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Facial micro-expression(ME) recognition has great significance for the progress of

human society and could find a person’s true feelings. Meanwhile, ME recognition

faces a huge challenge, since it is difficult to detect and easy to be disturbed by

the environment. In this article, we propose two novel preprocessing methods based

on Pixel Residual Sum. These methods can preprocess video clips according to the

unit pixel displacement of images, resist environmental interference, and be easy to

extract subtle facial features. Furthermore, we propose a Cropped Gaussian Pyramid

with Overlapping(CGPO) module, which divides images of different resolutions through

Gaussian pyramids and crops different resolutions images into multiple overlapping

subplots. Then, we use a convolutional neural networks of progressively increasing

channels based on the depthwise convolution to extract preliminary features. Finally, we

fuse preliminary features and make position embedding to get the last features. Our

experiments show that the proposed methods and model have better performance than

the well-known methods.

Keywords: micro-expression recognition, deep learning, Gaussian pyramid, pixel residual sum, position

embedding

1. INTRODUCTION

Facial expression is a crucial channel for interpersonal socializing and can be used to convey
inner emotions in daily life. Facial expression is divided into micro-expression(ME) and
macro-expression. In past decades, macro-expression had a wide range of applications, and scholars
have done a lot of research on macro-expression and facial recognition (Boucenna et al., 2014;
Liu et al., 2018; Kim et al., 2019; Xie et al., 2019), but macro-expression is deceptive and can be
easily hidden by human control. In contrast, ME will be unintentionally exposed as long as people
intend to hide their true feeling. Hence, ME recognition has attracted much attention and has an
extensive application prospect, such as clinical diagnosis, judiciary authorities, political elections,
and national security.

ME has the following characteristics:

• ME is a very short facial expression and lasts between 1/25 and 1/3 (Yan et al., 2013). As a result,
untrained individuals have a weaker ability to recognize ME (Lies, 1992).

• ME is an unconscious and involuntary facial expression appearing when people disguise one’s
emotions and can be triggered in high-risk environments and show real or hidden emotions.

• ME usually only appears in specific locations (Ekman and Friesen, 1971; Ekman, 2009b).
• ME usually needs to be analyzed in the video clip, and macro-expression can be analyzed in

the image.
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Due to these characteristics, it is difficult to recognize the ME
artificially. Therefore, Ekman and Paul tried a lot of efforts to
improve the ability of individuals to recognize the ME, and they
developed a tool for ME recognition in 2002 Micro Expression
Training Tool (METT) (Ekman, 2009a), which can effectively
improve the individual’s ability to recognize ME. However, the
accuracy of relying on human recognition of ME is not high.
According to reports, the accuracy of human-identified ME
is only 47% (Frank et al., 2009). Therefore, it is particularly
important to recognize the ME through computer vision. With
the development of technology, the rise of high-speed cameras
and deep learning hasmade it possible to accurately recognize the
ME. However, the current ME recognition is mainly faced with
the following problems.

• How to extract the subtle feature of the human face?
• How to overcome frame redundancy in the ME video?
• How to have stronger universality and overcome

environmental changes?

The structure of the study is as follows: In Section II, the pieces
of literature related to ME recognition are reviewed in detail;
In Section III, a preprocessing method and network framework
for ME recognition are proposed; In Section IV, we describe
the experimental settings and analyze the experimental results;
Finally, Section V summarizes this study with remarks. The
contributions of this study are as follows.

• We propose two more effective methods of preprocessing,
which combine spatio-temporal dimensionality and can
extract more robust features.

• We design a module of Cropped Gaussian Pyramid
with Overlapping(CGPO), which can use different
scales information.

• We design a network with feature fusion, and the network
structure adopts a gradual way of increasing channels.

2. RELATED WORK

2.1. Handcrafted Features
Several years before, ME recognition was mainly based on
traditionally handcrafted feature descriptors. These descriptors
can be divided into geometric features and appearance features.

2.1.1. Appearance-Based Features
For instance, Local Binary Pattern histograms from Three
Orthogonal Planes (LBP-TOP) (Zhao and Pietikainen, 2007),
Spatiotemporal Completed Local Quantization Patterns
(STCLQP) (Huang et al., 2016), and LBP with Six Intersection
Points (LBP-SIP) (Wang et al., 2014) can be considered as
methods based on appearance features. These methods led
that the features, dimensions are relatively high with more
redundant information.

The LBP-TOP, a development of the LBP in a three-
dimensional space, is a typical LBP descriptor with spatial-
temporal characteristics. The LBP-TOP operator extracts LBP
features on the three orthogonal planes. Next, obtained results
are stitched as the final LBP-TOP feature, since the video can be

regarded as a cube in the three dimensions of x, y, and t. The LBP-
TOP not only considers the spatial information but also considers
the information in the video sequence. After obtaining the LBP-
TOP features, Zhao et al. use Support Vector Machine(SVM) for
spotting and classification. Zhao et al. made good use of LBP-
TOP features, and used many tricks of conventional expression
analysis. As an early work, the work has achieved good results
and has established the basis for the subsequent ME recognition.

The LBP-TOP has great limitations for only considering the
local appearance and movement characteristics. So, Huang et al.
(2016) proposed STCLQP for the ME recognition. First, three
significant information, including magnitude, orientation, and
sign components, are extracted by STCLQP. Second, for each
component in temporal and appearance domains, Huang et al.
(2016) made dense and characteristic codebooks by developing
productive codebook selection and vector quantization. Finally,
in terms of this codebook, Huang et al. (2016) extracted and fused
spatio-temporal features, included orientation components,
magnitude, and sign. Compared with LBP-TOP, the STCLQP
method considers more information. Although the recognition
accuracy is improved, it will inevitably lead to higher dimensions.

Furthermore, Wang et al. (2014) proposed LBP-SIP
volumetric descriptor, which is based on three intersecting
lines passing through a central point. The superabundance of
LBP-TOP patterns is diminished by LBP-SIP. Furthermore,
LBP-SIP provides a more dense and weightless characterization
and reduces computational complexity. It further promotes the
improvement of the accuracy of the ME recognition and has
become the baseline for many subsequent works.

2.1.2. Geometric-Based Features
Optical flow, a geometric-based feature, calculates the
displacement of facial feature points or the optical flow of
the action area. It can extract representative motion features that
are robust for the diversity of facial textures. Furthermore, the
data except for RGB channels can be enhanced by optical flow
(Liu et al., 2019).

Many works treat optical flow as a data preprocessing step.
Liu et al. (2015) proposed an uncomplicated yet productive
Main Directional Mean Optical-flow (MDMO) feature. On the
ME video clips, an effective optical flow method is adopted.
Meanwhile, Liu utilizes partial action units to divide the face
into regions of interest (ROIs). MDMO is a normalized feature
based on ROIs. It combines both spatial location and local
statistic motion characteristics. MDMO has the advantage of
small feature dimensions.

Some works (Liong et al., 2019; Liu et al., 2019; Zhou et al.,
2019) utilized optical flow information for ME recognition and
have achieved good results. For instance, Liu et al. (2019) utilized
two domain adaptation methods, which include expression
magnification and reduction and adversarial training. Then, he
preprocessed the raw images to capture the spatio-temporal
optical flow from facial movements from onset frame (the first
frame in the ME video) to apex frame (the most intense frame
of action in the ME video), won the championship of 2019-the
second facial Micro-expressions Grand Challenge (MEGC2019)
(See et al., 2019). Zhou et al. (2019) captured the TV-L1 optical
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flow (Zach et al., 2007) of the onset frame and the mid-
position frame, and then performs ME recognition through
the Dual-Inception network. Instead of using apex frames, they
use mid-position frames to cut down computation complexity.
Furthermore, Liong et al. (2019) designed a STSTNet, which can
be used to learn three features of optical flow, namely vertical
optical flow, optical strain, and horizontal optical flow. These
features are calculated by the onset frame and apex frame of
ME video.

Optical flow has the advantage of small feature dimensions
and the ability to capture subtle muscle movements. However,
the optical flow has higher requirements on light and is easily
affected by the external environment. In addition, these works
only use the optical flow information of the apex frame and onset
frame and lose the motion information of other frames.

2.2. Deep Neural Networks
Deep learning (LeCun et al., 2015) is universally used in various
industries. Especially during the immediate past, the works on
deep learning in theME recognition field has gradually increased.
In the field of deep learning, the features preprocessed by the
optical flow method and LBP can be used as the input of
convolution neural network (CNN). Then, CNN is usually used
for feature extractors. For instance, Xia et al. (2019) proposed
spatio-temporal recurrent convolutional networks based on
optical flow, which extracts the optical flow information from
the onset frame until the apex frame and inputs it into recurrent
convolutional networks.

Furthermore, some works also use Long Short-term Memory
(LSTM) to directly input ME video clips. One early work
(Khor et al., 2018) proposed an Enriched Long-term Recurrent
Convolutional Network (ELRCN). First, every ME frame is
encoded into a feature vector by CNN modules. Then, ELRCN
uses an LSTM module to pass the feature vector and predicts
ME at last. ELRCN uses the feature that the information can
be retained for a long time in the gating unit to detect ME
in the video, and achieve good performance. Therefore, the
combination of LSTM and CNN have greater advantages in
recognizing ME in videos. However, due to the small changes in
the ME video clips, there is frame redundancy, leading to greater
computational complexity.

In conclusion, compared with traditional manual features
for ME recognition, deep learning technology can extract
features from ME videos and classify them with higher accuracy.
However, due to frame redundancy in ME videos, the speed of
the deep learning trainingmodel is greatly affected. Therefore, we
propose two new ME video preprocessing methods to overcome
frame redundancy in ME video and improve the recognition of
ME classes.

3. METHOD

3.1. Preprocessing
As we discussed above, it is an inevitable stage to extract
a discriminative and efficient feature. Therefore, this study
proposes two methods based on the residual sum of image pixels
to extract salient features: (1) Absolute Residual Sum (ARS) and
(2) Relative Residual Sum (RRS). These methods take the frames

in the ME clip at fixed intervals and consider the regional pixel
displacement between frames. It not only avoids the redundancy
of the ME clip but also makes full use of the ME information. The
pixel-level displacement difference sum, named RS, can explain
the tiny movement of the object. ARS and RRS preprocessing
procedure are shown in Figure 1.

3.1.1. Absolute Residual Sum
Preprocessing is divided into five stages.

3.1.1.1. Select Video Clip
He et al. proposed MDMD, which used a reciprocal change from
the onset frame to the offset frame to spotting ME (He et al.,
2020). Therefore, we only recognize theME from the onset frame
to the apex frame. First, we select a video clip from the ME video
and calculate its start and end. We select the partial video clips
from the ME video clip. The onset frame is taken as the start by
Equation (1), and select the end by Equation (2).

start = T(onset) (1)

Where T(x) represents the frame sequence of x in the video.

end =











min(T(onset)+ 10,T(offset)) if T(apex)− T(onset)

< 10

min(T(apex),T(offset)) else

(2)
Wheremin(x, y) represents the smaller values of x and y.

3.1.1.2. Detect Feature Point
The dlib library is utilized to spotting facial feature points.

3.1.1.3. Cropping
Cropping the face through the face feature points.

3.1.1.4. Select Five Frames
Notice that, ME data is very redundant. Useful information must
be mined from the data. A few other works (Li et al., 2013; Le Ngo
et al., 2015, 2016) have proposed many methods to reduce frame
redundancy in ME videos by using partial frames. Therefore, we
require mining crucial frames from ME video clip. We define
crucial frames as key-frames and define frames except for the
key-frames as transition frames. Furthermore, we make two
assumptions for getting rid of transition frames: (1) Transition
frames are highly similar to the key-frames, and deletion does
not affect the recognition accuracy. (2) Transition frames are
continuously distributed, centered on key-frames.

Hence, we choose appropriate intervals by Equation (3) and
select five key-frames as elements in F according to Equation (4).

gap = ⌈
end − start

Nkey + 1
⌉ (3)

F = {min(start+gap, end),min(start+gap∗2, end), ..., end} (4)

Where ⌈x⌉ is taking the smallest integer not less than x for some
scalar, and Nkey represents the number of key frames. Nkey is set
to five in the paper.
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FIGURE 1 | Preprocessing Flow chart (©Xiaolan Fu).

FIGURE 2 | Image augment module.

3.1.1.5. Generate Redisual Sum Image
Liu et al. (2019) took the motion difference between the onset
frame and each frame to calibrate the apex frame, because the
intensity relationship of ME can be indicated by the motion
difference. Therefore, we cumulate the motion difference for
calculating the variation trend of a single pixel. For the key frame
in F, Equation (5) is used to calculate the ARS.

ares(x, y, z) = (
∑

f∈F

(|Qf (x, y, z)− Qstart(x, y, z)|)) % 256 (5)

Where Qf (x, y, z) represents the pixel value of the three-channel
image (x, y, z) of the fth frame and ares(x, y, z) represents the pixel
value of the generated ARS image.

3.1.2. Relative Residual Sum
As shown in Figure 1, the steps before the fifth step are the same
as ARS. In the fifth step, we use Equation (6) to calculate the
sum of residuals between frames. Then, we use Equation (7) to
transform the range of sum to between gmin and gmax. In this
experiment, gmin = 0 and gmax = 255.

diff (x, y, z) = (
∑

f∈F

(|Qf (x, y, z)− Qstart(x, y, z)|)) (6)

rres(x, y, z) =
(diff (x, y, z)−min(diff ))

max(diff )−min(diff )
∗ (gmax− gmin)+ gmin (7)

Where max(x, y), diff (x, y, z), and rres(x, y, z) represent the
greater values of x and y, the sum of the displacement of the video
frame at the three-channel image (x, y, z), and the pixel value of
the generated RRS image, respectively.

3.2. Framework
CropNet, based on the depthwise convolution (Sandler et al.,
2018), is used as a classification model. CropNet takes
advantage of CGPO. The architecture of the CropNet is
shown in Figure 3. Conv, BN, and FC in the figure represent
Convolutional Layer, Batch Normalization Layer, and Fully
Connected Layer, respectively.

3.2.1. Image Augmentation
The number of network parameters is approximately 7.6M.
Image augment is essential as the network framework is slightly
large. According to the characteristics of the human face, we
performed the following four data augmentation in turn. (1)
The image brightness, contrast, and saturation are randomly
changed to [20%, 180%] of the original image brightness, and
the hue offset of the image is changed to [−0.5, 0.5] of the
original image. (2) The picture is converted to grayscale with
a probability of 20%. (3) Flipping the image horizontally with
a 50% probability. (4) Rotating the image randomly clockwise
[−15,15] degrees. The image augment module is shown
in Figure 2.
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FIGURE 3 | The architecture of the network model. The numbers on convolution and MB6 block represent the number of output channels. MB6 refers to

MobileNetV2 (Sandler et al., 2018)’s inverted bottlenecks with an expansion ratio of 6.

Frontiers in Neurorobotics | www.frontiersin.org 5 December 2021 | Volume 15 | Article 746985

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhao et al. Micro-Expression Recognition Based on ARS

3.2.2. Cropped Gaussian Pyramid With Overlapping
Different facial areas have different importance in the production
of ME. Therefore, we propose a CGPO module, which divides
ME video frames with different resolutions of the image into
10 overlapping subplots. It can separate the mouth, the eyes,
the nose, etc. The introduction of overlapping mechanisms can
reduce the risk of separating important parts of the face. The
CGPO module is shown in Figure 3 CGPO, and its processing
flow is as follows.

• First, we require 320 × 320 resolution of the image input and
down-sample it to get an image with a resolution of 160× 160.

• Second, for each image with different scale resolution, we
divide them into several 160 × 160 images and introduce the
overlap factor α. α is used to control the size of the overlap
when crop images with different precision. In this study, α

is 0.3.
• Finally, after going through the above process, images are fed

CNN based with the depthwise convolution.

3.2.3. Feature Extraction
Han et al. (2020) designed ReXNet, which has achieved very
good results in the ImageNet Challenge. Therefore, we use the
ReXNet feature extraction module as the extractor. A network of
progressively increasing channels are leveraged on the extracting
feature, as shown in Figure 3 feature extractor.

Due to the difficulties in data collection and identification
of ME, there are few ME datasets. It is difficult to apply deep
learning in ME recognition. Therefore, we train this module on
the ImageNet datasets (Deng et al., 2009) and then apply it to the
ME recognition through the transfer learning method (Pan and
Yang, 2009).

3.2.4. Feature Fusion and Classifier
Feature Fusion and Classifier are shown in Figure 3 Classifier.
The features extracted in the previous module go through
the Convolutional Layer, Batch Normalization Layer, Adaptive
Pooling Layer, and Fully Connected Layer, in turn, and become a
feature vector zi ∈ R

24, where i represents the order of segmented
images. Since the CGOP module segmented a total of 10 images,
we could obtain 10 feature vectors {z0, z1 · · · · · · · · · z9}.

However, because the position information after image
cropping becomes blurred, the model has a hard time learning
about correlations between images. We combine the location
information with the feature to make the features more
explanatory. Therefore, for feature vectors {z1, z2 · · · · · · · · · z9} of
segmented images, we introduce trainable position embedding
vectors {p1, p2 · · · · · · · · · p9} to learn the position information of
the image, where pi has the same dimension as zi. The position
embedding vectors are initialized to random values that follow a
normal distribution. The mean of the random values is 0 and the
variance is 0.2. As shown in Equation (8), we calculate the new
feature vectors {z1

′, z2
′ · · · · · · · · · z9

′}.

zi
′ = zi ⊕ pi 0 < i < 10 (8)

Finally, we mix {z0, z1
′, z2

′ · · · · · · · · · z9
′} by splicing and

classifying ME.

4. EXPERIMENT

4.1. Datasets
Due to the characteristics of ME and its difficulty in triggering
and collecting, the dataset is very scarce. As far as we know,
there are three spontaneous datasets generally utilized for ME
recognition: SMIC-HS (Li et al., 2013), SAMM (Davison et al.,
2016), and CASME II (Yan et al., 2014a). The details of these three
spontaneous datasets are shown in Table 1.

4.2. Experiment Settings
All experiments for this study were all carried out on Ubuntu
16.04 and Python 3.6.2 with Pytorch 1.6 on NVIDIA GTX
Titan RTX GPU (24 GB). The label smoothing loss function
(Lukasik et al., 2020) is leveraged as the loss function. It can
better generalize the network and ultimately produce, more
accurate predictions on invisible data. AdamP (Heo et al.,
2021) is used as an optimizer. We use UF1 (commonly
referred to as the macro average F1 score), UAR (commonly
referred to as balanced accuracy), and Accuracy as our
evaluation standard.

TABLE 1 | Micro-expression (ME) datasets.

Datasets CASME II SMIC-HS SAMM

Particpants 26 16 29

Samples 255 157 159

Resolution 640*480 640*480 960*650

Frame

rate(fps)

200 100 200

FACS coded X x X

APEX index X x X

Emotion Other(99)

Disgust(63)

Surprise(28)

Repression(27)

Sadness(4)

Happiness(32)

Fear(2)

Negative(66)

Positive(51)

Surprise(40)

Other(26)

Happiness(26)

Disgust(9)

Surprise(15)

Sadness(6)

Anger(57)

Fear(8)

Contempt(12)

TABLE 2 | Comparison of ME recognition performance in CASME II (5 classes).

Method Accuracy

LBP-Top+AdaBoost (Le Ngo et al., 2014) 0.437

STCLQP (Huang and Zhao, 2017) 0.583

ELRCN (Khor et al., 2018) 0.524

DSSN (Khor et al., 2019) 0.707

TSCNN-I (Song et al., 2019) 0.740

SSSN (Khor et al., 2019) 0.711

TSCNN-II (Song et al., 2019) 0.810

Bi-WOOF (apex and onset) (Liong et al., 2018) 0.578

Su et al. (Su et al., 2021) 0.727

RRS+CropNet(ours) 0.790

ARS+CropNet(ours) 0.862
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• UF1 score can equally emphasize in a rare class. So, it is a
suitable indicator in a multi-class evaluation. The calculation
formula for UF1 is as follows:

UF1 =
1

C

C
∑

i=1

(
2 ∗ TPi

2 ∗ TPi + FPi + FNi
) (9)

Where C represents the number of classes and FPi, TPi, and
FNi represent the false positive, the true positive, and the false
negative for the ith class, respectively.

• UAR is a more appropriate indicator instead of the standard
accuracy indicator that may be partial to larger classes. The
calculation formula for UAR is as follows:

UAR =
1

C

C
∑

i=1

(
TPi

Ni
) (10)

Where Ni represents the number of ith class.
• Accuracy is commonly used as a CASME II experiment in five

classes. The calculation formula for Accuracy is as follows:

Accuracy =
TP

N
(11)

4.3. Experiment With Five Classes of ME in
the CASME II
We choose the CASME II as the evaluation dataset. Only five
classes (Others, Disgust, Happiness, Repression, and Surprise)
are considered, since the fear and sadness samples are very
scarce. In this experiment, Leave-One-Subject-Out (LOSO)
cross validation is utilized for evaluation protocol. LOSO cross

FIGURE 4 | (A) is the confusion matrix of composite datasets (SMIC-HS, CASME II, and SAMM) in the absolute residual sum (ARS) and the CropNet. (B) is the

confusion matrix of CASME II in the ARS and the CropNet.

TABLE 3 | Comparison of ME recognition performance composite datasets.

Method
Composite SMIC-HS CASME II SAMM

UF1 UAR UF1 UAR UF1 UAR UF1 UAR

LBP-TOP (Zhao and Pietikainen, 2007) 0.588 0.578 0.200 0.528 0.702 0.742 0.395 0.410

Bi-WOOF (Liong et al., 2018) 0.629 0.622 0.572 0.582 0.780 0.802 0.521 0.512

CapsuleNet (Van Quang et al., 2019) 0.652 0.650 0.582 0.587 0.706 0.701 0.620 0.598

OFF-ApexNet (Gan et al., 2019) 0.719 0.709 0.681 0.669 0.876 0.868 0.540 0.539

Dual-Inception (Zhou et al., 2019) 0.732 0.727 0.664 0.672 0.862 0.856 0.586 0.566

STSTNet (Liong et al., 2019) 0.735 0.760 0.680 0.701 0.838 0.868 0.658 0.681

ELTRCN (Khor et al., 2018) 0.788 0.782 0.746 0.753 0.829 0.820 0.775 0.715

RCN-S (Xia et al., 2020) 0.746 0.710 0.651 0.657 0.836 0.791 0.764 0.656

STSTNet+GA (Liu et al., 2021) 0.836 0.836 0.814 0.812 0.882 0.891 0.800 0.790

RRS+CropNet(ours) 0.875 0.877 0.813 0.819 0.972 0.969 0.842 0.827

ARS+CropNet(ours) 0.911 0.904 0.855 0.851 0.974 0.979 0.912 0.893
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validation refers to using the samples of one subject as the test
set, and the rest as the training set in each fold. It can prevent the
test set and the training set from having the same sample, thereby
avoiding data leakage. Recognition Accuracy can be calculated
by the LOSO cross validation evaluation protocol. In the same
evaluation standard, we compare with a variety of methods. The
result is shown in Table 2.

The confusion matrix obtained by applying the ARS and the
CropNet is shown in Figure 4B. Through the confusion matrix,
the overall recognition rate is very high. The proposed method
has great performance for all classes.

4.4. Composite Datasets Evaluation (CDE)
Composite datasets evaluation is a very effective evaluation
method in cross-database ME recognition. In this experiment,
we use the MEGC2019 standard. According to MEGC2019
standards, we combined all samples of the datasets (SAMM,

TABLE 4 | Ablation experiments in CASME II (5 classes).

Ablation module Ablation method UF1 Accuracy

paper method CropNet+ARS 0.863 0.862

Preprocessing Method

CropNet+RRS 0.803 0.790

CropNet+Optical FLow(Farneback) 0.661 0.625

CropNet+Optical FLow(TV-L1) 0.697 0.669

Model architect CropNet without GCOP +ARS 0.841 0.813

CASME II, and SMIC-HS) into a composite dataset by
unifying the number of ME class. ME are divided into three
classes: negative, surprised, and positive. Disgust, contempt, fear,
sadness, and anger is regarded as the negative class. Surprise
is still regarded as surprise class. Happiness is regarded as the
positive class. LOSO cross validation is utilized to split the
training set and test set. Table 3 compares the performance
of proposed methods against a number of recent study. The
methods in Table 3 were all compared in the same datasets and
at the same evaluation standard. The confusion matrix obtained
by applying the ARS and the CropNet is shown in Figure 4A.
It shows that three classes have similar performance, and the
proposed method also has a good fit for unbalanced data.

Note that, the apex frame spotting is indispensable for ME
recognition since the apex frame of the SMIC-HS dataset is not
labeled. In recent years, there are a lot of apex frames spotting
works (Yan et al., 2014b; Li et al., 2018; Peng et al., 2019; Zhou
et al., 2019). In fact, apex frame spotting is a very difficult
work. Therefore, this experiment considers a trade-off between
efficiency and effectiveness. The middle frame of the video in the
SMIC-HS dataset is used as the apex frame.

4.5. Ablation Experiments
We performed two ablation experiments on the CASME II
dataset to verify the effectiveness of the module.

• We performed ablation experiments on preprocessing
methods for comparing the effectiveness of the four
preprocessing methods ARS, RRS, Farneback optical flow
(Farnebäck, 2003), and TV-L1 optical flow.

FIGURE 5 | Nkey hyperparameter’s ablation experiments.
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• We performed ablation experiments on model architect for
verifying the effect of the GCOP module.

As shown in Table 4, ARS stands out among the four
preprocessing methods. It can extract more reliable spatio-
temporal features and improve the UF1 value of ME recognition.
RRS also achieves very good results. There are significant
differences between these two methods. RRS pays more attention
to areas with greater displacement by relative displacement
change between unit pixels, while is not too sensitive to
small displacement areas. ARS considers the trade-off between
displacement regions of different scales, which can focus on
both small displacement areas and large displacement areas.
Therefore, subtle displacement can be captured. At the same
time, for areas with frequent displacement, ARS ignores the
displacement of unit pixels and pays attention to regional
displacement. But in our experimental environment, Farneback
optical flow and TV-L1 optical flow are far less effective than the
proposed methods in this study.

The Cropped Gaussian Pyramid with Overlapping module
focuses on different areas of the face, extracts features for each
area, and then stitches the obtained features to classify them.
Through the ablation experiment in Table 4, it is easy to find the
efficiency of the CGPO module and the ARS method.

Furthermore, we conducted hyperparameter’s ablation
experiments in MEGC2019 composite datasets for verifying the
effectiveness of the hyperparameters Nkey. The experimental
results are shown in Figure 5, which can be concluded that there
is greater universality when Nkey is set to five. Therefore, in all
experiments, we only select five key-frames at equal intervals in
the ME video clip.

4.6. Visualization Experiments
We use T-SNE (Van der Maaten and Hinton, 2008) to visualize
the preprocessed image for better comparing the effects of the
proposed preprocessing methods. Figure 6 shows the feature
distribution of images preprocessed by various methods. In

FIGURE 6 | (A–D) represent preprocessing images by ARS, relative residual sum (RRS), farneback optical flow and TV-L1 optical flow, respectively.
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this experiment, we use three classes (negative, positive, and
surprised) of CASME II.

The features extracted using Farneback optical flow and TV-
L1 optical flow are disorganized, but the image extracted by
residual sum methods can already distinguish many features.
For example, surprise ME is easy to distinguish from other
expressions. After preprocessing by the residual summethod, the
features become initially orderly, but some of the ME are still
mixed together. Therefore, further extraction of features through
CNN can enhance the validity of features.

5. CONCLUSION

In this study, we propose two novel preprocessing methods
to solve ME recognition tasks with spatial-temporal feature
extraction. These methods use the displacement residual sum of
the unit pixels of the ME clip to extract a subtle motion feature.
Through our experiment, it responds well to environmental
change and subtle displacement. In addition, we propose a
CGPO module, which divides the image into partial overlapping
pictures of different precision and extracts features from different
pictures. Hence, the model can focus on each facial local area,
and then recognize the subtle movements of specific locations.
Furthermore, we design CropNet which have a gradual way
of increasing channels, features fusion module, and position
embedding function.

In the experiment, we test the proposed two preprocessing
methods and the designed network on the mixed dataset of
MEGC2019 and five classes of ME on CASME II. The traditional
manual method based on optical flow is labor-expensive and
time-consuming, while the RRS and ARS preprocessing methods
greatly improve the situation of frame redundancy and improve
the recognition accuracy of each ME. In addition, the CGPO
module can separate key parts of a person’s face for more subtle

feature extraction. In general, the method proposed in the study
has better performance than the well-known method.

However, the proposed model does not belong to an end-
to-end model, because it must go through the preprocessing
method, which takes a certain amount of time to detect key
points, align faces, crop, and calculate RRS and ARS. Therefore,
in the future improvement, we will improve the method and
model in this study into an end-to-end model.
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