeted gestures (Farina et al., 2014; Kapelner et al.,
2019), and continuous motion parameters (angles and velocities) (Peternel et al., 2017; Fani et al.,
2018).

Due to the technological development, the surface electromyography (sEMG) is the most
widely used muscle signal in wearable robotics (Novak and Riener, 2015; Rodríguez-Tapia et al.,
2020). The sEMG sensors can measure muscular (superficial muscles) electric activities from the
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surface of the skin. The wrist motion information can be
extracted by measuring the sEMG signals from the forearm and
the subsequent processing algorithms. The studies on sEMG-
based wrist kinematics estimation/recognition/decoding vary
according to the tasks and motivations (robotic platforms)
(Rodríguez-Tapia et al., 2020). There are continuous wrist
angle estimation and target-oriented posture recognition (mostly
discrete patterns), which determines the subsequent algorithms
and experimental validations. For research motivations, wrist
kinematics estimation can be applied in robotic prostheses,
exoskeletons, and manipulators. The participants include healthy
persons, stroke survivors, and upper-limb amputees. The
evaluation metrics are also different according to the tasks.
For continuous wrist kinematics estimation (the target of
our study), the researchers of sEMG-based studies used the
coefficient of determination (R2) and root mean square errors
(RMSEs) to evaluate the estimation performances (Bi et al.,
2019). For continuous wrist kinematic estimation, the number
of degrees of freedom (DoFs) is a major factor to influence
the estimation performances (Muceli and Farina, 2012; Liu
et al., 2017; Bakshi et al., 2018; Gao et al., 2018; Kapelner
et al., 2019; Shahzad et al., 2019; Yang et al., 2019; Ameri,
2020; Bao et al., 2020, 2021; Zhao et al., 2020). Simultaneous
multi-DoF estimation is still a challenging task for muscle-
signal-based studies. Among state-of-the-art of sEMG-based
studies, the average estimation accuracies (represented by R2)
of 1-DoF wrist angle estimation were higher than that of
multi-DoFs. One reason for the difficulty is that human
forearm muscles are coupled in controlling the multi-DoF wrist
motions. To increase the performances in multi-DoF tasks, the
researchers designed algorithms to extract more myoelectric
features or developed high-density sEMG systems to extract the
features of motor unit potentials. For instances, the studies of
Muceli and Farina (2012) and Shahzad et al. (2019) sampled
forearmmuscle signals with high-density (HD)-EMG system and
achieved simultaneous 3-DoF (flexion/extension, ulna/radius
deviation, and pronation/supination) angle estimation. Due to
the numerous signal channels and much neural information, the
researchers designed estimation algorithms by an artificial neural
network (ANN) with principal component analysis (PCA) or
motor neuron discharge timing-related neural features. Due to
the complexity of the task, the average R2 values ranged from 0.77
to 0.88 with different parameters across 6 healthy subjects.

On the other side, the sEMG sensors can only measure the
information of superficial muscles (Vigotsky et al., 2018). The
deep muscle contractions also contain abundant human motion
information. Some researchers proposed using different signal
sources to extract more motion features. Some researchers in
this field use ultrasound (US) imaging techniques to measure
muscle anatomy structures (Shi et al., 2009; Huang and
Ono, 2016; Kato et al., 2018; Yang et al., 2020b). The US
imaging technique can reconstruct the muscle morphological
information of the scanning region (including the deep muscles).
According to the sensing principles of US devices, the spatial
resolution of the US images is high. The muscle architecture
constructed by the US technique is regarded as the ground

truth for assessment in physical therapy and rehabilitation.
Some researchers are conducting US-based studies on forearm
motion estimation/recognition tasks, such as finger angle/force
estimation and gesture classification. On the other side, the US
device is burdensome in the probe and the signal processing
system. The sensing front-end of the US device is made up of
rigid material (mostly piezoceramics), which is not suitable for
wearing. Some researchers developed the wearable US front-
ends for human–machine interfaces to increase the compactness
of the technique for wearable uses, but the imaging property
is simplified (Yang et al., 2020b). Another technique to inspect
deep muscle information in a non-invasive way is the electrical
impedance tomography (EIT). The EIT technique stimulates and
measures from the surface of themediumwith a predefined order
to reconstruct the conductivity distribution inside the medium.
The technique is free from ionizing radiation compared with
the computational tomography (CT) technique. Previous EIT-
based studies were focused on physical condition monitoring,
including respiration monitoring (lung) and tumor detection
(Frerichs et al., 2017). With the development of integrated
circuits, the researchers began using the EIT technique for
human–machine interfaces. The tasks were focused on discrete
gesture recognition, and the studies produced comparable results
to that of sEMG-based approaches (Zhang et al., 2016; Wu et al.,
2018; Ma et al., 2020).

We recently proposed an EIT-based interface for continuous
forearm motion estimation, including grasp force estimation
and wrist flexion/extension angle estimation. Compared with
the previous works on EIT-based forearm motion recognition,
our recent works addressed the issues of continuous motion
estimation (Zheng et al., 2019, 2020, 2021). In the studies of
Zheng et al. (2019, 2020), we designed an EIT-based interface
for continuous grasp force estimation and human–robot co-
manipulation. The average R2 value was 0.9 in the off-line
task, and the interface accomplished human–robot sawing with
varying sawing frequency, forces, and sawing direction. In a
more recent work (Zheng et al., 2021), we proposed an EIT-
driven musculoskeletal model to map the forearm EIT signals
to the wrist joint flexion/extension angles. Unlike the state-
of-art on EIT-based human motion recognition, we built a
forward musculoskeletal model from the EIT signal features
to the wrist joint angles by taking advantage of the muscle
spatial information. However, our previous work on EIT-based
wrist kinematics estimation was a 1-DoF task (flexion/extension).
In our current study, we proposed a multi-DoF wrist angle
estimation approach based on the EIT interface. The interface,
on the one hand, extends the measurement range of sEMG
sensors for deep muscle spatial information, and, on the
other hand, reduces the burdensome sensing front-ends of US
probes by the soft elastic fabric band. The designed approach
took advantage of the anatomical features within the EIT
signals by the specifically designed features and regression
models. Compared with our previous works, the approach can
simultaneously output the 3-DoF wrist joint angles. We then
evaluated the proposed method with experiments of multi-DoF
wrist joint motions.
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2. MEASUREMENT SYSTEM

The measurement system was designed with the sensing front-
end, the hardware system (sensing circuit system), and the
construction algorithms. The sensing front-end was an elastic
fabric band with 16 electrodes fixed on the inner surface (left
part of Figure 1). The electrodes were evenly distributed in
the latitudinal plane of the human arm. Each electrode was
a flexible printed circuit board (flex-PCB). The circuit system
connects with the sensing front ends via the shielding lines.
The hardware system stimulates the electrodes with a current
signal, and measures the voltages on the other electrodes.
We stimulated and measured adjacent electrode pairs in our
system. With this stimulation/measurement method, there were
16 stimulations, and each stimulation had 13 measurements
to get data for one EIT image. The stimulation current signal
was s 40-kHz sinusoid signal generated by the oscillation
circuit and the voltage-controlled current source (VCCS). The
root-mean-square (RMS) of the current was 400 µA. The
voltage signals on the other electrode pairs went through pre-
amplifying and analog-to-digital (ADC) sampling. The routing
of the stimulation and measurements was accomplished with
the multiplexor module. The micro-control unit (MCU) in
the circuit system calculated the RMS value of the measured
voltages (one for each channel in a sample). The raw EIT data
consisted of 208 voltages in each sample. The sampling frequency
was 10 Hz.

The task of the construction algorithm was to calculate the
tissue conductivity (inverse of the impedance) distributionwithin
the scanning plane based on the voltages measured from the
surface. It was an inverse problem that conformed to the Dirichlet
Boundary Condition. According to Maxwell’s equations with
proper assumptions and approximations, the electrical property
within the surface (human skin) was expressed as:

∇ · σ∇φ = 0, (1)

where φ is the electrical potential distribution, σ is the
conductivity distribution, and ∇ is the Hamiltonian operator.
The electrical property at the boundary was stated as σ∇n = Jn,
where n is the unit normal vector of the boundary and Jn is the
current density at the n′s electrode. To acquire the conductivity
σ with the measured signals on the electrodes, we designed two
stages calculation, i.e., the forward model construction and the
image reconstruction.

To calculate the differential equations, we implemented the
forward model based on the finite element method (FEM). We
first built a closed shape as the boundary indicating the forearm
cross-sectional view. To compensate for the shape mismatch
in the model construction, we built the shape of the area by
considering the forearm geometry. The shape of the boundary
was more similar to the latitudinal view of the forearm compared
to a simple circle. N triangles were used to segment the area
into small nodes. The forward model based on FEM could be
expressed as:

V = F(σ ), (2)

where σ was a vector with N dimensions, and each element
was the conductivity of the corresponding node in the
FEM model. V was the voltage on the surface of the
body. The forward model was to calculate V from the
known σ .

With the built forward model (Equation 2), we could obtain
the conductivity distribution σ by minimizing the square errors:

min(‖Vm − F(σ )‖), (3)

where Vm is the measured voltages by repeated stimulation
and measuring. F(σ ) is the constructed forward model that

FIGURE 1 | The diagram of the EIT-based wrist estimation. The measurement system comprises the hardware system and the algorithms. The red arrows denote the

control signals/commands while the black arrows denote the measured signals/data. The MCU outputs the raw EIT data for subsequent algorithms. The left part of

the figure shows the actual EIT system, including the sensing front-end (with inside out) and the circuit system. The structure of the sensing front-end in latitudinal view

is shown in the middle part of the figure. The red bars in the gray closed band indicate the electrodes inserted on the sensing band. Each of them is denoted by a

number (1–16).
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FIGURE 2 | The experimental setups (left) and the typical signals of the measurement system (right). The IMU board was fixed on the back of the palm. The IMU

board outputs 3-axis angles (pitch, roll, yaw). F/E represents flexion/extension, RD/UD represents radius/ulna deviation, and P/S represents pronation/supination. The

three EIT images (from the left to right) correspond to the maximum extension angle, the neutral state, and the maximum flexion angle. The EIT images show the

cross-sectional conductivity distribution of the measured forearm. The anatomical direction is shown with the arrows.

mapped conductivity to the surface voltages. It was a non-linear
problem to calculate σ . There were several ways to linearize the
calculation. In this study, we used time-different EIT (tdEIT)
method, in which a baseline conductivity σ0 was predefined. The
relation near the baseline could be expressed as:

Vm = F(σ0)+
∂F(σ0)

∂σ
(σ − σ0). (4)

By substituting the partial derivative with the matrix J, the
equation was converted to:

δV = Jδσ , (5)

where δV and σ were the small variations of the voltage and
conductivity at the baseline.

By the inverse of the Jacobian matrix J, the conductivity
distribution could be calculated. As J was not a square matrix,
pseudo inverse matrix was used for calculation (Adler and
Guardo, 1996). It was expressed as:

δσ = (JtWJ + λ2Q)JtWδV , (6)

where Jt is the transposition, and W and Q are the constructed
square matrices and λ was the hyper parameter. The algorithms
were implemented on the computer with MATLAB2016b. The
EIDORS toolkit was used to provide the functions for solving the
differential equations1. The forward model construction (FEM

1EIDORS (2020). Available online at: http://eidors3d.sourceforge.net/.

model with the predefined boundary) was implemented off-line
before the measurement. The baseline conductivity σ0 and the
Jacobian matrix J were also calculated off-line with the initial
measured voltages V0. During online calculation, Equation (6)
is calculated with the update of the measured voltages Vm in each
100 ms.

3. METHODS

3.1. Experimental Protocol
Twelve male subjects participated in the experiment. All of them
provided written and informed consent. The experiment was
approved by the Ethical Review Board of Institute of Automation,
Chinese Academy of Sciences (No. IA-202008). They had an
average age of 24.5 ± 2.39 years, an average height of 173.2 ±

4.90 cm, and an average weight of 70.2 ± 5.89 kg. All data were
recorded with their right forearm. We investigated the geometry
parameters of the measured forearm. The average perimeter of
their measured forearm (maximum part) was 25.7 ± 1.27 cm.
The average length of the forearm was 24.0 ± 1.92 cm. The
subjects wore the sensing front-end and an IMU board on the
measured forearm (see left part of Figure 2). The IMU board
adhered to the back of the palm via double-sided paste. During
the experiment, three-DoF wrist motions were measured, i.e.,
the flexion/extension, pronation/supination, and radius/ulnar
deviation. The subjects started from the neutral position with
the palm vertical to the ground and performed the motion of
each DoF repeatedly at their own pace. They also performed
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the motion of each DoF by reaching the maximum extent.
We measured two sessions, and in each session, the subjects
performed 20 cycles for each DoF (60 cycles in total). They rested
for 10–20 min between the sessions. The EIT board output the
tilt angles (pitch, roll, yaw). The relation between the tilt angles
and the wrist motions is shown in the right part of Figure 2.
The sampling rate of EIT system was 10 Hz, and the sampling
rate of the IMU sensor was 100 Hz. During the experiment, the
IMU sensor was down sampled 10 Hz to synchronize with the
EIT system.

3.2. Feature Extraction
In our study, the feature extraction comprises the EIT image
segmentation, feature calculation, and regularization. In our
study, one EIT image is a closed shape comprising 5,868 FEM
nodes (right bottom of Figure 2). The nodes’ values convey
both temporal and spatial information of the anatomical cross-
sectional plane. We first down-sampled the EIT image of each
frame z ∈ R

N×1 intoM small square regions with equal sizes. In
our study, N = 5,868 and M = 382. We calculated the average
values in each region as the EIT features for the subsequent
procedure, which was expressed as:

S(i) =
1

K(i)

∑

(x,y)∈�(i)

z(x, y), (7)

where z(x, y) is the re-constructed value of the FEM node in
Cartesian coordinate system, �(i) is the ith, (i = 1, 2, 3, ...,M)
segmented region, and K(i) is the total number of the FEM nodes
in �(i). S(i) was the feature of the ith region.

The feature calculation worked together with the
regularization procedure. Our previous works (Zheng et al.,
2019, 2020) used the exhaustion method to select the optimal
regions in grasp force estimation and 1-DoF angle estimation
(flexion/extension). In the method, S(i) (i = 1, 2, ..., 382)
went through the regression models (sigmoid function or

musculoskeletal-model-based model) to obtain the estimation
results. The region with the best results served as the optimal
region for estimation on the testing data set. The selected
optimal region produced accurate results in 1-DoF tasks
(wrist angle and grasp force). However, the multi-DoF wrist
motions were coordinated by multiple forearm muscles. We
used a regularization algorithm to select the optimal regions
to extract more spatial information from the EIT signals.
The hyperparameters determined the number of regions in
the regularization algorithm (described in detail below). We
designed two methods for feature calculation (Figure 3). In the
first method, the features S ∈ R

M×1 directly went through the
regularization. In the second method, we took advantage of
the mutual information of different regions. The feature S̄ was
expressed as:

S̄ = vec(triu(S · ST)), (8)

where S ∈ R
M×1 is the segmented EIT feature as mentioned

above, and ST is the transpose of the feature vector. triu(·)
represented the upper-triangular matrix. vec(·) represented the
vectorization of the matrix. In the following analysis, the upper-
triangular matrix was expressed as: S¬ = triu(S · ST). The

augmented feature S̄ was a vector with M(M+1)
2 elements.

3.3. Regression Methods
3.3.1. Lasso With Generalized Linear Model
We used least absolute shrinkage and selection operator (Lasso)
for angle estimation and regularization. Lasso predicts the wrist
angle with maximum-likelihood fitted parameters and proper
penalization. The fitting target of Lasso was to minimize the loss
function expressed as:

min
β ,β0

1

2N

[

N
∑

i=1

d(xi, yi)+ λ

M
∑

j=0

|βj|
]

, (9)

FIGURE 3 | The procedures of feature extraction. S was the segmented feature and M = 382. The EIT images show the cross-sectional conductivity distribution of

the measured forearm. The anatomical direction is the same as shown in Figure 2. The right plot denotes the selected EIT features with different estimation results

(coefficient of determination, which will be described below in details). Warm colors represent higher values and cold colors represent smaller ones.
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where N is the number of observations in the training set, M
is the dimension of the observation, βj is the jth weight of the
observation, yi ∈ R

3×1 is the ith observation (wrist angles) of the
training set, and λ is the parameter to adjust the weight of the

penalty term
M
∑

j=0
|βj|. xi is the ith observation of the features. The

input data xi is selected as S or augmented feature S̄ according
to the feature calculation methods mentioned above. The first

term D(Ŷ ,Y) =
N
∑

i=1
d(ŷi, yi) was the deviance between the

actual observations yi and estimated ones ŷi. The deviance is
usually expressed with log-likelihood form. In our study, we used
generalized linear model with normal distribution assumption.
The deviance was expressed as:

D(Ŷ ,Y) =

N
∑

i=1

(β ′xi + β ′
0 − yi)

2, (10)

where β ′ is the weight and β ′
0 is the intercept. The prediction

function of Lasso is ŷ = β ′x + β ′
0, where ŷ is the estimated

wrist angle, and x is the input data for prediction. In Equation
(9), the deviance term is building the relationships between
wrist angle and the EIT features. The L1-norm term is actually
selecting the optimal regions from the EIT signals. The weight
matrix β ′ was a sparse matrix, and the non-zero elements actually
worked in wrist angle estimation. In our study, to reduce the
computational burden, we trained three models, one for each
DoF (yaw, pitch, and roll). The prediction function can be
expressed as: ŷk = β ′

kx+β ′
0k
, k = 1, 2, 3, where ŷk is the estimated

angle of the kth DoF, β ′
k is the kth weight vector, and β ′

0k
is the

corresponding intercept.

3.3.2. SVR
The prediction function of the kernel-based support vector
regressor (SVR) is ŷ = ωφ(x) + b, where φ(x) is the input
data with kernel function, ŷ is the estimated wrist angle, ω is the
weight, and b is the intercept. The input data x was the feature
vector, which was selected as S or augmented feature S̄ according
to the feature calculation methods mentioned above. The kernel
function was the radial basis function, which was expressed as:
κ(xn, x) = exp(−σ‖xn−x‖2). The SVM for regression is to solve
the optimization problem:

min
ω,b

‖ω‖2

2
+ C

N
∑

i=1

(ξi + ξ∗i ),

s.t. :

ξi ≥ 0,

ξ∗i ≥ 0,

yi − (ωφ(xi)+ b)− ξi ≤ ǫ,

(ωφ(xi)+ b)− yi − ξ∗i ≤ ǫ,

(11)

where ǫ is the deviation between the estimated angle and the
actual one, ξi and ξ∗i = Eǫ(ŷi − yi) are the slack variables of the
ith observation (i ∈ (1, 2, ...,N)), yi is the actual wrist angle of the

ith observation, N is the number of the samples in the training
set, and C is a constant parameter adjusting the errors. The term
(ξi + ξ∗i ) = Eǫ(ŷi − yi) is the ǫ-insensitive error function, where
Eǫ(ŷi−yi) = 0 if |ŷi−yi| < ǫ. The problemwas usually converted
to its Lagrange dual formula for calculational simplicity. The
prediction function after training was:

ŷ =

N
∑

i=1

(αi − α∗
i )κ(xi, x)+ ŷj − ǫ −

N
∑

i=1

(αi − α∗
i )κ(xi, xj), (12)

where (xi, yj) is a point on the boundary of the ǫ-tube and (x, ŷ)
is the input data and the prediction angle. αi and α∗

i are the ith
Lagrangian coefficients for the two constraints. The SVR-based
estimation algorithm also utilized 3 models for multiple DoFs.
The estimation function was expressed as: ŷk = ωkφk(x) + bk,
k = 1, 2, 3, where ŷk is the estimated angle of the kth DoF, ωk is
the kth weight vector, and β ′

0k
is the corresponding intercept. The

kernel function φk(x) was also trained separately for each DoF.

3.4. Evaluation Method
3.4.1. Cross-Validation
We used cross-validation (CV) to evaluate the estimation results.
Data of one session were used for training, the fitted regression
function, and the selected optimal features were tested on the data
of the other session. The procedure repeated twice until all the
data were used for training and testing once. The 2 results were
then averaged as the final results.

3.4.2. NRMSE and RMSE
The normalized root mean square errors (NRMSE) were
calculated for each subject. The NRMSE was expressed as:

NRMSE =

√

1
N

∑N
i (

ˆy(i)− y(i))2

ymax − ymin
, (13)

where ˆy(i) is the ith calculated data point by the regressionmodel,
y(i) is the ith actual data point, and N is the number of points
in total. ymax and ymin are the maximum and minimum values
of the actual data points. The value changed between 0 and
1, with smaller values indicating better results. The numerator
of Equation (13) was RMSE. RMSE represents the difference
between the reference value (wrist angle) and the estimated one.
The unit of the RMSE was the angle (◦).

3.4.3. Coefficients of Determination
The coefficients of determination (R2) was defined as:

R2 = 1−

∑

i(yi − ŷi)
2

∑

i(yi − ȳ)2
, (14)

where yi is the ith point of the reference data, and ŷi is the
corresponding estimated one by the EIT signals. yi is the angle
of the IMU. ȳ = 1

N

∑

i yi is the average value of the reference
angle. N is the number of points in total.
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3.4.4. Statistical Analysis
We conducted one-way repeated measure analysis of variance
(ANOVA) to compare the estimation results. The independent
factors were the regression models and features, respectively. The
dependent factor was the estimation results (R2, NRMSE, and
RMSE). The significance value was 0.05 (α = 0.05).

3.4.5. Parameter Fitting
The parameters λ and C are selected with the parameter
optimization procedures with the training data. For each subject,
we used three-fold cross-validation on the training data to
optimize the parameters. The metric was mean square error
(MSE). The parameter with the smallest MSE would be selected
as the optimal one, and used to predict the wrist angles on the
testing data set.

4. RESULTS

4.1. Overall Estimation Results
The estimation results for each subject with different regression
models (Lasso and SVR) and features (S, S̄) are shown in Table 1.
The kernel-based SVR produced the smallest average RMSE with
normal features S, and the average value was 7.44 ± 1.30◦. In
addition to RMSE, the best average performances of NRMSE and
R2 values were produced by Lasso with augmented features S̄.
The smallest average NRMSE value was 0.053 ± 0.008, and the
highest average R2 value was 0.92 ± 0.04. A repeated-measures
ANOVAwith a Greenhouse-Geisser correction indicated that the
regressionmodels did not elicit statistically significant differences
in estimation results, F(1, 0.16) = 0.81, p = 0.37. We also
compared the results of different features (S, S̄) with one-way
repeated measure ANOVA. For SVR, there was no evidence that
the estimation results are significantly influenced by the features
(p > 0.05). For Lasso, the average RMSE was not significantly
affected by the features (p = 0.21). The NRMSE and R2 were

significantly different with different features (p < 0.05). In other
words, using augmented features S̄ significantly increased the
estimation performances in NRMSE and R2. Among the subjects,
Subject 12 was an outlier, which performed extremely badly in
RMSE, but the results of NRMSE and R2 were at the same level as
that of others. The large range of motion partly caused the large
RMSE (see Figure 4). Excluding the results of Subject 12, Lasso
with the augmented features produced the lowest RMSE among
the regression models and features.

4.2. Detailed Estimation Results
We analyzed the results of Lasso in more detail as it produced
better estimation results overall than SVR. The results with
normal features S and the augmented features S̄ are shown in
Tables 2, 3, respectively. In each row, the estimation results were
calculated from the model trained for the corresponding DoF,
expressed as the plane’s motion (XoY , YoZ, and XoZ). Each
column was the estimation results tested with the data (F/E,
RD/UD, and P/S). According to the experimental setups (left part
of Figure 2), F/E occurred in the plane of XoY , RD/UD occurred
in the plane of YoZ, and P/S occurred in the plane of XoZ. The
principle DoF of the model, i.e., the model trained with the data
of F/E and tested on the angle in the plane of XoY , produced
the lowest NRMSE and highest R2 values among all the other
combinations. The models with augmented features produced
slightly better results than normal features. The average NRMSE
of the diagonal was 0.06.

The multi-DoF motion of the wrist joint was coupled in
muscular contractions. Training with the data of 1-DoF could
not produce equally well results for the same DoF in other
motions. The non-diagonal results were worse than that of the
diagonal ones. For the non-diagonal results, the augmented
features produced more minor estimation errors (RMSE and
NRMSE) and higher R2 values than that of using normal features.
For the multi-DoF models, the models trained for XoY and XoZ

TABLE 1 | Overall estimation results for each subject.

Lasso SVR

RMSE(◦) NRMSE R2 RMSE(◦) NRMSE R2

Subjects S S̄ S S̄ S S̄ S S̄ S S̄ S S̄

Subject 1 6.31 5.33 0.051 0.044 0.93 0.95 5.22 5.82 0.043 0.047 0.95 0.94

Subject 2 6.67 6.83 0.059 0.060 0.89 0.89 6.25 5.61 0.057 0.052 0.90 0.91

Subject 3 7.26 6.02 0.064 0.054 0.87 0.91 7.18 7.40 0.063 0.064 0.88 0.88

Subject 4 8.82 7.99 0.068 0.061 0.83 0.86 8.44 9.32 0.064 0.071 0.85 0.82

Subject 5 6.05 6.15 0.037 0.037 0.96 0.97 6.94 6.39 0.047 0.039 0.93 0.96

Subject 6 10.30 9.13 0.066 0.055 0.90 0.94 9.71 8.80 0.060 0.053 0.93 0.95

Subject 7 7.80 7.07 0.056 0.051 0.92 0.93 7.30 8.02 0.051 0.059 0.93 0.90

Subject 8 9.58 8.70 0.077 0.068 0.80 0.85 9.42 8.27 0.075 0.065 0.81 0.86

Subject 9 7.20 6.72 0.055 0.049 0.92 0.94 7.09 7.36 0.054 0.053 0.92 0.93

Subject 10 7.41 6.68 0.057 0.051 0.94 0.95 6.89 6.76 0.054 0.053 0.94 0.94

Subject 11 7.01 7.47 0.052 0.053 0.92 0.92 6.54 8.72 0.049 0.060 0.93 0.89

Subject 12 11.31 13.35 0.054 0.049 0.94 0.95 8.28 10.65 0.042 0.048 0.96 0.95

AVE 7.98 7.62 0.058 0.053 0.90 0.92 7.44 7.76 0.055 0.055 0.91 0.91

STD 1.66 2.11 0.010 0.008 0.05 0.04 1.30 1.50 0.010 0.009 0.04 0.04
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FIGURE 4 | The pseudo real-time estimation results of Subject 12. (A–C) show the case result of Exp1, Exp2, and Exp3, respectively. The blue curves are the

reference angles measured by the IMU sensors. The violet dotted curves are the estimated angles by the EIT signals. The estimated curves are calculated by the

Lasso with the augmented feature.

both produced relatively low NRMSE values for the motion of
RD/UD, which were 0.17 and 0.15 for XoY and XoZ (augmented
feature), respectively. However, the models could not generalize
well to the other motions.

4.3. Feature Importance of the Estimation
Models
The L1-regularization in Lasso clipped the small weights to
prevent overfitting.We analyzed the trainedmodels of Lasso with
the augmented features, which produced the lowest estimation

errors. The dimension of the features (number of non-zero
elements in ωk as described in section 3.3.1) is shown in Table 4.
In the table, F/E, RD/UD, and P/S are the results of the models
trained with the motion of F/E, RD/UD, and P/S, respectively.
The average dimensions across the subjects were 516.9 ± 77.3,
421.9 ± 113.4, and 441.4 ±, 222.4 for the model of F/E, RD/UD,
and P/S, respectively. The dimensions of the features took up
0.3% to 1.2% of the dimension of the augmented feature S̄. In
Table 4, F/E_Diag, RD/UD_Diag, and P/S_Diag are the numbers
of non-zero elements in the diagonal of the matrix S¬. The
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TABLE 2 | Estimation results with Lasso and normal features.

Estimation

RMSE(◦) NRMSE R2

Training F/E RD/UD P/S F/E RD/UD P/S F/E RD/UD P/S

XoY 8.2 ± 4.19 4.74 ± 1.02 9.34 ± 2.7 0.06 ± 0.03 0.22 ± 0.1 0.41 ± 0.2 0.94 ± 0.06 0.27 ± 0.25 0.07 ± 0.13

YoZ 7.96 ± 5.16 4.08 ± 2 11.64 ± 8.16 0.34 ± 0.23 0.06 ± 0.03 0.36 ± 0.15 0.05 ± 0.16 0.95 ± 0.04 0.13 ± 0.31

XoZ 7.37 ± 3.33 3.95 ± 1 12.19 ± 3.66 0.36 ± 0.17 0.18 ± 0.05 0.07 ± 0.02 0.11 ± 0.26 0.34 ± 0.35 0.94 ± 0.04

TABLE 3 | Estimation results with Lasso and augmented features.

Estimation

RMSE(◦) NRMSE R2

Training F/E RD/UD P/S F/E RD/UD P/S F/E RD/UD P/S

XoY 8.82 ± 5.13 3.75 ± 1.1 7.12 ± 1.59 0.06 ± 0.04 0.17 ± 0.08 0.31 ± 0.17 0.93 ± 0.08 0.45 ± 0.3 0.14 ± 0.23

YoZ 7.43 ± 5.43 3.71 ± 2.12 12.25 ± 14.81 0.31 ± 0.24 0.05 ± 0.03 0.31 ± 0.14 0.05 ± 0.16 0.96 ± 0.04 0.13 ± 0.32

XoZ 5.30 ± 2.30 3.27 ± 0.94 12.16 ± 4.04 0.26 ± 0.1 0.15 ± 0.04 0.07 ± 0.02 0.18 ± 0.29 0.47 ± 0.35 0.94 ± 0.04

TABLE 4 | Dimension of features after Lasso regularization.

Subjects F/E F/E_Diag RD/UD RD/UD_Diag P/S P/S_Diag

1 442 18 272 5 288 2

2 431 7 271 7 254 3

3 458 6 536 11 621 10

4 473 6 307 8 398 7

5 451 7 382 10 849 7

6 574 10 524 20 285 2

7 590 10 506 19 878 17

8 512 12 538 19 288 7

9 637 11 312 16 297 9

10 523 16 363 14 395 3

11 464 9 537 16 288 7

12 648 18 515 11 456 6

average values across the subjects were 10.8± 4.4, 13.0± 5.1, and
6.7 ± 4.2 for F/E, RD/UD, and P/S, respectively. The numbers of
the diagonal elements only took up <5% of the total dimensions
of the regularized augmented features. The results suggested
that information of the inter-regions in the EIT images was
more relevant to the estimation results in multi-DoF estimation.
We visualized the augmented features after L1-regularization of
Lasso (see Figure 5). According to Equation (8), an element of
the augmented feature S̄ can be decomposed into two elements
of the normal features Si and Sj (i, j ∈ 1, 2, 3, ..., 382). The two
decomposed elements can be visualized on the corresponding
square regions of the EIT segmented image. We repeatedly
plotted the decomposed elements (a unit color for each element)
on the EIT image for all the subjects, in which the selected
elements were accumulated. The times that the selected features
fell on the region were indicated by the color bars (Figure 5). For

all three models, the inner parts were less likely to be chosen,
which corresponded to the areas of the bones. For the features
of F/E, there were no obvious regions frequently selected for
regression. For the other two motions, the top regions (RD/UD)
and bottom-left regions (P/S) were more frequently chosen than
the other parts.

5. DISCUSSION

5.1. Estimation Performances
In our study, we proposed an EIT-based method for 3-DoF
wrist kinematics estimation. The approach took advantage of
the human forearm anatomical features measured by the EIT
system, extending the measurement scope of the muscle-signal-
based interfaces. In our study, the Lasso-based regression model
produced an average RMSE of 7.62◦ with the augmented EIT
features across 12 subjects (1:1 CV). The average R2 value
was 0.92. The approach achieved comparable results to that
of state-of-the-art. As mentioned in section 1, the estimation
performances of continuous wrist kinematics are determined
by many factors, including the number of DoFs, the system
setups, the algorithms, and evaluation method (Muceli and
Farina, 2012; Liu et al., 2017; Bakshi et al., 2018; Gao et al.,
2018; Kapelner et al., 2019; Shahzad et al., 2019; Yang et al.,
2019; Ameri, 2020; Bao et al., 2020, 2021; Zhao et al., 2020).
The authors of the studies used high-density sEMG systems
to record forearm muscle signals for simultaneous multi-DoF
wrist angle estimation when the subjects performed random
motions. Due to the task complexity, the estimation accuracies
(represented by the R2 values) range from 0.77 to 0.90. In the
study of Bakshi et al. (2018), the authors sampled 8-channel
sEMG signals from the forearm and designed a kernel least
square tracker based algorithm for 3-DoF wrist angle estimation.
The motion tasks included the basic wrist motions the same

Frontiers in Neurorobotics | www.frontiersin.org 9 September 2021 | Volume 15 | Article 734525

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zheng et al. Wrist Angle Estimation With EIT

FIGURE 5 | Visualization of the augmented features after training. The three subplots demonstrate the visualization of the three models, from left to the right, F/E,

RD/UD, and P/S, respectively. The color bars denote the times that the elements were selected in the L1-regularization. The regions of the warm color were selected

more times than that of the cold colors. The data were summarized by all the subjects.

as that of our study. With 10-fold CV, the study (Bakshi et al.,
2018) produced an average R2 values ranging from 0.90 to
0.92 across 10 healthy subjects for the dominant DoFs (training
and testing with the data of the same DoF). The studies of
Shahzad et al. (2019) proposed a linear regression cascade
decoder for 3-DoF upper-limb angle estimation (one DoF for
each joint). The average RMSE of wrist joint (flexion/extension)
angle estimation was 11.51◦ across 10 healthy subjects. In the
studies of Gao et al. (2018), Yang et al. (2019), Ameri (2020),
Bao et al. (2020, 2021), the authors designed machine-learning-
based algorithms for wrist angle estimation. In the study of
Bao et al. (2021), the authors designed a deep Kalman filter
network based on 5-channel sEMG signals. With 4:1 CV, the
algorithm produced an average RMSE of 14.5◦ across 8 healthy
subjects on flexion/extension tasks. The study of Bao et al. (2020)
addressed the issues of multi-DoF task using CNN-LSTM, which
produced the R2 value as high as 0.89 (F/E) in multi-DoF tasks.
(Ameri, 2020) proposed a polynomial-based method for 3-DoF
wrist angle estimation (6 basic motions and 8 combinations of
them) and produced the average R2 values ranging from 0.82
(P/S) to 0.88 (F/E) across 10 healthy subjects. In addition to
machine learning, the musculoskeletal model based algorithms
were also designed and evaluated on the one-DoF task (wrist
flexion/extension) (Zhao et al., 2020). The average RMSEs across
8 healthy subjects ranged from 10.8◦ to 17.59◦ with different
experimental setups.

In addition to sEMG-based approaches, there are some
researchers conducting US-based studies on similar forearm
motion estimation/recognition tasks as our study (Shi et al.,
2009; Castellini, 2014; Akhlaghi et al., 2015; Yang et al., 2020a,b).
The study which addressed one-DoF wrist angle estimation
task (Shi et al., 2009) yielded the average R2 values ranging
from 0.94 to 0.96 with varying extension rates across seven
subjects. The researchers of the study (Castellini, 2014) achieved
finger angle/force estimation with transverse US images of the

forearm. An average error around 2% of the sensor range (data
glove or force sensor) was obtained. In the study of Akhlaghi
et al. (2015), the authors measured transverse forearm muscle
with an US device and classified 15 different hand motions.
The average classification accuracy was 91–92%. On the other
side, the US device is burdensome in the probe and the signal
processing system. To increase the compactness of the technique
for wearable uses, some researchers developed the wearable US
front-ends for human–machine interfaces, achieving accurate
wrist motion estimation (Yang et al., 2020a,b). According to the
study of Yang et al. (2020a), wrist tracking precision (R2) of
0.954 ± 0.012 and a finger gesture classification accuracy of 96.5
± 1.7% can be simultaneously achieved. In the study of Yang
et al. (2020b), the average R2 value for wrist pronation/supination
and hand closing/opening estimation was 0.975–0.983 with
ipsilateral training.

The improvement of our study over the existing muscle-
signal-based interfaces (sEMG and US) is that we provided an
alternative solution to wrist kinematics estimation unobtrusively.
The proposed EIT-based interface extent the measurement scope
of sEMG sensors for deep muscle information and reduced the
obtrusiveness of the US probe by the soft-elastic sensing band.
Compared with our previous study (Zheng et al., 2021) which
estimated one-DoF wrist angle with the musculoskeletal model,
our current study extends the EIT-based interface to multi-DoF
tasks, increasing the task complexity.

5.2. Confounding Factors
5.2.1. Training Data
The training data distribution strongly influenced the estimation
results. The forearm muscle contractions are coupled in multi-
DoF motions. As shown in Tables 2, 3, the results on the
diagonal are much better than that of the off-diagonal for both
normal features and augmented features. The training data on the
diagonal were sampled with the full-range motion of that DoF,
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such that the regression model was intensively trained. The off-
diagonal results of RD/UD were better than that of the other two
DoFs (RMSE and NRSME). One explanation was that the range
of motion wasmuch smaller than F/E and P/S.With the proposed
model, training with full-range F/E and P/S is necessary to get
minor estimation errors.

5.2.2. Augmented Features
Using augmented features S̄ significantly reduced the estimation
errors (as shown in Table 1) than using the normal features. In
the detailed estimation results (Tables 2, 3), augmented features
mainly act in the off-diagonal results, i.e., training/testing with
different DoF motion data. The biological relevance was that the
EIT features (of different regions) correspond to the anatomical
muscle contractions by constructing the conductivity changes.
Multiple muscle coordinations controlled the wrist joint motion.
The augmented features extracted the muscle coordinations by
multiplication of different EIT regions.

5.2.3. Regression Model
The linear model outperformed the non-linear one with the
augmented feature in our wrist angle estimation task. One
possible reason was that the Lasso used L1-regularization to
optimize the model, which totally removed an unnecessary term
of the model rather than assigned it with a tiny weight as
the SVR did. The regression model of Lasso was less likely
to be over fitted than that of SVR when calculated on the
testing data set. Another possible reason was the biological
significance of the EIT features. It is possible that the muscle
coordination (conveyed by the multiplication of different EIT
regions) is linearly related to the wrist motions. In future
study, the biological significance of the sensing approach will
be extensively investigated by comparisons with the reference
signals (such as MRI).

5.3. Limitations and Future Works
The study is limited in the following aspects. First, the subjects
performed relatively structured wrist motion in our study,
including F/E, P/S, and RD/UD. The random simultaneous
motion estimation tasks have yet to be addressed. The muscle
contractions are coupled in controlling the wrist joint motions.
One muscle can act in multiple DoF motion control. The arm
postures can also influence the muscle signals due to the gravity
changes. The generalization ability of the regression model
should be increased to meet the task complexity. Second, in our
study, the estimation method was designed based on machine
learning algorithms. The estimation results were affected by
the training data distribution. Although the augmented feature
took advantage of the spatial information of EIT signals, the
biological significance within the EIT features remained to
be systematically investigated. In future works, the following
issues will be addressed. First, the relationships between the
EIT features and the anatomical muscle parameters will be
quantitatively investigated. The anatomical muscle distribution
will be implemented in the estimation models as the prior
information. The regression models will be designed by fusing

the musculoskeletal mechanism to increase the generalization
ability. Second, the robustness of the EIT-based approach
will be improved. The impacts of different voluntary muscle
contractions, re-donning the sensing front-ends, and long-
term uses on the estimation performances will be studied and
alleviated. Third, the generalization ability of the regression
model will be improved. The method’s performances in our
current study were dependent on training data distribution. The
model incorporating the biological features will be designed and
evaluated on simultaneous multi-DoF tasks.

6. CONCLUSION

In our study, we proposed an EIT-based approach for wrist
angle estimation. The method took advantage of the muscular
spatial information with augmented features and L1-norm
regularization. The following conclusions can be made. First
of all, the estimation results proved the feasibility of using the
EIT interface for multi-DoF wrist angle estimation. The average
estimation results are at the same level as that of state-of-the-art.
Second, the correlation between different EIT regions conveys
relevant wrist motion information. A linear kernel function
(augmented feature) can significantly reduce the estimation
errors in the tasks. Third, the normal features worked well for
single-DoF estimation (training/testing within the same DoF).
The augmented features mainly act in multi-DoF estimation
tasks (training/testing in different DoFs). The main limitations
of the study lie in the task complexity and model’s biological
significance. Future works will be focused on increasing the
generalization ability of the regression model.
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