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There have been few anatomical structure segmentation studies using deep learning.

Numbers of training and ground truth images applied were small and the accuracies

of which were low or inconsistent. For a surgical video anatomy analysis, various

obstacles, including a variable fast-changing view, large deformations, occlusions,

low illumination, and inadequate focus occur. In addition, it is difficult and costly

to obtain a large and accurate dataset on operational video anatomical structures,

including arteries. In this study, we investigated cerebral artery segmentation using

an automatic ground-truth generation method. Indocyanine green (ICG) fluorescence

intraoperative cerebral videoangiography was used to create a ground-truth dataset

mainly for cerebral arteries and partly for cerebral blood vessels, including veins. Four

different neural network models were trained using the dataset and compared. Before

augmentation, 35,975 training images and 11,266 validation images were used. After

augmentation, 260,499 training and 90,129 validation images were used. A Dice

score of 79% for cerebral artery segmentation was achieved using the DeepLabv3+

model trained using an automatically generated dataset. Strict validation in different

patient groups was conducted. Arteries were also discerned from the veins using

the ICG videoangiography phase. We achieved fair accuracy, which demonstrated the

appropriateness of the methodology. This study proved the feasibility of operating field

view of the cerebral artery segmentation using deep learning, and the effectiveness of

the automatic blood vessel ground truth generation method using ICG fluorescence

videoangiography. Using this method, computer vision can discern blood vessels and
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arteries from veins in a neurosurgical microscope field of view. Thus, this technique is

essential for neurosurgical field vessel anatomy-based navigation. In addition, surgical

assistance, safety, and autonomous surgery neurorobotics that can detect or manipulate

cerebral vessels would require computer vision to identify blood vessels and arteries.

Keywords: semantic segmentation, neural network, blood vessel, indocyanine green, neurosurgical field,

computer vision, deep learning, cerebral artery

INTRODUCTION

Research Background and Key Points
Previous Related Studies
• Artery segmentation using neurosurgical operating

microscope video is mostly unexplored, partially owing
to the highly variant morphology, various obstacles to surgical
video segmentation, and difficulty in achieving a sufficient and
accurate dataset.

• In a few studies, instrument segmentation in the surgical
field has shown a higher accuracy than anatomical
structure segmentations.

Value of This Study
• Indocyanine green (ICG) fluorescence intraoperative cerebral

videoangiography can be used for automatic data creation
for deep-learning-based artery semantic segmentation,
unlike most previous surgical video segmentation studies
dependent on manual markings. The arterial ground
truth can also be distinguished from veins using the ICG
videoangiography phase.

• The performances of the models trained using our method
are convincing.

Potential Applications
• Indocyanine green (ICG) fluorescence intraoperative cerebral

videoangiography has the potential to be developed into
a valuable method for a more easily achievable quality
of datasets.

• Neurosurgical operating microscope video cerebral
artery segmentation is important for future vision-based
navigation surgical assistance and autonomous surgery using
artificial intelligence.

Backgrounds of Cerebral Blood Vessel
Segmentation
Deep learning algorithms have been successfully applied to
medical images, such as in an MRI analysis (Doke et al., 2020;
Wang et al., 2020). In previous surgical video analysis studies
using deep learning and pixel-wise instrument segmentations
were possible, achieving a fair level of accuracy with a
neurosurgical microscope (Kalavakonda, 2019) or laparoscopic
datasets (Kamrul Hasan and Linte, 2019). In recent studies,
for surgical instrument segmentation, the mean Dice score was
∼0.769–0.9 (Kalavakonda, 2019; Kamrul Hasan and Linte, 2019).

However, studies on anatomical structure segmentation using
neurosurgical microscope operational video are rare (Jiang

et al., 2021). This is probably because anatomical features
are more difficult to accurately segmentize through machine
learning. A recent study on anatomy segmentation using a
neurosurgical operating microscope focused on manual ground
truth marking methods, and results of the analysis have yet
to be reported (Pangal et al., 2021). In a recent study, U-
net-based vessel segmentation was reported not for visible
light color neurosurgical video but for grayscale infrared ICG
videoangiography vessels (Jiang et al., 2021). In addition, the
main focus was blood flow analysis, and only 150 cortical vessel
images were used for training (Jiang et al., 2021).

Instead, some related studies have focused on different
surgical views or tissues, such as laparoscopic (Bamba et al.,
2021), fetoscopic views (Bano et al., 2021), laryngeal tissue (Laves
et al., 2019), and uterus and ovaries (Madad Zadeh et al., 2020).
The overall mean intersection over union (IoU) reported for
anatomical structures has often been as low as 0.56 (Bamba et al.,
2021) or within the range of 0.58–0.69 (Bano et al., 2021).

Numerous difficulties with surgical video instruments and
anatomical feature segmentation have been described in the
literature, including anatomical variability, dynamical changes in
three-dimensional viewpoints, few differences in texture, limited
resolutions, occlusions, high tissue deformations, shadows, and
reflections (Kalavakonda, 2019; Bamba et al., 2021; Bano et al.,
2021). As a result, datasets of surgical video features are likely
much more difficult to analyze than the previously investigated
datasets with more constant vessels, for example, retinal blood
vessels (Khanal and Estrada, 2020).

Almost all previous operative anatomy segmentation studies
depend on manual ground truth markings (Kalavakonda, 2019;
Madad Zadeh et al., 2020; Bamba et al., 2021; Bano et al., 2021;
Pangal et al., 2021). However, achieving the anatomical structure
ground truth through manual markings is time-consuming,
expensive, and potentially inaccurate. This is partially because
the surgical field of view annotations are sometimes difficult to
achieve and are often created manually by a few expert surgeons
(Madad Zadeh et al., 2020). Even in recent studies, researchers
have continued to make efforts to create a consistent manual
annotation of neurosurgical operation videos, and segmentation
has yet to be achieved (Pangal et al., 2021). Some helper software
such as “Supervisely” (Madad Zadeh et al., 2020; Bano et al.,
2021; Pangal et al., 2021) has been used in the annotating
process. However, this method requires manual processing.
Furthermore, costly and inaccurate manual annotation results
prevented obtaining high-quality data.

To overcome this problem, we first used ICG fluorescence
intraoperative cerebral videoangiography to efficiently and
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accurately create a ground-truth dataset for blood vessels. We
generated ground-truth data from infrared videos captured
through operating microscope views. This is a novel and
more autonomous method of dataset annotation for operating
microscope-view cerebral arteries segmentation. Thus, we can
achieve a more abundant and accurate dataset.

In this study, we focused on cerebral arteries in the
neurosurgical field. To clearly discern the arteries, the artery
ground truth must be distinguished from the veins. We were able
to distinguish the artery ground truth from veins using the ICG
videoangiography phase.

In addition, recent research into advanced neural network
architectures used in image semantic segmentation may improve
the semantic segmentation of anatomical structures (Wang et al.,
2020). In previous studies, earlier architectures, such as U-
Net (Kamrul Hasan and Linte, 2019; Sadda et al., 2019; Jiang
et al., 2021), were adopted. However, recent architectures, such
as DeepLabv3+ (Chen et al., 2018) or convolutional neural
networks with modified or deeper network architectures, may
achieve a better performance (Wang et al., 2020). We reported
the evaluations and comparative performances of segmentation
architectures on blood vessels captured through neurosurgical
microscope operation videos.

The algorithm hyperparameters and optimization methods
are also important (Doke et al., 2020). The performance of the
algorithm according to the hyperparameters was also investigated
in this study. The main contributions of this study are proof of
concept regarding the effectiveness of an ICG videoangiography-
based ground truth generation method and the feasibility of
achieving cerebral artery segmentation through deep learning.

MATERIALS AND METHODS

Recording Videos
Indocyanine green (ICG) intraoperative cerebral
videoangiography has been used (Bruneau et al., 2013; Norat
et al., 2019). In addition, ICG infrared videoangiography is
a frequently used technique to assess vascular patency and
occlusions during cerebrovascular surgeries (Norat et al., 2019).

Training the semantic segmentation model requires image
pairs that are used for the input of the model and ground
truth images, which generally contained label-indexed pixels
(Figure 1). Because some neurosurgical operative microscopes
can simultaneously record both visible ray color images
and infrared ICG videoangiography images, which can be
used to label vessels, we used ICG intraoperative cerebral
videoangiography for the autonomous generation of ground
truth images with minimal manual setting adjustments.

Videos were recorded using a neurosurgical operating
microscope. Videos with different resolutions, i.e., high definition
(HD) 1920 × 1080 videos from an OPMI Pentero 900 (ZEISS,
Oberkochen) and standard definition (SD) 720 × 480 videos
from OPMI Pentero 800 (ZEISS, Oberkochen), were obtained.
Both visible light and infrared videos were shot at 29.97 frames
per second. Dual video recording, under both visible light and
800 nm wavelength infrared light, is a function of the operating
microscope manufacturer, ZEISS, and is referred to as “IR800.”

Two types of visible-light and infrared cameras were embedded
within the OPMI Pentero microscope. Full-color visible-light
videos were used as input images, and infrared (800 nm) ICG
videoangiography videos (IR800) (ZEISS, Oberkochen) were
used to create ground truth images. Commonly, only visible
light videos are recorded. When the IR800 function is turned
on through a user-selected button on the microscope, both types
of videos are recorded. These videos are stored as separate
files within the computer storage of the operating microscope.
When the IR800 function is turned on, the microscope monitor
shows infrared images, and the viewfinder still shows visible-
light images. These videos can be copied through an operating
microscope USB port with graphical user interfacemenu buttons.
These visible light and infrared videos are mostly matched in
their timing and viewpoints. However, these matches are not
perfect, and some preprocessing is required. The dataset was
collected from a total of 99 patient videos based considering
video quality.

Brightness Variability and Thresholding of
ICG Fluorescence Infrared Videos
First, thresholding was conducted as a pre-processing step for
ICG infrared fluorescence videoangiography grayscale videos.
Because such raw video data are in grayscale, they need to be
thresholded to create a ground-truth image with a class of zero
for the background or a class of 1 for the artery pixels (Figure 1C)
for semantic segmentation training using deep learning.

The brightness of the ICG fluorescence is influenced by
multiple factors. An ICG dye was injected intravenously
immediately before the videoangiography. The blood volume,
dye dilution, vessel atherosclerosis, wall thickness, and blood flow
speed influence the videoangiography (Norat et al., 2019).

Indocyanine green (ICG) videoangiography is based on
“fluorescence” and not “luminescence,” and ICG does not emit
photons by itself. Instead, a light source from the operating
microscope is required to emit fluorescence (Norat et al., 2019).
Thus, the brightness of fluorescence is also influenced by the
amount of illumination from the operating microscope. The
amount of illumination is also influenced by the surgical field of
depth, magnification, and light source aperture of the operating
microscope, and various soft tissue and instrument occlusions,
including brain cortices, retractors, other instruments, and the
surgeon’s hand, all resulting in shadows. These factors also
influence the image quality and potentially the accuracy of
the analysis.

Finally, the brightness of ICG fluorescence videoangiography
showed moderate variability among the patients. Before
thresholding, we used the “adeqhisteq” function of MATLAB
2019b (MathWorks, Inc., Natick, Massachusetts, United States)
to improve the image contrast for better thresholding. This
function uses contrast-limited adaptive histogram equalization
(Pizer, 1990). For thresholding, the “imbinarize” MATLAB
function was used. When there is no option, “imbinarize”
uses Otsu’s method for thresholding (Otsu, 1979). When
the threshold option is present, the designated threshold
is used in the “imbinarize” function. In an early study,
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FIGURE 1 | A data pair of full color visible light image data and artery ground truth map data generated from neurosurgical operating microscope ICG fluorescence

videoangiography (IR800). Large veins with darker color are excluded (green arrows). (A) Visible light image. (B) Ground truth map from ICG. (C) Deep learning

semantic segmentation class allocation according to anatomical structure and object types.

we used Otsu’s thresholding (Otsu, 1979). However, for a
minority of patients, this thresholding method is inadequate
for threshold vessels. The fixed thresholds are then used. A
threshold of ∼0.55, i.e., between 0.5 and 0.6, was adequate

for 98% of the patients. A value of 0.55 was used for 58%
of the patients, while values of 0.5 and 0.6 were used
for 20% of the patients each. Finally, 0.7 was used for
one patient.
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Temporal Matching Between Visible Light
and ICG Fluorescence Infrared Videos
Temporal offsets between the visible light view frame and the
videoangiography view frame were adjusted to match. The video
record timings of visible light and ICG infrared videos are
extremely close. However, they often differ by a few frames. The
start of color visible light videos is slower than ICG infrared
fluorescence videos by ∼3 or 10 frames for SD videos and 8
frames for HD videos. The frame rates for both types of videos
were 29.97 fps.

Image Cropping Area Selection
Considering Focus and Quality
Typically, the neurosurgical operation field is narrow and
as deep as several to more than 10 cm from the cerebral
cortex. Thus, only a small portion of the entire video
field is correctly focused, adequately illuminated, and has
high-quality cerebral vessel images. Thus, only cropped
image patches were used for deep learning training. Images
with various types of inappropriate conditions, including
a lack of light, difficulty in focusing, limited vision, and
inappropriate synchronization with infrared fluorescence ICG
videoangiography videos, were excluded (Kalavakonda, 2019;
Bano et al., 2020, 2021; Bamba et al., 2021). Owing to the
limited image qualities of the variable intraoperative surgical
field of view, the selection of appropriate scenes is required in
our study. The acquired images can be classified into various
characteristic groups according to the video quality. Although
all characteristics were used Supplementary Table 1 for training
and evaluation, images of poor quality were excluded. In the
pre-selection step, the appropriate frames were chosen from
the videos.

Finally, some types of cerebral vessels were inadequate
for the analysis. Cortical capillaries or small perforators have
substantially different morphologies compared to deeply located
medium and large-sized arteries. These types need to be
trained in separate categories and excluded from this study.
Thus, we only selected image patches that mainly contained
medium and large-sized arteries. The focus was placed on large
and mid-sized, non-atherosclerotic blood vessels, for example,
arteries including the middle cerebral artery M1, M2 and M3
branches, and anterior cerebral artery A1, A2, and A3 branches
and arterioles, which can be conspicuously visualized through
ICG fluorescence videoangiography. Atherosclerotic yellowish
internal carotid arteries (ICA) were excluded. This was because
the ICG fluorescence came from circulating blood, often, ICG
florescence only partly pass the thick atherosclerotic ICA walls
or were unable to do so at all. The image resolution of a patch
is smaller than the whole video field, potentially limiting the
accuracy of the analysis.

Spatial Matching Between Visible Light
and ICG Fluorescence of Infrared Videos
When SD videos are used, the ICG infrared fluorescence camera
also has an SD resolution, and no magnification is required.
However, images of infrared fluorescence ICG videoangiography

and surgical images of full-color visible light have different
resolutions whenHD videos are used. The horizontal and vertical
magnification ratios differ for the two types of videos. Infrared
videos were magnified 2.28 times in the horizontal axis and 2.43
times in the vertical axis. These ratios were then fixed to the
microscope model.

Visible light video cameras and infrared video cameras are two
different types of cameras embedded within a microscope. Thus,
the two videos were not exactlymatched. Instead, the relationship
between the two videos created a stereovision. Because of the
stereovision relationship, spatial offsets and distortions existed
in both videos. These spatial offsets are not constant within the
entire video field and may differ according to the depth of field
and viewpoint of the operating microscopes. Occasionally, the
neurosurgeon might move the operating microscope during the
recording of the ICG infrared fluorescence videoangiography,
resulting in a change in camera viewpoints. Theoretically, the
stereovision relationship can be calculated. However, we used
image patches, and not the entire video field, and we only needed
the matching of a small number containing a high-quality vessel
image. In small areas, the errors from stereovision distortions
were extremely small. Therefore, we adopted a simpler method,
i.e., a 2D co-registration, for matching the image patches between
visible light color images and infrared fluorescence images. In
particular, for image registration, the MATLAB image processing
toolbox 2D co-registration function “imregister” optimizer was
used, and a similarity transformation was chosen as a co-
registration algorithm.

Segmentation Class Allocation According
to ICG Fluorescence Videoangiography
Phase Selection and Datasets
Indocyanine green (ICG) flows from the arteries to the veins.
Thus, in the early phases of ICG videoangiography, only the
arteries were visualized. We refer to this timing as the arterial
phase in this study. Both arteries and veins were visualized during
the delayed phase. Only arterial-phase ICG videoangiography
was mainly used; thus, veins with slightly different morphologies
were not targeted for the segmentation in this study (Figure 1C).
Therefore, our segmentation target excluded almost all non-
vessel anatomical structures and veins (Figure 1C). However,
for comparison, in a separate analysis, a small portion
of the delayed phase, including both arteries and veins,
was used.

A dataset containing only the arterial phase, along with 92
patients including 84 patients from the training dataset of 34,348
images, and 8 patients from the test dataset with 7,933 images
without augmentation, was analyzed.

For comparison, in the dataset including a delayed phase,
the 99 patients included 84 patients with an artery phase and
4 patients with a delayed phase in the training dataset, which
has 35,975 images without augmentation. Delayed phases were
used in 3 of the 11 test group patients with 11,266 images
without augmentation.

When an appropriate image frame is found, ∼60 frames are
selected for the front and back.
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Data Augmentation
Images from the diverse random conditioned frames were
cropped within a selected field of video frames using MATLAB
during the training image generation (Figure 2). In addition, a
rotation augmentation was applied to the image pair using a
45◦ delta.

In the 92-patient group with all artery phases, for the
training dataset containing 84 patients, 34,348 images were
augmented into 251,086 images. For the test dataset containing
8 patients, 7,933 images were augmented into 60,849 images.
In the 99-patient group, with 92 patients had an artery
phase and 7 patients had a delayed phase. For the training
dataset containing 88 patients with 4 patients having a
delayed phase, 35,975 images were augmented into 260,499
images. For the test dataset containing 11 patients with
3 patients having a delayed phase, 11,593 images were
augmented into 90,129 images. For appropriate deep learning
architecture inputs, all pairs were resized to a pixel resolution
of 512× 512.

Network Architectures
A fully convolutional network (FCN) (Shelhamer et al., 2017) is a
base network created by changing the last linear layer of Visual
Geometry Group (VGG) network (Simonyan and Zisserman,
2014) into a 1 × 1 convolution layer and by adding upscaling
to predict each pixel. U-Net is a type of network that uses skip
connections and concepts related to residuals (Ronneberger et al.,
2015). DeepLabv3 (Chen et al., 2017) and v3+ (Chen et al., 2018)

are architectures that adopt an atrous convolution to handle
more sparsely dispersed features. These three architectures,
FCN, DeepLabv3 and DeepLabv3+, were trained on the same
backbone network, ResNet-101, unlike U-Net. The TorchVision-
pretrained ResNet-101 model was chosen, which was trained
with data having mean values of 0.485, 0.456, and 0.406 and
standard deviations of 0.229, 0.224, and 0.225. For an FCN, which
was originally based on VGG, the last feature of ResNet-101
was used, which has 2,048 channels, and a simple version of the
FCN head was constructed (Table 1). All architectures produced
binary channel maps of the same size as the input image.
The original DeepLabv3+ employed various backbone networks
(Chen et al., 2018), and the ResNet-101 backbone was used in
this study.

Training Details
A pretrained ResNet-101 was used, which was published using
the TorchVision models. The 2D cross entropy was calculated,
and the stochastic gradient descent has updated this loss metric
based on the learning rate with a weight decay. The models
used for comparison were selected through the intersection
over union (IoU) on the validation dataset. All models were
implemented using PyTorch. A single graphics processing unit
(GPU) (NVIDIA GeForce GTX 1080 Ti) with 11 GB of
VRAM was used for each training. Seven GPUs were used
to conduct the training and validation under various training
hyperparameters and analysis settings based on previous studies
(Smith, 2018; Doke et al., 2020). The models were trained

FIGURE 2 | This flowchart demonstrates the pipeline, which includes recording, pre-processing, and augmentation. (A) Recording visible ray color video. (B) ICG

infrared fluorescence videos. (C) Image co-registration of color images. (D) Augmentations are done.

TABLE 1 | Deeplab V3+ header architecture based on ResNet-101.

Layer Output size Filter size Stride Padding Dropout

ResNet-101 low level feature 256 × 128 × 128 – – – –

Convolution 1 48 × 128 × 128 1 × 1 1 1 0.1

ResNet-101 out feature 2,048 × 64 × 64 – – – –

Atrous spatial pyramidal pooling 1,280 × 64 × 64 – – – –

Project convolution 256 × 64 × 64 1 × 1 1 – 0.1

Up sampling (interpolate) 256 × 128 × 128 – – – –

Concatenation 304 × 128 × 128 – – – –

Convolution 256 × 128 × 128 3 × 3 1 1 –

Convolution 2 × 128 × 128 1 × 1 1 – –

Up sampling (interpolate) 2 × 512 × 512 – – – –

Frontiers in Neurorobotics | www.frontiersin.org 6 January 2022 | Volume 15 | Article 735177

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Kim et al. Neurosurgical Cerebral Artery Semantic Segmentation

FIGURE 3 | Ground truth and inference results by models. For the first row, cerebral artery ground truth was shown and veins which are not included for the ground

truth were marked by green arrows. For each box of four 2 × 2 images, the left upper image is the visible light color image from neurosurgical operating microscope

video for analyses. The right lower image is the generated map by the model. In the right upper image, the ground truth in the first row boxes or result map from the

second row boxes to the last row boxes is overlapped on monotone source image. In the left lower image, ground truth was shown in the first row. From the second

row, result map and ground truth were superimposed to show true positive, false positive, false negative and true negative pixels.
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TABLE 2 | Mean accuracies and confusion matrix for the best results.

Mean dice Mean IoU Pixel accuracy True positive False positive True negative False negative

92-artery patient group: 84 artery

phase training/8 artery phase

validation

0.795 0.660 0.746 10.7% 4.3% 76.8% 8.23%

99-patient group: 88 artery phase +

4 delayed phase train/8 artery phase

+ 3 delayed phase validation

0.775 0.632 0.763 9.99% 4.67% 76.1% 9.23%

The DeepLabv3+ algorithm was used. Values in the confusion matrix are the percentages of pixels.

TABLE 3 | Result comparisons among algorithms.

Network Mean dice Mean IoU Pixel accuracy

DeepLabv3+ 0.77618 0.63423 0.86286

DeepLabv3 0.74065 0.58813 0.83537

FCN 0.74273 0.59075 0.84306

U-Net 0.67751 0.51231 0.79522

Resnet-101 backbones were used for three algorithms except U-Net. Training was

conducted in the total 99 patient group: 88 patients train group and 11 patients

validation group.

using hyperparameters including a 10−8 learning rate, 5×10−5

weight decay, and 0.99 momentum. All models and various other
hyperparameter settings were trained for at least 50,000 iterations
and up to 100,000 iterations. All architectures are the same as in
the original paper, excluding the FCN, as described in Table 1.
The output stride for DeepLabv3+ was fixed at 8, considerably
better results than those with larger strides found in the literature
(Shelhamer et al., 2017; Chen et al., 2018).

Evaluation Protocol
The training and evaluation of each model of the four
architectures were conducted on the same test dataset of 99
patients with 92 arterial and 7 delayed phases (Figure 3).
The test dataset was gathered from 11 patients and randomly
selected from 99 patients. A common test-time augmentation
was employed to reduce the prediction error. The pixel accuracy
(Csurka et al., 2013), mean IoU (Csurka et al., 2013; Rezatofighi
et al., 2019; Eelbode et al., 2020), and mean Dice (Eelbode et al.,
2020) between the predicted segmentation maps and the ground
truth map generated by our method were all calculated. Both
the mean IoU and mean Dice metrics were calculated on the
binary classes.

RESULTS

Best Results and Confusion Matrices
The best model, DeepLabv3+, yielded a mean Dice of 0.795
for the blood vessel segmentation in the 92-patient artery
phase group with 84 patients used for training and 8 patients
used for validation (Table 2). The mean Dice decreased to
0.7762 among all 99 patients, partly including delayed-phase
patients. Confusion matrices, including true positives, false

positives, true negatives, and false negatives, are also presented
in Table 2. This information is also shown in Figure 3. In
segmentation results, arteries could be distinguished from
veins (Figure 3).

Results Based on the Model
The blood vessel segmentation of various network architectures
is summarized in Table 3. The U-Net case exhibited the lowest
performance for the overall metrics. The other algorithms were
based on the ResNet-101 backbone.

Results Based on Dataset Size
We examined the efficiency of the architecture for the dataset
size of the 99-patient group. As the dataset increases in size,
the tendency to perform better applies to all four architectures.
All architectures were tested using four types of dataset sizes
(Figure 4). In all cases, DeepLabv3+ resulted in the highest mean
Dice value. In particular, more recent architectures, DeepLabv3+
and DeepLabv3, appear to be more accurate.

Data Augmentation Effects
When no augmentation was used, the accuracy was almost the
same, with a difference in Dice score of<0.01. Thus, the decrease
in accuracy was extremely small when the Deeplabv3+ algorithm
was used without data augmentation.

Training Hyperparameters
Among the tested hyperparameters in the 99-patient group, a
higher learning rate than the default value 10−10 and a higher
momentum showed slightly better results. For example, when
the learning rate was 5×10−10, the mean IoU was 0.6298.
When the learning rate was 10−8, the mean IoU was 0.6337.
When converted into the Dice score (Park et al., 2019), it was
0.7758. However, when a learning rate is even higher, training
was not converged effectively and main IoU accuracy was very
low, which is about 0.4–0.5. Thus, learning rate could not be
increased further and the currently used learning rate is almost
the maximum for the total 99-patient group (Table 4). When the
moment is 0.9, the mean IoU is 0.6208. When a momentum of
0.95 was used with the default setting, the mean IoU was 0.6236.
The differences were only slight. However, a higher momentum
resulted in slightly better results. Thus, as the analysis setting
in this study, we finally adopted a higher learning rate and a
higher momentum. Both in the 99-patient group and in the 92-
patient group, a learning rate higher than 10−6 could not be used
(Tables 4, 5).
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FIGURE 4 | Performance by algorithm and training data size.

TABLE 4 | Hyperparameter settings and results among the 99-patient group with

84 artery phases and 4 delayed phases in the training group.

Learning Momentum Weight Mean Mean

rate decay dice IoU

10−6 0.99 5 × 10−5 Low accuracy 0.4–0.5

10−7 0.99 5 × 10−5 0.753 0.604

10−8 0.99 5 × 10−5 0.776 0.634

10−9 0.99 5 × 10−5 0.771 0.628

10−10 0.99 5 × 10−4 0.775 0.632

10−10 0.95 5 × 10−4 0.768 0.624

10−10 0.90 5 × 10−4 0.766 0.621

10−10 0.99 5 × 10−5 0.773 0.630

Test results in 11 patient group of 8 artery phases and 3 delayed phases are shown.

Accuracies were about 2.5% lower than homogeneous artery phase 92 patient dataset

shown in Tables 2, 5.

DISCUSSION AND CONCLUSION

Comparison Between Manual and ICG
Videoangiography-Based Automatic
Ground Truth Characteristics
Automatic ground truth generation based on ICG
videoangiography is potentially much more accurate than

manual ground truth and, potentially, a gold standard because
ICG videoangiography shows the vessels directly (Norat et al.,
2019). Manual ground truth is often simplified for conspicuous
vessels, and some vessels may be missed during the manual
creation of the ground truth (Bano et al., 2021). However, these
missed vessels were observed through ICG videoangiography
(Figures 1, 3). Thus, we speculate that the automatic ground
truth will be more accurate.

However, an automatic ICG-based ground truth may show
numerous small vessels, which may be difficult to identify with
deep learning from visible light image data (Figures 1, 3). Thus,
the ICG-based analysis score cannot be directly compared to a
manual ground truth analysis, and the score may actually be
lower owing to a higher accuracy of ground truth with much
more details about small vessels, which are hard to segmentize
based on visible light images (Figures 1, 3).

Comparisons of Number of Ground Truth
Data With the Literature
In previous studies, a few hundred or thousands of manual
ground-truth images were used. In a neurosurgical infrared ICG
videoangiography grayscale blood vessel segmentation study, 150
training images were used (Jiang et al., 2021). In this previous
study, color surgical field vessels were not segmented and only
grayscale infrared ICG vessels were analyzed (Jiang et al., 2021).
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TABLE 5 | Hyperparameter settings and results in the 92-patient group with all

artery phases.

Learning Momentum Weight Mean Mean

rate decay IoU dice

10−5 0.95 5 × 10−4 Low accuracy 0.4–0.5

10−6 0.99 5 × 10−4

10−6 0.99 5 × 10−5

10−6 0.95 5 × 10−4

7×10−7 0.99 5 × 10−5

5×10−7 0.99 5 × 10−4

10−7 0.99 5 × 10−4 0.637 0.778

10−8 0.99 5 × 10−4 0.650 0.788

10−9 0.99 5 × 10−5 0.656 0.792

7×10−10 0.95 5 × 10−3 0.660 0.795

5×10−10 0.99 5 × 10−5 0.660 0.795

5×10−10 0.90 5 × 10−5 0.654 0.791

7×10−10 0.95 5 × 10−3 0.660 0.795

10−10 0.99 5 × 10−4 0.656 0.792

Accuracies are for the test results for eight patients with artery phases.

In a recent fetoscopic blood vessel segmentation study, ∼345–
2,060 video image frames were manually marked (Sadda et al.,
2019; Bano et al., 2021). The creation of more ground truth data
is limited by the budget, labor, and time. The accuracy is also
limited through a manual method. Our automated generation
method can increase the number of ground truth data to over
30,000 with limited cost and labor, which is much higher than the
number used in the literature.

Comparison of Segmentation Accuracy
With the Literature and Validation
Subgroups
During the literature review conducted for comparison, we
found that methodological and data variations that can influence
the accuracy of the measurements were high and the direct
comparisons of the accuracy were not possible. In some previous
studies, validation subgroups were not exactly defined and were,
potentially, completely or partially conducted for different images
from the same patients (Laves et al., 2019; Bano et al., 2021; Jiang
et al., 2021). Because anatomical variations within a patient are
limited, the accuracy of the algorithm may be overoptimized for
a patient and overestimated when evaluated partially with images
from the same patient, resulting in a high accuracy considering
the number of training images. When testing is strictly applied in
a separate group of patients, the accuracy may be lower. In this
study, validation was conducted in the patient group, which was
completely different from the training group.

Accuracy of Comparisons Between
Neurosurgical Instrument Segmentation
and Non-Neurosurgical Surgical Video
Anatomy Segmentations
For the neurosurgical field, instrument segmentation was
conducted in a previous study (Kalavakonda, 2019). The
neurosurgical instrument showed a lower segmentation accuracy

(Dice score of 0.769) than the robotic instrument (Dice score of
0.887) (Kalavakonda, 2019).

In previous non-vessel anatomical structure studies, the
semantic segmentation accuracy of the uterus, ovaries, and
surgical tools with Mask-R-CNN was 0.845, 0.296, and 0.545
(pixel-based mean IoU), respectively (Madad Zadeh et al.,
2020). In the fetoscopic study, the overall mean IoUs of
anatomical structures, including blood vessels, were 0.58–0.69
(Bano et al., 2021). Anatomical feature segmentation seems quite
difficult when considering the accuracies in the literature using
the manual ground truth. Thus, the automatic ground truth
generation method is promising.

Comparison of the Segmentation Accuracy
With the Literature: Artery Segmentation
vs. Vessel Segmentation Including Both
Arteries and Veins
In the literature, we found a neurosurgical blood vessel
segmentation study (Jiang et al., 2021). However, there are some
major differences. The segmentation target was grayscale infrared
ICG videoangiography cortical vessels, including both arteries
and veins, or anastomosed vessels (Jiang et al., 2021). By contrast,
in this study, we only conducted “artery” segmentations in
visible light color videos (Figure 1C). Thus, our analysis task
was more difficult because of the arteries and the veins that are
morphologically similar and need to be distinguished in non-
angiographic ordinary color surgical videos with less distinct
vessel margins (Figure 1). In the recent neurosurgical cortical
vessel segmentation, including arteries and veins, using a limit of
150 training images, the Dice score was 0.80 (Jiang et al., 2021).
The main focus of the study was blood flow quantization and
not vessel segmentation. Thus, the details of vessel segmentation
ground truth and validationmethods are unknown.We speculate
that validation was conducted partly in the same patient group,
and a direct comparison would not be possible.

Comparison of Segmentation Accuracy
With the Literature and the Factors to
Consider: Box and Pixel-Based Mean IoUs
In a recent study on surgical instruments and anatomical
feature detection studies, the bounding box-based mean IoU
(Rezatofighi et al., 2019), including both instruments and
anatomical structures, was only 0.56 (Bamba et al., 2021). Because
the measurement was the bounding-box-based mean IoU
(Rezatofighi et al., 2019), and instruments (Kalavakonda, 2019)
are easier to segment than anatomical structures, including blood
vessels, the actual pixel-wise semantic segmentation mean IoU
of the blood vessels would be even lower than 0.56. This study
showed that surgical video anatomical feature segmentation is
highly difficult.

Methodology for Effective Training of
Anatomical Structure Semantic
Segmentation
During dataset construction and deep learning training, we
found that, for deep learning applied to semantic segmentation
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training for the surgical field, a high-quality dataset is required
for the effectiveness of the training.

In many instances, the identities of the surgical anatomy and
the anatomical structure are inconspicuous in images because
of various factors, including low illumination, poor focus, and
a blood-filled or obstructed surgical field (Kalavakonda, 2019;
Bamba et al., 2021; Bano et al., 2021). Because low-quality
images occur much more frequently than high-quality images
in a surgical recording, it is critically important to discard low-
quality data.

In addition, morphological characteristics of anatomical
structures are variable and need to be classified and allocated
to adequately indexed categories. For example, “blood vessels”
cannot be trained as a single category, and we focused on large to
medium-sized, non-atherosclerotic arteries. Thus, other types of
vessels, such as capillaries, cortical vessels (Jiang et al., 2021), and
veins, need to be trained in different categories and are beyond
the scope of this study.

Videoangiography Phase and Ground Truth
According to Vessel Types
This study shows that, by using visualized vessel-type differences
according to the ICG videoangiography phases, vessel types (i.e.,
from arteries to veins) can be distinguished (Figures 1, 3).

We compared a total of 92 patient groups with all arterial
phases (Tables 2, 5) and a total of 99 patients with mostly arterial
phases and partly mixed delayed phases. By removing the delayed
phase data, the accuracy moderately improved by ∼2.5%. This
finding shows that ICG videoangiography phase matching is
also an important factor for achieving a more accurate analysis.
When the delayed phase is mixed with the arterial phase, and the
resulting ground truth becomes inconsistent. In this case, most
of the ground truth does not contain veins, while some contain
veins, resulting in an inconsistency in the ground truth. Thus,
the training and test accuracies partly decreased.

Videos Resolution and Algorithm Training
Because the resolution of each video differs based on whether it
is SD and HD, our trained algorithm may be more applicable
to various image qualities. These variabilities were expected to
enhance the robustness of the model in semantic segmentation
in the neurosurgical field. Because a cropped area is used
for training, the training data resolution is limited, thereby,
also potentially limiting the accuracy. An operating microscope
with a higher resolution video recording is required for
better accuracy.

Optimal Architecture for Improvements in
Blood Vessel Segmentation and Potential
Neural Network Architecture
In several previous studies, U-Net or U-Net variation
architectures were used (Kamrul Hasan and Linte, 2019;
Bano et al., 2020; Yamato et al., 2020). However, we believe that
the accuracy of U-Net is not satisfactory when comparing the
results in the literature with our results (Figures 3, 4). In this

study, multiple algorithms were compared, as DeepLabv3 and
DeepLabv3+ were found to be superior to the conventional
U-net (Chen et al., 2018). In DeepLabv3+, a U-net-like
encoder–decoder architecture was adopted, and the use of
both atrous convolution and a U-Net like architecture is
probably beneficial for achieving a better accuracy (Figure 4)
(Chen et al., 2018).

In particular, blood vessels typically have an elongated
morphology. Thus, we believe that convolutions focused on
short distances with small kernels are less effective. DeepLabv3
and DeepLabv3+ use atrous convolutions, comprising
longer distanced convolution kernels that may be adequate
for elongated morphology objects, such as arms, legs, and
blood vessels.

The network backbones used were ResNet-101 for DeepLabv3
and DeepLabv3+ in this study. Using residuals, a type of skip
connection used in ResNet would also be important for achieving
a better accuracy of blood vessel segmentations, similar to various
types of vessel segmentations (He et al., 2016a). In a recent
fetoscopic study, the algorithm using a skip connection, ResNet-
50, was used and showed relatively fair results (Bano et al.,
2021).

The currently used algorithm is probably not the best,
and the other types of algorithms, such as the ResNet-152
backbone (He et al., 2016b), Xception backbone (Chollet, 2017),
or other architectures may achieve better results. However, the
improvement is expected to be small when considering the
differences in the accuracy found in the literature (He et al.,
2016b; Chollet, 2017).

To find an even more accurate and efficient deep learning
algorithm, an automatic machine learning optimization
algorithm can be considered (He et al., 2018).

Data Augmentation Effects
In this study, almost no data augmentation effects were observed.
We think this phenomenon can be found when data variability
is sufficient in a large dataset, and the algorithm is not prone
to over-optimization. For example, no noticeable “jittering” or
mirroring augmentation effects were found when FCN segmental
segmentation was used for the VOC2012 dataset (Shelhamer
et al., 2017).

Optimal Hyperparameter Setting
The finding in which a higher learning rate and a higher
momentum showed that slightly better results are consistent
with the literature on hyperparameter tuning (Smith, 2018).
However, hyperparameters could not be adjusted further, owing
to a failure of the training or divergence. We speculate
that the currently used hyperparameter settings are close
to optimal.

As discussed in the literature, the hyperparameter setting and
the dataset amount and characteristics are inter-related (Smith,
2018), and a higher learning rate can be used in a larger dataset of
99 patients (Table 4) and cannot be used in the 92-patient dataset
(Table 5).
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Alternative Methods Used to Assist Vessel
Segmentation in the Literature
Alternative methods for assisting in blood vessel detection
described in the literature included a change in detection
using artery pulsations (Akbari et al., 2009) and Doppler
ultrasonography-based imaging of vessels (Kempski et al., 2019).
However, artery pulsations and photoacoustic detection margins
may not be as precise or as straightforward as the ICG
videoangiography margins (Figure 2) and, thus, less adequate for
an exactly matched vessel ground-truth generation.

Potential Further Improvements and
Related Studies
Although Otsu’s algorithm was used in ICG for threshold
selection, deep learning-based threshold selection has recently
been reported, such as DeepOtsu (He and Schomaker, 2019).
A more accurate threshold selection can be achieved using this
method. Co-registration and timeframematching algorithms can
also be improved using deep learning.

From a different perspective, we suggest that the structural
complexity of the blood vessels can be interpreted as a graphical
theory. The graph neural network (GNN)-based approach for
graphical connectivity of the blood vessels may enhance the
performance of blood vessel segmentation in the surgical field
(Shin et al., 2019).

When considering the inference concepts, for example,
Bayesian inference for algorithm development or optimization
may also be useful (Doke et al., 2020).

Importance of Artery Separation From
Veins
For clinical and surgical purposes, the separation of arteries and
veins is important. Arteries are the usual surgical targets (Norat
et al., 2019) and are, thus, more important than veins. If an
artery is occluded, it can cause stroke. However, when the vein
is occluded, nothing may occur because of the more abundant
collateral flows. When only the arteries are segmented, they can
be accurately matched to MR or CT arteriography. Separated
artery or vein images are easier to discern for diagnostic
and interventional purposes, and vein signature contamination
decreases the image clarity. Thus, the clinical and diagnostic
value of arteries distinguished from veins is high. We first show
the separate detection of arteries from veins in a neurosurgical
operation image.

Potential Applications
In the surgical field, blood vessel segmentation can be an
important basis for deep learning applications in the surgical
field. For example, blood vessels can be used to anchor
the registration of the vessel itself or non-vessel structures.
Using vessel registration, blood flow quantization (Jiang et al.,
2021), and image mosaicking using vessels (Bano et al., 2020)
were possible. Marker-based neural navigation systems have
weaknesses, such as brain shifting. To address this issue,
anatomy-based navigation systems are required. An application

to estimate brain shifts during surgery is also possible (Ding
et al., 2011). To develop this approach, computer vision blood
vessel localization-based navigation of the surgical field can be
considered. The detection of blood vessels can be used to design
handheld devices aiming to avoid blood vessels for greater safety
(Prudente et al., 2017). Our method can be used to analyze
the surgical field more accurately. In a recent study on robotic
automation, for a surgical assistance device, automated suction
and blood flow analysis were applied (Richter et al., 2021). Blood
vessel recognition is also potentially helpful in finding the origin
of bleeding and applying suction around it or controlling the
bleeding focus (Richter et al., 2021). In the long term, image-
guided autonomous surgery and surgical assistance systems have
potential applications. In the future, surgical assistance and
autonomous surgery neurorobotics that can manipulate cerebral
vessels will require computer vision to identify the blood vessels.
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