
ORIGINAL RESEARCH
published: 03 September 2021

doi: 10.3389/fnbot.2021.739077

Frontiers in Neurorobotics | www.frontiersin.org 1 September 2021 | Volume 15 | Article 739077

Edited by:

Shin-Jye Lee,

National Chiao Tung University, Taiwan

Reviewed by:

Amit Shakya,

Sant Longowal Institute of Engineering

and Technology, India

Huan Deng,

Sichuan University, China

Jiasong Wu,

Southeast University, China

*Correspondence:

Shuqi He

1229937232@qq.com

Received: 10 July 2021

Accepted: 06 August 2021

Published: 03 September 2021

Citation:

He S (2021) Research on a

Segmentation Algorithm for the Tujia

Brocade Images Based on

Unsupervised Gaussian Mixture

Clustering.

Front. Neurorobot. 15:739077.

doi: 10.3389/fnbot.2021.739077

Research on a Segmentation
Algorithm for the Tujia Brocade
Images Based on Unsupervised
Gaussian Mixture Clustering
Shuqi He*

College of Computer Science, South-Central University for Nationalities, Wuhan, China

Tujia brocades are important carriers of Chinese Tujia national culture and art. It records

the most detailed and real cultural history of Tujia nationality and is one of the National

Intangible Cultural Heritage. Classic graphic elements are separated from Tujia brocade

patterns to establish the Tujia brocade graphic element database, which is used for the

protection and inheritance of traditional national culture. Tujia brocade dataset collected a

total of more than 200 clear Tujia brocade patterns andwas divided into seven categories,

according to traditional meanings. The weave texture of a Tujia brocade is coarse, and

the textural features of the background are obvious, so classical segmentation algorithms

cannot achieve good segmentation effects. At the same time, deep learning technology

cannot be used because there is no standard Tujia brocade dataset. Based on the above

problems, this study proposes a method based on an unsupervised clustering algorithm

for the segmentation of Tujia brocades. First, the cluster number K is calculated by fusing

local binary patterns (LBP) and gray-level co-occurrence matrix (GLCM) characteristic

values. Second, clustering and segmentation are conducted on each input Tujia brocade

image by adopting a Gaussianmixturemodel (GMM) to obtain a preliminary segmentation

image, wherein the image yielded after preliminary segmentation is rough. Then, a

method based on voting optimization and dense conditional random field (DenseCRF)

(CRF denotes conditional random filtering) is adopted to optimize the image after

preliminary segmentation and obtain the image segmentation results. Finally, the desired

graphic element contour is extracted through interactive cutting. The contributions of this

study include: (1) a calculation method for the cluster number K wherein the experimental

results show that the effect of the clustering number K chosen in this paper is ideal; (2)

an optimization method for the noise points of Tujia brocade patterns based on voting,

which can effectively eliminate isolated noise points from brocade patterns.

Keywords: Tujia brocade segmentation, GMM, DenseCRF, K auto-selection based on information fusion,

optimization based on the vote

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.739077
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.739077&domain=pdf&date_stamp=2021-09-03
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:1229937232@qq.com
https://doi.org/10.3389/fnbot.2021.739077
https://www.frontiersin.org/articles/10.3389/fnbot.2021.739077/full


He Tujia Brocade Images Segmentation

INTRODUCTION

Intangible cultural heritage is an important symbol of the
historical and cultural achievements of a country or a nation.
It is not only of great significance to the study of the evolution
of human civilization but also plays a unique role in showing
the diversity of world culture, being the common cultural wealth
of mankind. Tujia nationality is one of the 56 ethnic groups in
China. Tujia brocade is an important carrier of the culture and
art of Tujia nationality. Furthermore, it records the most detailed
and real cultural history of Tujia nationality, making it one of the
National Intangible Cultural Heritage (Wan and Nie, 2018).

The basic primitives of a Tujia brocade are extracted by digital
image technology for classification and storage to form a Tujia
brocade database. This provides a safe and convenient way to
protect the Tujia brocade culture. Tujia brocades use cotton
yarn as warps and silk thread or cotton thread, and useful wool,
as wefts, which are much thicker than ordinary fabric fibers.
Therefore, the weave texture of a Tujia brocade is coarse, and
it is not easy to form smooth and round curves and shapes.
Brocade patterns have pixelated visual textures and the features
of abstract geometric patterns (Wan and Nie, 2018). These
characteristics make Tujia brocade images have exceptionally
large color characteristic differences from ordinary images, and
the texture-level image contrast is not strong, which brings
difficulty to image segmentation.

Image segmentation is one of the research hotspots in the
field of computer vision. The traditional image segmentation
algorithms mainly use the low-level semantics of images
including color, texture, and shape for segmentation, such as
threshold method, region grow algorithm, and edge detection
algorithm, among others (Heath et al., 1997; Fan et al., 2001;
Otsu, 2007). Superpixel segmentation methods emerged after
researchers introduced graph theory to image segmentation
such as Graph Cuts and Simple Linear Iterative Clustering
(SLIC) (Felzenszwalb and Huttenlocher, 2004; Achanta et al.,
2012). It is difficult to achieve semantic segmentation via
traditional clustering segmentation based on the shallow features
of images.

The model based on deep learning can automatically extract
the image features representation and has achieved excellent
results in many challenging computer vision tasks, including
object detection, location, recognition, and segmentation. Classic
image segmentation models such as Fully Convolutional
Networks (FCN) (Long et al., 2015), Mask Regional-Based
Convolutional Neural Networks (Mask R-CNN) (He et al.,
2017), DeepLab, and so on. The semantic segmentation DeepLab
(Chen et al., 2018a,b) employs a series algorithm by integrating
various classical deep learning methods and using Atrous
Convolution, Atrous Spatial Pyramid Pooling (ASPP), along
with the other structures. Meanwhile, a dense conditional
random field (DenseCRF) structure was connected to the back
end of the neural network to provide a refined segmentation
for the boundary after initial segmentation. Nonetheless, most
classic image segmentation models rely on high-quality massive
datasets. It is difficult to conduct image segmentation by the
classic deep learning segmentation model because the dataset

in this study only contains more than 200 images without a
pixel-level segmentation tag.

More recently, unsupervised deep learning becomes a
research hotspot. A dual-branch combination network (DCN)
(Yang et al., 2017) was proposed as a method combining
an autoencoder and K-means. The model encoder maps the
input data from high-dimensional features to low-dimensional
subspaces, obtains the potential features of the data, performs K-
means clustering on them, and obtains the K-means loss. The
decoder reconstructs the latent features into the original data
to obtain the reconstruction loss. The network combines the
reconstruction loss and K-means loss through backpropagation
to optimize the learning process. The study of Kanezaki (2018)
used standard unsupervised over-segmentation techniques to
supervise convolutional neural networks. This method uses
standard algorithms to extract pre-segmented regions from
the original image. The segmentation model extracts image
features through convolutional neural networks to obtain a
rough segmentation of the image and then adjusts the rough
segmentation results according to multiple constraints, such as
feature similarity and spatial continuity so that all pixels in the
same pre-segmented area have the same label. The loss incurred
between the two segmentation images before and after the
adjustment is used as the backpropagation loss of the supervision
signal to update the network weight.

The recognition and segmentation of brocade texture are
also one of the applications of image segmentation. Brocade
texture feature extraction technology originated in the mid-
1980’s. Over the past decade, researchers began to focus on
textile-aided design, fabric pattern segmentation, and contour
extraction technology. The study of Kuo et al. (2005, 2007) and
Kuo and Shih (2011) advocated extracting the color features
of printed fabrics through feature extraction algorithms, such
as self-organizing map network (SOM), and then obtained the
pattern by using the Fuzzy-c means (FCM) algorithm to achieve
the automatic classification of the colors. The study of Lachkar
et al. (2006) adopted a clustering method based on a GMM.
The method combined a GMM and a content validity index
(CVI) to form an adaptive, efficient segmentation algorithm. In
the research conducted by Jiang et al. (2014), they studied the
automatic recognition technology of jacquard warp knitted fabric
pattern images. The fabric image uses a two-dimensional wavelet
decomposition algorithm to extract features, given the clustering
center, and then uses the K-means clustering multi-channel
algorithm for segmentation.

Based on the research of textile image segmentation
algorithm, we found that there are two difficulties in the

segmentation of Tujia brocade by the commonly used image

segmentation algorithm.

• The material of Tujia brocade is rougher than the common

fabric fiber and the background texture of the brocade pattern

is very prominent. This forms a similar feeling to “mosaic,”
which is represented as a noise signal on the fabric image.
Such kind of noise information can cover up part of the
detail information, and increase the image entropy, making
the boundary between the Tujia brocade primitive and the
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image background becomes blurred. This will increase the
difficulty of edge detail segmentation and reduce the accuracy
of pattern texture segmentation.

• Deep learning-based image segmentation algorithms typically
use large datasets for training to prevent overfitting during
data processing. Tujia brocade image segmentation research
is relatively rare; there is a lack of training data specifically
designed for brocade image segmentation. If the image
matting or image segmentation tools are used to build a data
set, it needs a lot of manual labor to extract material from
massive data through tedious operations.

In response to the above problems, this study proposes a
clustering segmentation process for Tujia brocades. First, the
input Tujia brocade is divided into basic clusters. Then, a
voting-based optimization method is used to eliminate the noise
points of the image based on the characteristics of the Tujia
brocade. Afterward, DenseCRF is employed to optimize the
image and obtain effective segmentation results. Finally, the
desired primitive outline is extracted through interactive cutting.
The contributions of this study are as follows:

• A calculation method for cluster number K. In unsupervised
clustering, theK-value has an extraordinarily strong impact on
the clustering results. The algorithm uses local binary patterns
(LBP) to calculate the base for the image texture features
and uses the feature value of the GLCM as the weight. The
two values are fused to calculate the K-value for clustering.
Experiments show that the clustering effect of the K-value
selection algorithm is ideal.

• An optimization method for Tujia brocade noise points.
Due to the extensive weave textures of Tujia brocades and
the obvious textural characteristics of the background, noise
points easily occur after clustering. DenseCRF can be used
to optimize the image contour, but it is not effective in
eliminating the noise points of a Tujia brocade. Therefore,
we propose a voting-based optimization method. The
classification labels obtained after the preliminary clustering
process are voted on according to the classification results of
their neighboring pixels to redistribute the labels of the center
pixels. This method for the elimination of isolated noise points
is remarkably effective and is then combined with DenseCRF
to optimize the preliminary clustering-based segmentation
map to obtain the final Tujia brocade segmentation map.

METHOD

For a small unlabelled dataset, we used an unsupervised
clustering method to segment the input Tujia brocade. First,
the LBP and GLCM feature values were fused to calculate the
K-value of the cluster. Afterward, a GMM is used to cluster
and obtain a preliminary segmentation map. This approach
does not extract image features that are different from those
obtained via traditional image segmentation. The image yielded
after the initial segmentation process is relatively rough, and
we propose a method based on the combination of voting
optimization and DenseCRF to optimize this to obtain the final

image segmentation result. The specific flow chart is shown in
Figure 1.

Cluster Number K Auto-Selection
In an image, regions belonging to the same object mostly
have similar textures and colors. During the image clustering
segmentation, similar pixels were classified into a category.
This category is regarded as a segmentation object which is
classified according to the similarity between image pixels. The
K-value selection is particularly important to obtain a good image
segmentation effect. Due to the influence of brocade weaving
technology, the image background of Tujia brocade has a strong
sense of grain. If the K-value is too large when clustering,
the image background will be clustered, forming the mosaic
effect and affecting the segmentation effect. However, if the K-
value is too small, the fine lines in the image will be ignored.
Figure 2 shows the segmentation effect of different K-values in
the GMM algorithm.

Under observation, we found that the visual effect of the
clustering was better when K = 2, 3, or 6, but we were not sure
exactly what the clustering K-value should be until the clustering
results come out. The model was selected mostly through
criterion functions such as Bayesian information criterion (BIC)
(Chakrabarti and Ghosh, 2011), Akaike information criterion
(AIC) (Burnham and Anderson, 2002), among others. However,
such application was very difficult in the actual model selection
because the computational effort was too large, and it was
found via specific experiments that the model selected by
the criteria function was not the optimal estimation model
for the image segmentation. All models obtained by training
were only regarded as an approximate model of the real
model. The objective of this study is to obtain a reasonable
clustering K-value quickly and effectively. Traditional Tujia
brocade consists of many similar graphic elements with strong
regularity and has obvious texture features. For this reason,
the number of texture features can be used to select the K-
value of the clustering model. We introduce the statistical
eigenvalues of the image GLCM and LBP to calculate the K-
value.

Local Binary Patterns
Local binary patterns is an operator to describe the local texture
features of the image and has gray and rotation invariance.
LBP operator proposed by the study of Ojala et al. (2002) can
divide the whole image into different subregions to perform
local texture feature histogram statistics in each small region,
that is, to count the feature number belonging to a certain
pattern in the region. Finally, the histogram of all regions
was connected as the image feature vector. The original LBP
operator took the center pixel of the 3 × 3 window as the
threshold value to compare the gray values of the adjacent
eight pixels with the threshold value in turn clockwise. If the
gray value is greater than or equal to the threshold value,
the value of this pixel point is marked as 1, otherwise 0.
After the comparison between the adjacent eight pixels, an
8-bit binary number was generated as the LBP value of the
center pixel of the window to reflect the texture information
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FIGURE 1 | Tujia brocade image segmentation process.

of the region. The specific calculation process is shown in
Formula (1).

LBP
(

xc, yc
)

=

p−1
∑

p=0

2ps
(

ip − ic
)

. (1)

where (xc, yc) is the coordinate of the central pixel; p is the pth

pixel of the adjacent region; ip is the gray value of the pixel of the
adjacent region; ic is the gray value of the central pixel; s(x) is a
sign function as shown in Formula (2).

S (x) =







1, if x ≥ 0

0, else
(2)

The original LBP operator only covers a small area of 3 × 3 in
practical application, which cannot adapt to the texture features
of different sizes. For this purpose, Extended LBP (Ojala et al.,
2002) was proposed which extended the coverage area of the LBP
operator to a circular neighborhood with a radius of R. The LBP
operator can sample P points in the circular region. The method
adopted Uniform Pattern LBP. P sampling points generated 2P

patterns in Extended LBP. The introduction of “equivalentmode”
(Ojala et al., 2002) reduced the number of modes from the
original 2P to P(P – 1)+ 2. We adopted the LBP algorithm which
can calculate the occurrence frequency of image texture feature
pattern, to calculate the cardinality of clustering K-value.

Gray Level Co-occurrence Matrix (GLCM)
Tujia brocade images are generally permuted by many repeated
arrays of basic primitives. The basic texture feature cardinality
calculated by the LBP operator may not fully represent the
number of categories of segmented objects. Therefore, we
introduced the statistical feature values of the image GLCM
(Sulochana and Vidhya, 2013) which was commonly used to
describe texture by studying the spatial correlation characteristics
of gray level. The texture is formed by the repeated appearance
of gray distribution in spatial positions, so there is a certain
gray relationship between two pixels separated by a certain
distance in the image space, that is, the spatial correlation
characteristics of gray level in the image. For GLCM, the
joint probability density of the two pixels was used to reflect
the gray direction, interval, and change amplitude of the
image. However, GLCM cannot directly provide the features
of the texture. Some scalars can be used to represent GLCM
features. The entropy value of the co-occurrence matrix contains
the randomness measure of the image information amount,
indicating the complexity of the image gray level distribution.
The greater the entropy value is, the more complex the
image is, as shown in the calculation Formula (3). The M-
value reflects the degree of regularity of the texture. The
smaller M-value means that the texture features are more
chaotic and difficult to describe, as shown in the calculation
Formula (4). The greater the contrast of the image, the clearer
the visual effect of the image, as shown in the calculation
Formula (5). We assumed that images with more complex
patterns and chaotic texture features tended to be described by
more models.
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FIGURE 2 | The segmentation results by the GMM uses different K-values. (A) Original. (B) K = 2. (C) K = 3. (D) K = 4. (E) K = 5. (F) K = 6. (G) K = 7. (H) K = 8.

Entropy = −

L−1
∑

i=0

L−1
∑

j=0

P
(

i, j, d, θ
)

× ln P
(

i, j, d, θ
)

(3)

Mean =

L−1
∑

i=0

L−1
∑

j=0

P
(

i, j, d, θ
)

× i (4)

Contrast =

L−1
∑

i=0

L−1
∑

j=0

p(i, j)× (i− j)2 (5)

Calculating K-Values
The occurrence frequency of LBP texture features in the image
was counted by the algorithm where a threshold value was set
up and the number of LBP features whose frequency exceeds

the threshold value was used as the cardinality of clustering
K-value. Entropy, M, and contrast parameters of GLCM were
used to calculate the weight of the clustering K-value. The
calculation formula of K-value was shown as Formula (6). The
weight calculation formula of clustering K-value was shown as
Formula (7).

K = COUNT
(

P(LBPimage_i) > threshold
)

×Wimage_i (6)

Wimage_i = Entropy× α1 +Mean× α2 + Contrast × α3 (7)

In Formula (6), P(LBPimage_i) represents the frequency of a
texture feature;Wimage_i represents the image texture complexity
measure of image_i, which is obtained by Formula (7).
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Gaussian Mixture Model
The GMM (Bishop, 2006) is a probabilistic model. In image
segmentation, image features, such as gray information, color
information, or texture information, are used as the observation
vectors of the image. It is assumed that the overall image pixels
obey a Gaussian mixture distribution. The segmented areas can
be regarded as single Gaussian models with the same form, and
each model is independent of all other models. The entire image
is a GMM formed by fusingmultiple single Gaussianmodels with
a certain weight.

Assuming that the GMM is composed of K-Gaussian models
(the data contain K-classes), the probability density function of
the GMM is shown in Formula (8) (Bishop, 2006).

p (x) =

K
∑

k=1

wkg(x|µk,
∑

k
) (8)

where K is the number of components in the GMM, wk is the
mixture weight, which represents the proportion of the K single

Gaussian models in the mixture model, 0 ≤ wk ≤ 1,
K
∑

k=1

wk = 1,

g(x|µk,
∑

k) is the distribution of the Gaussian component k, and
its function expression is shown in Formula (9) (Bishop, 2006).

g(X) =
1

√

(2π)N |
∑

|

e−
1
2 (X−µ)T

∑−1(X−µ) (9)

where X is a random variable (which can be understood as
the observation vector of the image), N is an arbitrary integer
determined by the dimensionality of X, µ is the mean vector,
µ = E {X} = [µ1,µ2, · · · ,µN]

T ,
∑

is the covariance matrix,
N × N represents the number of dimensions,

∑−1 is the
inverse matrix of

∑

, and |
∑

| is the determinant of
∑

,
∑

=

E
{

(X − µ) (X − µ)T
}

. The iterative EM algorithm is used to
solve the likelihood function criterion of the GMM and estimate
the Gaussian distribution parameters to obtain the probability
that each pixel belongs to each category. Finally, the category
with the highest probability is regarded as the category to which
the pixel belongs; this process is repeated until all image pixels
have been classified, thus realizing the segmentation of the entire
image. The likelihood function criterion is shown in Formula
(10) (Bishop, 2006).

L (θ) = ln

[

n
∏

i=1

p (x)

]

=

n
∑

i=1

ln

K
∑

k=1

wjg(x|µk,
∑

k
) (10)

Optimization of the Clustering Results
Optimization Method Based on the Voting Method
Traditional Tujia brocades use cotton yarn, silk thread, or cotton
thread as the main weaving materials, and the formed image
background has a strong weave texture, as shown in Figure 4A.
After clustering, some noise points are formed that affect the
segmentation results, as shown in Figure 4B. GMM clustering

FIGURE 3 | Optimization based on a voting window.

yields the classification probabilities of image pixels. Clustering
does not consider the relationships between image pixels, and
misclassification occurs when the image quality is not high.
Generally, adjacent pixels in an image may belong to the same
object. We draw on the idea of voting and define a 3× 3 window,
as shown in Figure 3. The center pixel is reassigned to a category
according to the classification probabilities of the adjacent eight
pixels. The algorithm sets a threshold, and when the probability
of a category among the eight pixels adjacent to the center pixel
exceeds the threshold, the category of the center pixel is modified
to this category.

Each neighbor[i] has two attributes (Prob, label), where the
label represents the assigned category k for the pixel, Prob=[P(2),
P(3), . . . . . . , P(k)], k ∈ [2, K], and P(k) represents the probability
that this pixel belongs to category k. The category assignment of
the center pixel is calculated via Formula (11).

Prob[k] = max
k∈(1,K)

(

Average

8
∑

i=1

Prob
(

neighour [i]
)

)

(11)

If Prob[k] > = threshold, then label[center]= k.
Experiments show that this optimization process has a good

effect on eliminating obvious independent noise points. As
shown in Figure 4C, after the algorithm iteratively optimizes
the image once, the background lines and noise points
evidently disappear.

Dense Conditional Random Field
Optimization based on the voting method considers only the
associations between neighboring pixels without considering the
overall image and cannot optimize the image globally. As shown
in Figure 4C, the details of the clustering result are relatively
rough. For further optimization, we introduce DenseCRF. If the
distance between and colors of the image pixels are very close,
they belong to the same category in theory. DenseCRF (Philipp
and Koltun, 2012) readjusts the existing clustering results from
these two aspects based on the colors and the spatial location
information of the pixels provided by the entire image and
assigns the attributes of the pixels. In the fully-connected random
field, the energy function of label x is expressed as Formula (12)
(Philipp and Koltun, 2012).

E (x) =
∑

i

θi (xi) +
∑

ij

θij
(

xi, xj
)

(12)
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FIGURE 4 | Optimization of clustering results. (A) Image: Original. (B) GMM, K = 5. (C) Vote_Optimization: GMM + Vote_Optimization. (D) GMM + DenseCRF. (E)

GMM + DenseCRF + Vote_Optimization.

FIGURE 5 | Binarized images of the clustering categories. (A) Image: Original. (B) Cluster (k = 3). (C) Binary Image (Label = 0). (D) Binary Image (Label = 1). (E)

Binary Image (Label = 2).
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FIGURE 6 | Image mask obtained by interactive cutting. (A) Binary Image (Label = 2). (B) Contour. (C) Mask.

FIGURE 7 | Tujia brocade dataset.

In the formula, the unary potential θi(xi) comes from the front-
end output (such as predicted by a classifier), and it represents
the energy of dividing pixel i into label xi, which includes the
shape, texture, position, and color of the image. The pairwise
potentials θij(xi, xj) is the energy in which the pixel i and j
are simultaneously assigned label xi and xj. It describes the

relationship between the pixels and encourages similar pixels

to be assigned the same label. Pixels with large differences are

assigned different labels so that the model can segment the image

at the boundary as much as possible.
As shown in Figure 4D, the details of the clustering results

are more delicate and smoother after DenseCRF optimizes the
clustering results, but there are still background textures and

noise points.We combine the two optimizationmethods, and the
final optimization result is shown in Figure 4E.

Mask Extraction
A Tujia brocade is a geometric lattice pattern. Because of
the interweaving of warps and wefts, its patterns are mostly
composed of parallel lines, vertical lines, and diagonal lines. The
clustering results in Figure 5B are shown in Figures 5C–E, which
correspond to the binarized images (black background) of the
clustering categories (such as label = 0 and label = 1). Each
binary image (as Figure 6A) can be regarded as a part of the
texture object that needs to be extracted, and its contour (as
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FIGURE 8 | (A) Elbow method curve diagram; (B–D) K-means clustering results based on the K-values obtained by the elbow method. The red color represents the

K-values calculated by the algorithm in this study.

TABLE 1 | Calinski-Harabaz index (CH) ranking table.

CH ranking 1 2 3 4 5 6 7 8

Our method (sheet) 61 12 14 10 14 9 16 20

TABLE 2 | The calculation time of the cluster value K.

Algorithm Elbow method Calinski-Harabaz Our method

Time to calculate K-value (sheet) 40.17 s 56.05 s 0.22 s

Figure 6B) is detected for interactive segmentation to obtain the
object mask, as shown in Figure 6C.

EXPERIMENTS

The experiment is implemented by Python Software Foundation
and the experimental environment is Microsoft Windows 10.

The testing machine contains an Intel Core i7-8750H 2.20 GHz,
an Nvidia GeForce GTX 1060 with Max-Q Design, and 24 GB
of memory.

Dataset
Since there are few studies on Tujia brocade image segmentation
based on machine learning, there is no ready-made Tujia
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FIGURE 9 | Gray histograms of cluster contrast optimization. (A) Before optimization. (B) Optimization. (C) Gray histograms.

brocade dataset for use in experiments. We retrieve public Tujia
brocade image data from the Internet, manually photograph
the Tujia brocade, and collect a total of more than 200 clear
Tujia brocade patterns. According to the traditional meanings
of the Tujia brocades, the patterns are roughly divided into six
categories: animals patterns, flowers and plants patterns, living
utensils patterns, natural object patterns, geometric patterns, text
patterns. The woven material of a Tujia brocade is rougher than
ordinary fabric fibers, so the background textures of the brocade
patterns are very prominent, the pictures are not clear, and the
brocades are bright in color, as shown in Figure 7.

Selection of the Clustering Value K and
Evaluation of the Clustering Results
Evaluation by the Elbow Method
In unsupervised clustering, the clustering effect on the image
details becomes clearer as the K-value increases, which is due to
the particularity of the Tujia brocade dataset. When K reaches a
certain critical point, the definition of the image details increases.
However, the background texture is also clustered, forming noise
points that affect the clustering results.

In the experiment, the cluster value K is calculated by
auto-selection. To verify whether the selection of the K-value

produced by the algorithm is reasonable, the K-means algorithm
is used to conduct an experimental comparison on 100 Tujia
brocade pictures. Based on the index of the intra-cluster error
variance [the sum of squared errors (SSE)] through the elbow
method (Marutho et al., 2018), different K-values (K ∈ [2,9]) are
selected to repeatedly train multiple K-means models to obtain
relatively suitable clustering categories. The output values are
then compared with the K-values calculated by the algorithm.
Figure 8A displays the clustering SSE line graph obtained by the
elbow method algorithm. As shown in Figure 8A, the optimal
range of k-value is 2,3,4. Figures 8B–D shows the segmentation
results of k= 2,3,4.

Calinski-Harabaz Index (CH)
For a clustering task, because the structure of the given dataset
is unknown, the evaluation of the clustering results relies only
on the characteristics and values of the dataset itself. Usually, the
density within each cluster and the degrees of dispersion between
clusters are used to evaluate the effect of clustering. Commonly
used evaluation indicators are the silhouette coefficient (Luan
et al., 2012) and CH (Liu et al., 2020). The CH is simple to
calculate and runs much faster than the silhouette coefficient.
Therefore, we choose the CH to evaluate the clustering effect of
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FIGURE 10 | Contrast classic image segmentation algorithms and the method. (A) Original. (B) SLIC. (C) DCN. (D) Unsupervised Image Segmentation. (E) Our

method.

the approach. The CH calculation formula (13) (Liu et al., 2020)
is as follows.

CH
(

k
)

=
trB

(

k
)

/
(

k− 1
)

trW
(

k
)

/
(

n− k
) (13)

where n represents the number of clusters, k represents the
current class, trB(k) represents the trace of the inter-class
dispersion matrix, and trW(k) represents the trace of the intra-
class dispersion matrix. The larger the CH, the tighter the class
itself, and the more scattered the classes, better clustering results
are obtained.

In the experiment, the CH is calculated based on 156 Tujia
brocades, and GMM is used to calculate the CH value of each
cluster from k= 2 to k= 9. The K-value rankings of our method
are shown in Table 1.

The commonly used clustering value selection methods and
the method in this article are compared in terms of their running
times and are shown in Table 2.

Among them, the CH score for the K-value calculated by the
method is the highest at 61. However, the highest CH score does
not necessarily correspond to the best visual effect due to the
particularity of the Tujia brocade dataset.

Cluster Segmentation and Optimization
Results
It was found through the experiments that K-means clustering
is extremely sensitive to the choice of the K-value; K-means
is also sensitive to noise points. The clustering effect is very
good when the image background is clear and monotonous,
but the clustering effect is not very good if the optimal
cluster value K is not chosen or the image background
texture is not obvious. Comparing the experimental results,
it is found that GMM is more robust to the dataset than
other models. As long as a suitable K-value range is chosen,
the clustering effect is improved and the background texture
characteristics have relatively little effect on the clustering
results. From the perspective of the entire dataset, the GMM
clustering effect is better than the K-means effect on the
whole dataset.

Due to the particularity of Tujia brocade material and the
brocade process, some noise points are formed after image
clustering that affects the segmentation results. Therefore, we
optimize the results after image clustering and compare the

greyscale histograms before and after image optimization. The

results are shown in Figure 9.

We adopted some classic image segmentation algorithms,

such as SLIC (Achanta et al., 2012), DCN (Yang et al., 2017),
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FIGURE 11 | Clustering and optimization results of Tujia brocades. (A) Image: Original. (B) Cluster. (C) Optimization. (D) Mask.
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FIGURE 12 | Clustering and optimization results of natural scene pictures. (A) Image: Original. (B) Cluster. (C) Optimization.
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and Unsupervised Image Segmentation (Kanezaki, 2018), and

the algorithm proposed in this study for the image segmentation

of Tujia brocade. The segmentation results are shown in
Figure 10. It was revealed that image information was lost by the
segmentation based on a convolutional neural network as shown
in Figures 10C,D.

Figure 11A is the original picture, Figures 11B,C show the
clustering and optimization results of some Tujia brocades. After

the clustering and optimization processes are completed, the

required object mask is extracted, and the specific result is shown

in Figure 11D.

Figure 12A is a randomly selected picture from the Microsoft

Common Objects in Context (MS COCO) dataset. The K-

value of the cluster is calculated by the algorithm proposed

in this article, and then the GMM is used for clustering.

The result is shown in Figure 12B. The images in the
MS COCO dataset are all high-definition pictures, and
there is less interference from noise points, so only the
dense conditional random field (DenseCRF) method is used
in the optimization process, and the result is shown in
Figure 12C.

CONCLUSION

Due to the lack of a segmentation dataset for Tujia brocades, this
article uses an unsupervised clustering method to segment Tujia
brocades. Due to the rough textures of Tujia brocade patterns,
the clustering results are more sensitive to the K-value, so we

propose a K-value auto-selection algorithm based on a GLCM
and LBPs. This method can quickly and effectively calculate a
suitable K-value, and the speed is close to 100 times that of

the elbow method and the CH approach. At the same time, an
optimization method based on voting is proposed for the noise
points generated after the clustering of the Tujia brocades. An
experiment proved that the new method is remarkably effective
for eliminating isolated noise points. Unsupervised clustering did
not perform image segmentation semantically, so the clustered
image needed post-processing to merge the clustered regions
to form a whole segmentation object. Clustering-based image
segmentation has high computational efficiency, but it is difficult
to achieve image semantic segmentation because this method
is based on low-level features of the image. In follow-up work,
we plan to design an unsupervised image segmentation model
by combining clustering with deep learning. It will use the
feature extracted by a CNN for clustering, the clustering category
labels as supervision information, and complete end-to-end Tujia
brocade semantic segmentation.
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