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Gait restoration of individuals with spinal cord injury can be partially achieved using active

orthoses or exoskeletons. To improve the walking ability of each patient as much as

possible, it is important to personalize the parameters that define the device actuation.

This study investigates whether using an optimal control-based predictive simulation

approach to personalize pre-defined knee trajectory parameters for an active knee-

ankle-foot orthosis (KAFO) used by spinal cord injured (SCI) subjects could potentially

be an alternative to the current trial-and-error approach. We aimed to find the knee

angle trajectory that produced an improved orthosis-assisted gait pattern compared

to the one with passive support (locked knee). We collected experimental data from a

healthy subject assisted by crutches and KAFOs (with locked knee and with knee flexion

assistance) and from an SCI subject assisted by crutches and KAFOs (with locked knee).

First, we compared different cost functions and chose the one that produced results

closest to experimental locked knee walking for the healthy subject (angular coordinates

mean RMSE was 5.74◦). For this subject, we predicted crutch-orthosis-assisted

walking imposing a pre-defined knee angle trajectory for different maximum knee

flexion parameter values, and results were evaluated against experimental data using

that same pre-defined knee flexion trajectories in the real device. Finally, using the

selected cost function, gait cycles for different knee flexion assistance were predicted

for an SCI subject. We evaluated changes in four clinically relevant parameters: foot

clearance, stride length, cadence, and hip flexion ROM. Simulations for different values

of maximum knee flexion showed variations of these parameters that were consistent

with experimental data for the healthy subject (e.g., foot clearance increased/decreased

similarly in experimental and predicted motions) and were reasonable for the SCI subject

(e.g., maximum parameter values were found for moderate knee flexion). Although more

research is needed before this method can be applied to choose optimal active orthosis

controller parameters for specific subjects, these findings suggest that optimal control

prediction of crutch-orthosis-assisted walking using biomechanical models might be

used in place of the trial-and-error method to select the best maximum knee flexion

angle during gait for a specific SCI subject.

Keywords: biomechanics, direct collocation, optimal control, spinal cord injury, knee-ankle-foot orthosis,
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INTRODUCTION

Walking impairment after spinal cord injury leads to a decreased
quality of life, other serious health conditions (e.g., heart disease,
high blood pressure), and substantial health care costs. Gait
restoration can be partially achieved using active orthoses or
exoskeletons, together with some type of external support for
balance (e.g., crutches or a walker). In recent years, researchers
have developed an active knee-ankle-foot orthosis (KAFO) for
individuals with spinal cord injury that retain some hip mobility
(Font-Llagunes et al., 2020). This assistive device locks the
knee during the stance phase and imposes a pre-specified knee
angle trajectory during the swing phase. Allowing knee flexion
during swing, as opposed to a passive KAFO that locks the knee
throughout the gait cycle, improves the gait pattern by increasing
gait speed, stride length, and cadence while decreasing step width
and lateral displacement of the center of mass (Font-Llagunes
et al., 2020). In general, these modifications in gait patterns
result in increased balance, reduced compensatory strategies,
and decreased energy consumption (Michaud et al., 2019). To
improve the walking ability of each patient as much as possible,
it is important to personalize conveniently the parameters that
define the device actuation, which may be different for each
subject (Zhang et al., 2017; Cardona et al., 2020; Fricke et al.,
2020) and may lead to undesired walking patterns if they are not
correctly specified.

Exoskeleton controller parameters are usually manually
adjusted based on subjective information, e.g., asking users which
condition they prefer (MacLean and Ferris, 2019) or based on
physiotherapists’ visual assessment of basic gait parameters like
foot clearance (Koopman et al., 2013). Personalization of the
pre-specified orthosis knee motion parameter values for each
spinal cord-injured (SCI) subject is typically done by following
an experimental trial-and-error approach, which possesses
significant limitations: (1) it is time-consuming and cumbersome
for patients, (2) it is based on physiotherapist subjective intuition,
(3) it necessitates training for physiotherapists when they start
using this new device, and (4) it may lead to adverse events
like falls if parameter values are not correctly specified. Because
of these limitations, it is currently very difficult to select
experimentally an optimal set of knee motion parameter values
for a specific individual such that the assisted gait pattern is
improved as much as possible. Therefore, a more objective way
of evaluating different combinations of parameter values, which
may also reduce required patient testing time, is needed.

Computational methods to identify assistive device design
parameters or to tune their control parameters automatically
have been developed in previous studies. In Fricke et al.’s study
(Fricke et al., 2020), an algorithm to tune the assistance of a
robotic gait trainer automatically was compared to manually-
tuned assistance for 10 people with neurological disorders (six
strokes and four spinal cord injuries). The authors concluded
that automatic tuning of exoskeleton parameters is quicker
than manual tuning and presents good performance, although
clinical trials are needed to determine whether these apparent
advantages result in better clinical outcomes. In Zhang et al.’s
study (Zhang et al., 2017), a method for real-time identification

of exoskeleton control parameters that minimize the metabolic
energy cost of human walking was developed, and it was
found that optimized assistance patterns varied widely across
participants, demonstrating the importance of customization.
Other studies used musculoskeletal models to estimate the
user’s kinetic parameters to control in real-time an exoskeleton
(Cardona et al., 2020) or to simulate assisted human motion
for identifying design parameters of assistive devices (García-
Vallejo et al., 2016; Ong et al., 2016; Uchida et al., 2016).
Moreover, optimal control has recently been used to identify
the optimal spring characteristics of an ankle-foot orthosis that
minimizes muscle effort (Sreenivasa et al., 2017), to predict
subject-exoskeleton combined motion when lifting a box using
a lower back exoskeleton (Millard et al., 2017), and to simulate a
sit-to-stand transition using a lower limb exoskeleton (Serrancolí
et al., 2019). Finding the correct optimal control problem
formulation for the generation of new impaired or assisted
walking motions is a current challenge (Mombaur, 2016; Falisse
et al., 2019; De Groote and Falisse, 2021). In the study of
Meyer et al. (2016), stroke patient walking was predicted
at different speeds. In this work, in addition to minimizing
joint jerk, the cost function included various tracking terms
(upper body joint angles and lower body joint torques, muscle
activations, or synergy activations), following the assumption
that under different conditions the subject would try to find a
solution close to what he did in the nominal case. In Sauder
et al.’s study (Sauder et al., 2019), a personalized functional
electrical stimulation treatment for fast-speed treadmill training
was designed for an individual post-stroke. In that study,
the cost function included minimization of joint jerk and
minimization of inter-limb propulsive force asymmetry, which
was the targeted gait improvement parameter. Finally, Febrer-
Nafría et al. (2021) recently found that a multi-term cost function
combining minimization of joint jerk, joint torque change, joint
mechanical power, and angular momentum predicted four-point
crutch walking well without tracking experimental data. All
of these studies show that combining subject-specific models
with optimal control methods is a promising approach to
design patient-specific treatments, including the personalization
of active orthoses for SCI subjects.

This study investigates whether the use of a computational
approach to personalize pre-defined knee trajectory parameters
for an active KAFO could potentially be a better choice than
the current trial-and-error approach. This investigation does not
compare directly the simulation approach with manual tuning
but rather explores optimal control problem formulations that
allow different pre-defined assistive knee angle trajectories to be
simulated, thereby permitting identification of the best walking
pattern for a specific individual with SCI. This goal has been
pursued by using a new optimal control problem formulation
for predicting crutch-orthosis-assisted walking of an SCI subject
wearing the presented active orthoses, given as an initial guess
the subject’s gait without knee flexion-extension assistance (i.e.,
locked knee) and imposing a specific pre-defined knee angle
trajectory. In this way, the experimental trial-and-error process
of manually adjusting these knee motion parameters for each
patient could potentially be avoided with improvement being
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estimated quantitatively. Such improvement has been defined in
terms of change in clinically meaningful/relevant measurements,
such as foot clearance, stride length, cadence, and hip flexion
range of motion (ROM). In this work, the maximum knee flexion
angle parameter, which is usually the first one tuned in the
trial-and-error approach, has been investigated. Before applying
the simulation pipeline to a specific SCI subject, the simulation
pipeline was developed and evaluated using experimental data
collected from a healthy subject. The main reason for using
healthy subject data first was to enable a complete experimental
evaluation of the predictive simulation approach. While the
healthy subject could place each foot correctly on one force plate
while walking using active orthoses and instrumented crutches,
the SCI subject could not. First, an optimal control problem
formulation for predicting crutch-orthosis-assisted walking was
defined comparing different cost functions and evaluating them
against experimental data (locked knee case for the healthy
subject). Next, using the selected cost function, motions with
knee flexion assistance for two different sets of knee angle
trajectory parameter values were predicted, and changes in
clinical measurements with respect to predicted locked knee
motion were evaluated. Finally, using the selected cost function,
locked knee motion and different motions with knee flexion
assistance were predicted for an SCI subject. Given the subject’s
gait with passive supports, different knee trajectories (with four
different maximum knee flexion angle parameters) were tested
computationally. In this case, improvements in gait pattern were
quantified in terms of changes in clinical measurements with
respect to predicted locked knee motion. These results represent
a step forward in the computational personalization of pre-
defined knee angle trajectories for the control of an active KAFO
for SCI subjects. We consider that having a simulation tool
that allows testing of different pre-defined knee motions for
a specific SCI subject model, with the aim of finding a more
balanced and improved assisted gait pattern (with respect to the
standard locked knee motion), will overcome the limitations of
manual personalization of pre-specified knee motion parameter
values and will result in an improved assisted motion for each
SCI subject.

MATERIALS AND METHODS

Orthosis Description and Current
Personalization Methods
Orthosis Description and Function
The active KAFO used in our study is intended for patients
with SCI with some remaining motor function at the hip but
who cannot control their knee and ankle muscles. These patients
can walk using passive KAFOs (which avoid knee flexion and
ankle dorsiflexion), which are custom-tailored to the subject,
and crutches. However, the resulting gait is unnatural and
exhausting due to the compensatory strategies associated with
straight knee walking. The active KAFO provides knee flexion-
extension assistance during the swing phase and maintains the
knee fully extended during the stance phase, thanks to actuation
provided by a brushless direct current motor combined with a

FIGURE 1 | The active KAFO maintains the knee fully extended during the

stance phase and provides knee flexion-extension assistance during the swing

phase following a predefined knee flexion-extension trajectory. The parameters

defining the knee flexion-extension trajectory are the following: ka is the

maximum knee flexion, ks is the peak displacement parameter, kw is the peak

width parameter, and tc is the cycle duration.

harmonic drive transmission. In contrast to a passive KAFO,
allowing knee flexion during swing improves the gait pattern
by increasing balance, reducing compensatory strategies, and
decreasing energy consumption (Michaud et al., 2019; Font-
Llagunes et al., 2020). The active orthosis has a fixed ankle
joint that keeps the foot perpendicular to the shank, and the
length of the shank and the thigh links can be adjusted to fit
the anthropometry of the user. Regarding the orthosis controller,
inertial measurement unit (IMU) data are used to identify the
time instant when the knee flexion-extension cycle must be
triggered at swing phase initiation (stance-to-swing transition).
Then, a proportional–integral–derivative (PID) control with
feedforward velocity and acceleration is used to keep the knee in
full extension during the stance phase (straight leg, knee locked)
and perform a pre-defined knee flexion-extension trajectory after
detection of the stance-to-swing transition (Font-Llagunes et al.,
2020):

θ (t) =
ka

2

[

1− cos

(

2π

tc
t − ks sin

(

π

tc
t

)

− kw sin

(

2π

tc
t

))]

,

0 ≤ t ≤ tc (1)

where θ (t) is the pre-defined angle trajectory for each knee
during the swing phase, ka is the maximum knee flexion, ks is
the peak displacement parameter, kw is the peak width parameter,
and tc is the flexion-extension cycle duration (Figure 1). The
parameters defining the knee angle trajectory (ka, ks, kw and
tc) may be personalized to each subject so as to maximize their
walking ability.

The Current Procedure for Personalizing Knee Angle

Parameters
The current personalization method is based on manual tuning
of the parameters that define the knee angle trajectory (Equation
1). Usually, the starting point is based on a default set of
parameters that have worked for other patients. The patient walks
with this set of values, and stride length and stance time for
each leg are obtained from the device IMU measurements. In
addition to this feedback, the physiotherapist measures relevant
kinematic and spatiotemporal parameters that are usually used as
outcome measures in clinical studies of lower-limb exoskeletons
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(Rodríguez-Fernández et al., 2021). One of the most important
parameters is foot clearance, as the ankle of the orthosis is
fixed at 90◦. If there is not enough hip and knee flexion, the
toes can catch the ground during the swing phase, which may
produce a fall (Koopman et al., 2013; Begg et al., 2019; Di Natali
et al., 2019; Fricke et al., 2020). Stride length and cadence are
also important to indicate improvements in walking patterns
(Koopman et al., 2013; Rasouli and Reed, 2020; Rodríguez-
Fernández et al., 2021). Finally, hip flexion ROM is a good
indicator of foot clearance and stride length (Cardona et al.,
2020; Fricke et al., 2020; Rasouli and Reed, 2020; Rodríguez-
Fernández et al., 2021). Moreover, bilateral symmetry in hip
flexion is associated with bilateral symmetry in the gait pattern.
Based on all of these clinical observations and measurements,
some parameter values are modified in an iterative process
based on the physiotherapist’s experience. The first parameters
that are modified are maximum knee flexion ka, which is the
most critical one, and peak width kw. In some cases, especially
if the patient presents some spasticity, the peak displacement
parameter ks, which indicates flexion/extension duration ratio, is
also modified.

Development and Evaluation of the
Prediction Framework Using Healthy
Subject Data
In this work, experimental data were collected for two subjects,
one healthy and one with SCI, both assisted by a pair of active
KAFOs and a pair of forearm crutches. The simulation pipeline
was developed and evaluated using the experimental data of
the healthy subject and was later applied to predict SCI subject
motion with different knee angle trajectories. A summary of the
steps followed is provided below, and details regarding each step
for the healthy subject are explained in this subsection, and for
the SCI subject in the following subsection:

1) Collection of experimental data from the healthy subject
2) Computational model development for the healthy subject
3) Testing of different cost function formulations using healthy

subject data with locked knee angle to identify the best
formulation

4) Evaluation of the best cost function from step 3) using healthy
subject data with different knee angle trajectories

5) Collection of experimental data from the SCI subject
6) Computational model development for the SCI subject
7) Evaluation of the best cost function from step 3) using SCI

subject data with locked knee angle
8) Application of the best cost function from step 3) to predict

SCI subject motion with different knee angle trajectories

Experimental Data Collection
To find the most suitable problem formulation for predicting
crutch-orthosis-assisted walking, we collected experimental gait
data from a healthy subject walking with two active orthoses and
crutches. The subject was a female (age 29 years, mass 54 kg,
height 1.62m) and the gait data were collected at the UPC
Motion Analysis Laboratory in the Department of Mechanical
Engineering of the Barcelona School of Industrial Engineering

(ETSEIB) (Figure 2A). The reason for collecting experimental
data from a healthy subject first was that it was easier for
the subject to step correctly with one foot on each force
plate while using wired instrumented crutches, thus providing
a complete set of experimental data (synchronized marker
trajectory, force plate, and crutch measurements). Moreover,
orthosis kinematic performance is the same for a healthy subject
as for a patient with SCI, since the knee controller follows
a predefined flexion-extension angle and the IMUs detect the
stance-to-swing transition event the same way in both cases.
Three different trials were performed: one without knee flexion-
extension assistance (locked knee) and two with different levels of
maximum knee flexion during swing (35◦ and 45◦). The crutch
walking pattern used in all trials was a four-point alternating
pattern with the following crutch placement sequence within the
walking cycle: left crutch, right leg, right crutch, and left leg
(Figure 2B). Collected data included marker trajectories, ground
reactions (two force plates), and crutch forces (instrumented
crutches). Surface marker motion was recorded at 100Hz by
tracking 53 passive reflective markers using 16 optical infrared
cameras (OptiTrack V100:R2, NaturalPoint Inc., Corvallis, OR,
USA). Ground reaction forces and moments were measured at
the same sampling frequency by two force plates (AccuGait,
AMTI, Watertown, MA, USA) located on the floor at the
center of the capture workspace. Crutch-ground reaction forces
were obtained from two custom-made instrumented crutches
possessing 12 strain gauges each that sampled at 89Hz (Sardini
et al., 2015). Crutch data were interpolated to 100Hz to match
the sampling rate of the marker trajectory and force plate data.

Computational Model Development
A torque-driven model of the healthy subject with assistive
devices was developed by incorporating a pair of forearm
crutches and a pair of active orthoses into a currently available
full-body model (Rajagopal et al., 2016) in OpenSim (Delp et al.,
2007; Seth et al., 2018). The model possessed nq = 31 degrees
of freedom (DOF): six DOF between the pelvis and the ground
(i.e., absolute translation and rotation), three for each hip, one
for each knee, three for the lumbosacral joint, three for each
shoulder, two for each elbow, and two for each wrist. Each
DOF was associated with a model or joint coordinate qi (i =

1, . . . , nq) in the order shown above, which formed the nq-
dimensional vector of generalized coordinates q. The model
was scaled to the subject using the OpenSim Scale Tool, and a
static trial was collected for this purpose. Each forearm crutch
was incorporated into the model as a rigid body welded to
the corresponding hand segment. The geometry and mass of
each crutch were measured, and the crutch inertia tensor was
obtained from simple rigid-body models. The active orthoses
consisted of two segments (corresponding to thigh and shank-
foot) with dimensions and inertial properties taken from CAD
models of the real prototype. Each orthosis segment was attached
to the corresponding lower limb segment using a weld joint (i.e.,
no relative motion was permitted between bodies). The ankle,
subtalar and metatarsophalangeal joints were locked at 0◦ due
to the presence of the orthosis mechanical constraints. No joints
were defined between the orthosis links, i.e., the knee orthosis
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FIGURE 2 | (A) Healthy subject experimental data collection. She walked in the transverse direction with respect to the force plates and used instrumented crutches.

Three different trials were performed: one without knee flexion-extension assistance (locked knee), and two with different levels of maximum knee flexion during swing.

(B) The followed crutch walking pattern in all trials was a four-point alternating pattern, being the swing phases sequence within the walking cycle: left crutch, right leg,

right crutch, and left leg. (C) SCI subject experimental data collection. Only marker trajectories were collected for this subject. He walked with locked knees and

non-instrumented crutches.

joint was considered to be perfectly aligned with the subject’s
knee joint. Despite being a simplification, this approach can be
considered realistic as the orthoses were tightly attached to the
subject with Velcro straps using front support at the shank and
back support at the thigh and with a ratchet strap on each foot.

One representative gait cycle was selected for each condition
(locked knee, 35 and 45◦ of knee flexion) and used in all
subsequent model development and optimal control problem
formulation tasks. The gait cycle was selected to use all available
foot-ground reactions, which did not correspond to a complete
crutch-gait cycle. The cycle started at left crutch off (LCO), and
for the initial right leg stance phase, no force plate measurements
were available. The subject walked in a transverse direction with
respect to the force plates, which allowed clean placement of
each foot on each force plate. Unfortunately, the subject was not
able to place the crutches off the force plates at the same time
(Figure 2B). This fact necessitated the crutch-ground reaction
forces being subtracted from the force plate measurements
to calculate the foot-ground reactions. The OpenSim Inverse
Kinematics (IK) Tool was used to calculate joint coordinates
for the full-body model (henceforth referred to as “experimental

joint coordinates”). These joint coordinates and the measured
foot- and crutch-ground reactions served as inputs to the
OpenSim Inverse Dynamics (ID) Tool, which was used to obtain
the “experimental joint torques.”

To model foot- and crutch-ground interactions, we used
viscoelastic contact models whose parameter values were
calibrated using an optimal control tracking problem. The foot-
ground contact model consisted of 16 spring-damper units on
each foot. The normal force in each element was generated using
a linear spring with non-linear damping (Jackson et al., 2016),
and the tangential force in each element was calculated using
a simple continuous friction model (Jackson et al., 2016). The
crutch-ground contact model consisted of a sphere at the tip of
the crutch that could contact a plane representing the ground.
The normal force was obtained using a Hertzian elastic point
contact model with non-linear damping (Hunt and Crossley,
1975), and the tangential force model was the same as for
the foot-ground contact model. The parameters of the foot-
ground and crutch-ground contactmodels (i.e., spring stiffnesses,
non-linear damping coefficients, dynamic friction coefficients)
were calibrated by solving a direct collocation optimal control

Frontiers in Neurorobotics | www.frontiersin.org 5 January 2022 | Volume 15 | Article 748148

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Febrer-Nafría et al. Prediction of Active Knee-Ankle-Foot-Orthosis Motion

problem (Febrer-Nafría et al., 2021). The experimental locked
knee trial motion and forces (joint angles, joint torques, and
ground reactions) were tracked simultaneously while adjusting
contact model parameter values that were assumed to be the same
for both feet and both crutches.

Optimal Control Problem Formulations Comparison
Crutch-orthosis-assisted walking prediction problems were
formulated as direct collocation optimal control problems
(OCPs) using implicit skeletal dynamics (Van Den Bogert et al.,
2011; Meyer et al., 2016; Falisse et al., 2019; Sauder et al., 2019)
and were solved using the optimal control software GPOPS-II
(Rao et al., 2014). Joint coordinates, velocities, accelerations, and
torques were states in the problem, and joint jerk, joint torque
change, and ground reactions were included as controls (Febrer-
Nafría et al., 2021). Cycle duration, stride length, and relative
duration of foot swing, crutch swing, and multiple support were
considered free parameters in the optimization, and their values
were bounded according to measured values (mean experimental
value ± a specific tolerance). Initial guesses for all states and
controls were the experimental values for the locked knee trial,
as we considered that the prediction of assisted walking should
be close to this initial motion.

The skeletal equations of motion obtained from OpenSim
were included implicitly as algebraic path constraints (Van Den
Bogert et al., 2011). An Inverse Dynamics (ID) analysis was
performed at each iteration using the OpenSim C++ API
(version 3.3), and the system kinematic state was used to calculate
the generalized forces and torques (which included the six
residual loads acting on the pelvis). Path constraints limited the
residual loads to be within a specific tolerance (1N, 1Nm). The
velocity of some specific points (midpoint for feet and tip for
crutches) during the stance phase was bounded to avoid sliding.
Periodicity was imposed for joint angles, joint torques, and
normal contact forces. The symmetry between right and left foot-
crutch mediolateral distance was imposed at the initial and final
time.Mean speed for the pelvis anterior-posterior translation was
limited within a specified tolerance.

Different cost function formulations were investigated based
on published studies that predicted 3D full-body walking for
clinical applications (Meyer et al., 2016; Sauder et al., 2019;
Febrer-Nafría et al., 2021), considering only terms related to
joint-level mechanics. Cost function terms were divided into
three different groups: tracking terms (Jtrack) that were closely
reproduced, optimality terms (Jopt) that were minimized, and
regularization terms (Jreg) that were also minimized (Equation 2):

J =

∫ tf

t0

(Jtrack (x, u) + Jopt (x, u) + 0.01 Jreg(u)) dt (2)

where t0 and tf are the initial and final simulation times,
respectively, x is the vector of states, and u is the vector
of controls. Tracking terms included lumbar and hip flexion
joint torque and upper limb joint angles; optimality terms
included segment local angular momentum, joint mechanical
power, and knee motor torque; regularization terms included

TABLE 1 | Cost function terms considered in this work.

Tracking terms

(Jtrack )

Tracking of lumbar and hip

flexion joint torque

∑

i = {1,5,9 :11}

(

τexp,i − τi
)2

Tracking of upper limb joint

angles

∑nq
i = 18

(

qexp,i − qi
)2

Optimality terms

(Jopt )

Minimization of segment

local angular momentum

∑nb
i = 1 ‖Li‖

2

Minimization of joint

mechanical power

∑nq
i = 7

(

q̇iτi−6

)2

Minimization of knee motor

torque

∑

i = {4,8} τ
2
i

Regularization

terms (Jreg)

Minimization of sum of

squared joint jerk

∑nq
i = 1

...
q i

2

Minimization of sum of

squared joint torque change

∑nq−6

i = 1 τ̇ 2
i

Tracking terms included (1) the sum of the squared error of lumbar and hip flexion joint

torque, being τexp,i and τi the i
th component of the vector of experimental joint torques

τexp and of predicted joint torques τ , respectively; and (2) the sum of the squared error of

upper limb joint angles, being qexp,i and qi the i
th component of the vector of experimental

joint coordinates qexp and of predicted joint coordinates q, respectively. Optimality terms

included (1) the sum of the squared norms of the segment angular momenta, being nb the

number of rigid bodies in the model and Li the segment angular momentum at the center

of mass of the ith rigid body (or segment) of the model; (2) the sum of squared mechanical

powers, computed for each lumbar joint coordinate, being q̇i the ith component of the

vector of joint velocities q̇, and τ i−6 the (i − 6)th component of the vector of joint torques

τ ; and (3) the squared value of the two knee torques, being τi the i
th component of the

vector of joint torques τ . Regularization terms included (1) the sum of squared joint jerks,

being
...
q i the i

th component of the vector of joint jerks
...
q; and (2) the sum of squared joint

torque changes, being τ̇ i the i
th component of the vector of joint torque change τ̇ . To give

more importance to the tracking and optimality criteria, a weight of 0.01 was placed on

the regularization terms (minimization of joint jerk and minimization of torque change), for

all the different combinations.

joint jerk and joint torque change (Table 1). Different multi-
term cost functions were implemented using two or more of
these terms, and locked knee crutch-orthosis-assisted walking
was predicted for each one of them. All cost function terms were
scaled to be of a similar magnitude. To give more importance
to the tracking and optimality criteria, we placed a weight
of 0.01 on the regularization terms (minimization of joint
jerk and minimization of torque change) for all combinations.
Convergence and accuracy of simulation results predicted with
each cost function were compared. Convergence was evaluated
taking into account the number of iterations and computation
time required to find an optimal solution, while accuracy was
evaluated by computing the root mean square error (RMSE)
between predicted and experimental joint angles and ground
reactions. The cost function for which the best results were
obtained was chosen to be used for all other crutch-orthosis-
walking predictions generated in this study.

Evaluation of the Selected Cost Function
To assess the ability of this prediction framework to perform
virtual tests of pre-defined knee motion trajectories, we used
the previously chosen cost function to predict assisted motions
with knee flexion. In our simulations, we assumed that the IMU
sensors detected correctly the stance-to-swing transition event
and that the knee motor was capable of following the desired
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knee trajectory. Knee angle trajectory was defined according to
Equation 1 using as maximum knee flexion ka the exact value
that was reached in the experimental trials. To quantify the
performance of our simulation framework for testing virtually
pre-defined knee motion trajectories, we computed RMSEs
between predicted and experimental joint coordinates, joint
torques, and ground reactions. Moreover, the following clinical
measures that are usually used by physiotherapists in the trial-
and-error process of manual tuning of knee angle trajectory
parameters were computed: foot clearance, stride length, hip
flexion ROM, and cadence. Foot clearance was obtained by
computing the lowest vertical position of the toes’ body origin
in the OpenSim model during the swing phase for each foot.
Stride length was computed as the mean value between feet and
crutches stride length. Hip flexion ROM was computed as the
right and left hip flexion ROM over the whole gait cycle. These
clinical measures were evaluated by checking the improvements
in assisted motions (with knee flexion) compared to locked
knee motion.

Application of the Prediction Framework
Using SCI Subject Data
Once the crutch-orthosis-assisted walking prediction framework
was developed and evaluated for the healthy subject, we applied
it to test different pre-defined assistive knee angle trajectories
for an SCI subject. This subject was able to walk with orthoses
without knee flexion-extension assistance (locked knee) and non-
instrumented crutches. We hypothesized that the same cost
function would work for the SCI subject as for the healthy
subject (Falisse et al., 2019), both for locked knee and flexed
knee motions. We assumed that foot- and crutch-ground contact
model parameters were the same as for the healthy subject, as
the crutches and active orthoses used for both subjects were the
same, and foot support of the orthoses contacted directly with the
ground (i.e., the sole of the feet was the same for both subjects).

Experimental Data Collection
The subject selected for this study was a young adult male (40
years old, mass 72 kg, and height 1.72m) that suffered paraplegia
after a spinal hemangioma. He had an incomplete transverse
spinal cord syndrome below the 10th thoracic neurological
segment (T10), classified at level B in the ASIA Impairment Scale
(AIS). Sensory but not motor function was preserved below the
level of injury. During the experimental capture, it was difficult
for the patient to walk with the instrumented crutches (as they
included wires and electronic modules on each crutch) and to
place one foot cleanly on each force plate. For these reasons, the
experimental capture was done with non-instrumented crutches,
thus collecting only marker trajectories. One trial with locked
knees was recorded to be used as an initial guess for the different
prediction problems (Figure 2C).

Computational Model Development
A torque-driven model of the SCI subject with crutches and
active orthoses was developed following a similar approach as
for the healthy subject. To take into account the SCI subject
impairment, we limited hip joint torque production according to

the functional state of the subject. Following an approach similar
to Sreenivasa et al. (2017), we assumed that the SCI subject
used 80% of his hip motor capacity during the experimental
capture with passive orthoses and crutches. Another difference
with respect to the healthy subject model was that for the
SCI subject, the total torque acting at the knee corresponded
to the assistive motor torque since the subject’s knee muscles
were not functional. This torque was limited to ±34Nm, which
is the peak torque that the electric motor can provide. To
obtain the reference values for hip joint torques, we solved an
optimal tracking problem that tracked joint coordinates obtained
from IK while minimizing joint jerk. Ground reactions were
obtained from foot-ground and crutch-ground contact models
using the parameter values obtained for the healthy subject.
Hip joint torques were then limited assuming that the reference
values obtained from this tracking problem were 80% of the
maximum values.

Evaluation of the Selected Cost Function
To evaluate the convenience of using the same cost function
for predicting locked knee crutch-orthosis-assisted walking for
an SCI subject, we computed the RMSE between predicted and
experimental joint angles (obtained after IK analysis).

Knee Motion Strategy Testing
Knowing the subject’s gait with locked knees, we computationally
tested different knee angle trajectories, having all parameters
fixed and modifying the knee maximum flexion parameter ka.
This parameter is usually the one that is varied first in the
trial-and-error adaptation process. Four different motions were
predicted with the following levels of knee flexion: 20, 30, 40,
and 50◦. Joint torques and ground reactions obtained from the
locked knee tracking problem were used as the initial guess
for the predictive simulations. To evaluate the performance
of our simulation framework for testing virtually pre-defined
knee motion trajectories for an SCI subject, we computed foot
clearance, stride length, hip flexion ROM, and cadence, and we
compared these clinical measures among all predicted motions.
The maximum knee flexion value that produced the most
improved walking motion was selected as the best candidate for
this SCI subject.

RESULTS

Different cost functions for predicting locked knee crutch-
orthosis-assisted walking were explored, combining one or
more tracking, optimality, and regularization terms. Overall, we
found that minimizing join jerk helped the problem converge
more quickly and satisfied mesh error tolerance at the first
mesh iteration. We also found that minimizing lumbar joint
mechanical power, segment angular momentum (especially
torso), and motor torque helped the problem converge with
fewer iterations and lower joint angle errors. Moreover, we
found that having joint torque as a state and joint torque
change as a control worked better than having joint torque
as a control. Based on these results, we chose the following
cost function for predicting crutch-orthosis-assisted walking:
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TABLE 2 | Convergence (number of iterations and computation time) and accuracy (mean RMSE for angular coordinates and ground reactions) for all predictive

simulations.

Subject Healthy SCI

Trial H0 H35 H45 S0 S20 S30 S40 S50

Convergence N iterations 322 759 582 153 125 197 990 414

Computation time 27min 2 h 26min 1 h 51min 13min 25min 40min 3 h 12min 1 h 23 min

Mean RMSE Angular coordinates [◦] Pelvis + torso 4.88 6.95 6.24 10.67 - - - -

Upper limbs 6.46 12.65 10.76 5.74 - - - -

Lower limbs 5.13 8.57 9.57 10.61 - - - -

All 5.74 10.26 9.45 8.19 - - - -

Ground reactions [N, Nm] Normal 55.40 90.71 53.84 - - - - -

Tangential 14.35 15.19 13.03 - - - - -

Moment 6.90 11.07 9.58 - - - - -

The name for each trial indicates the subject (“H” for healthy and “S” for SCI subject), followed by the maximum knee flexion angle in degrees. For the SCI subject, only errors in angular

coordinates for the locked knee case (S0) were computed, according to the available experimental data.

minimization of lumbar mechanical power, all segment angular
momentum, motor torque, joint jerk, and joint torque change.
Using this cost function, an optimal solution for the healthy
subject with locked knee was found in 27min, and mean
RMSE was 5.34◦ for joint angles, 55.40N for normal forces
(feet and crutches), and 14.35N for tangential forces (feet and
crutches) (Table 2). Overall, the lowest mean RMSEs for all
joint angles were found for the healthy subject with locked knee
motion (5.74◦), followed by the SCI subject with locked knee
motion (8.19◦), and finally the healthy subject with 45◦ knee
flexion (9.45◦) and 35◦ knee flexion (10.26◦) (Table 2). For the
healthy subject, higher errors were found for upper limb joint
angles, whereas for the SCI subject, errors were higher for the
lower limbs.

Two different crutch-orthosis-assisted gait cycles were
predicted for the healthy subject (with maximum knee flexion
values of 35 and 45◦, respectively), imposing the knee angle
trajectory from the collected experimental trials. We assumed
that the same cost function would work for predicting both
locked knee and flexed knee-assisted walking. The computation
time required to converge was higher than for the locked knee
case, up to 2 h 30min (Table 2). Mean RMSE for joint angles was
10.26◦ for 35◦ of predicted knee flexion motion and 9.45◦ for
45◦ of predicted knee flexion motion. In both cases, the lowest
mean RMSE was for pelvis and torso joint angles (<7◦) and the
highest was for upper limbs angles (10.7–12.6◦). Hip flexion
was predicted better than were hip adduction and hip rotation,
with predicted angle trajectories showing peaks at the same cycle
times as in the experimental data (Figure 3). Regarding ground
reaction forces, the mean RMSE for normal forces was higher
for 35◦ knee flexion motion (90.71N) compared to locked knee
motion but was similar for 45◦ knee flexion motion (53.84N)
(Table 2). Errors in tangential forces were comparable for locked
knee and both flexed knee motions (13–15N). In all cases,
predicted foot and crutch weight-bearing was consistent with the
experimental ground reaction forces (Figure 4).

Changes in foot clearance, stride length, and cadence were in
general well-predicted for the healthy subject. When comparing

flexed knee motions with respect to locked knee motions, foot
clearance increased for 35◦ and decreased for 45◦ in both
experimental and predictedmotions (Figure 5). Stride length and
cadence increased for both flexed knee motions, and stride length
was higher for 45◦ compared to 35◦ in both experimental and
predicted motions. Compared to locked knee motion, hip flexion
ROM also increased for flexed motions in experimental and
predicted motions. However, there was a difference between the
trend in predicted motions compared to experimental motions:
in the experimental motions, hip flexion ROM increased for 35
and 45◦ with respect to the locked knee case, but in the predicted
motions, it increased for 35◦ and decreased for 45◦.

In general, the locked knee predicted gait pattern for the SCI
subject had a lower ROM for each joint coordinate (Figure 3)
and less mediolateral movement (in the frontal plane) compared
to experimental measurements. Stride length and cadence were
comparable in experimental and predicted motions (0.51m
for both motions and 30.23 steps/min and 27.26 steps/min,
respectively). Foot clearance was higher, and symmetry improved
in the predicted motion (4.82 and 4.72 cm, for right and left
foot, respectively, compared to 3.60 and 1.50 cm), whereas hip
flexion ROMwas lower, and symmetry decreased in the predicted
motion (26 and 17◦, for right and left hip, respectively, compared
to 58 and 54◦). Regarding ground reactions, predicted normal
forces were higher for the right side (peak value of 0.75 body
weight (BW) for right foot and 0.34 BW for right crutch)
compared to the left side (peak value for 0.68 BW for left foot
and 0.16 BW for left crutch) (Figure 4).

Four additional crutch-orthosis-assisted gait cycles were
predicted for the SCI subject with maximum knee flexion angle
increasing from 20 to 50◦ in increments of 10◦. Optimal solutions
were found in a mean time of 1 h 20min, with a maximum
computation time of 3 h 12min (Table 2). In general, compared
with locked knee predicted motion, all four clinical measures
improved for predicted motions with knee flexion (Figure 5).
Maximum values of foot clearance (right: 5.56 cm, left: 6.16 cm)
were found for 30◦ of maximum knee flexion, maximum values
for stride length (0.54m), and hip flexion ROM (right: 40.09◦,
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FIGURE 3 | Predicted lower limbs joint coordinates (in red) for locked knee motion (0◦) for both subjects, and for two active knee flexion motions for the healthy

subject, compared to the experimental values (in dashed blue).

left: 26.31◦) were found for 40◦ of maximum knee flexion, and
maximum value for cadence was found for 50◦ knee flexion
(33.37 steps/min).

DISCUSSION

In this work, we developed an optimal control prediction
approach to test different pre-defined knee angle trajectories of
an active orthosis to assist the gait of SCI subjects. We compared
different cost functions and chose the one that produced results
closest to experimental locked knee crutch-orthosis-assisted
walking for a healthy subject. Having as an initial guess the
experimental motion for the locked knee case, we predicted
crutch-orthosis-assisted walking imposing knee flexion using
different maximum knee flexion parameters to define the knee
angle trajectory along the gait cycle. For the healthy subject, two
different maximum knee flexion angles were imposed for which
experimental walking data were available. For the SCI subject, no
experimental walking data for flexed knee motion were available,
and four different maximum knee flexion angles were imposed
in the simulations. We evaluated changes in four simulated
clinical measures that are usually considered by physiotherapists
to decide the best set of parameters for a specific patient (foot
clearance, stride length, cadence, and hip flexion ROM). These
changes were consistent with those observed in the experimental
motions for the healthy subject and were reasonable for the SCI

subject. These findings suggest that it may be beneficial to use
optimal control predictions of crutch-orthosis-assisted walking
in place of the current trial-and-error method to select the best
maximum knee flexion angle for a specific SCI subject.

Changes in the clinical measures were generally predicted
well for the healthy subject. For the healthy subject collected
motions, we found that having knee flexion-extension assistance
produced better results for stride length, hip flexion ROM, and
cadence, as all of these measures increased for both maximum
knee flexion angles (35 and 45◦) compared to the locked knee
case. These changes are related to improved assisted motion and
are linked, as having increased knee flexion is associated with
having increased hip flexion (Escalante et al., 1999), and generally
increased hip flexion is correlated with a longer stride length
(Schulz et al., 2008). For the predicted motions, having knee
flexion assistance also produced increased values for hip flexion
ROM, stride length, and cadence. In the case of stride length
and cadence, the trend observed in experimental measurements
was also observed in the predicted motions (higher values for
45◦ compared to 35◦). However, in the case of hip flexion ROM,
higher values were obtained for 45◦ in experimental motions and
35◦ in predicted motions. Thus, this trend in hip flexion was not
well-captured by the optimal control problem, though in both
experimental and predicted motions with knee flexion assistance,
hip flexion ROM was higher than in the locked knee case.
Moreover, the asymmetry between right and left hip flexion ROM
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FIGURE 4 | Predicted normal forces (in red) for locked knee motion (0◦) for both subjects, and two active knee flexion motions for the healthy subject, compared to

the experimental values (in dashed blue). For the SCI subject, no force plate measurements were available.

observed in the experimental motions (left hip flexion ROM was
higher than right hip flexion ROM) was also observed in the
predicted motions. Foot clearance with respect to the locked
knee case increased in the experimental motions for 35◦ but
decreased for 45◦. This trend was also observed in the predicted
motions, where left foot clearance increased for 35◦ (and right
foot clearance remained almost equal) and both feet clearance
decreased for 45◦.

Considering the four clinically relevant measures, our results
suggest that for this particular SCI subject, 30 or 40◦ of maximum
knee flexion may produce the best-assisted motion. Compared
to locked knee prediction, foot clearance generally increased for
knee flexion assistance. This outcome is desirable when using
lower limb exoskeletons, since straight knee gait and drop foot
gait reduce foot clearance (Koopman et al., 2013; Yeung et al.,
2018). For both legs, the best case was for 30◦, which produced
foot clearances of 5.56 and 6.16 cm (right and left, respectively)
compared to 4.82 and 4.72 cm (same order) in the locked knee
case. Stride length was in general slightly lower for flexed knee
motions compared to locked knee motion but slightly increased
for 40◦. Hip flexion ROM clearly increased for all flexed knee
motions. The highest values were obtained for 40◦ and the lowest

for 50◦. There was also asymmetry in hip flexion ROM, with
the right hip flexion ROM being higher, as was also observed
in the experimental motion. For 40◦, the highest values of hip
flexion ROM and stride length were obtained. Cadence increased
slightly for all flexed kneemotions, with the highest value of 33.37
steps/min occurring for 50◦ compared to 27.26 steps/min in the
locked knee predicted motion. These results are reasonable if we
relate them to knee kinematics during normal walking. In normal
gait, the knee flexion-extension cycle starts at a terminal stance
and ends at a terminal swing (Perry, 1992). During knee flexion,
the ankle dorsiflexes, which increases foot clearance, and during
knee extension, the ankle eccentrically plantar flexes as the cycle
enters terminal swing. In our simulations, it should be noted that
only the maximum knee flexion was modified for the different
predictions, meaning that the flexion-extension cycle had the
same allotted time to reach maximum knee flexion across all the
conditions. As a result, the knee flexion-extension motion was
faster for the 50◦ condition compared to the 30◦ condition and
may have impacted hip flexion, leading to a shorter stride length.
However, the increased speed of the knee flexion-extension cycle
may have created a momentum effect and therefore led to a
higher cadence.
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FIGURE 5 | Gait parameters (stride length, cadence, foot clearance, hip flexion ROM) for both subjects (healthy, SCI) and each different maximum knee flexion angle,

normalized to the locked knee (0◦) case. This normalization was done for each subject and case (experimental and/or predicted), and for right and left sides

independently. For the healthy subject, experimental and predicted values are shown. For the SCI subject, only predicted values are shown, as no data were collected

for the different maximum knee flexion conditions. Note that the maximum value in the y-axis is higher for hip flexion ROM than for the other parameters.

Evaluating the assisted motion and choosing the best set of
parameters for a specific subject, manually or computationally,
is not always straightforward. In this work, compared to locked
knee motion, we found for both subjects that clinical measures
improved for assisted motions with knee flexion until a certain
peak knee flexion was reached (around 35◦ for the healthy
subject and between 30 and 40◦ for the SCI subject), with
results worsening with higher knee flexion values. This trend
was observed both experimentally (for the healthy subject) and
computationally (for both subjects) and coincided with what
the authors have observed in different training sessions with
SCI subjects wearing the lower limb active orthosis. However, it
is not clear how these clinical measures should be interpreted,
e.g., if some of them improve while others do not for the same
set of parameters. Usually, exoskeleton parameters are manually
adjusted based on subjective evaluation, e.g., asking users which
condition they prefer (MacLean and Ferris, 2019) or based
on physiotherapists’ visual assessment on basic gait parameters
like foot clearance (Koopman et al., 2013). For our active
orthosis, some objective values are added to the physiotherapist’s
subjective evaluation, as the device provides real-time feedback
of stride length and weight-bearing time on each leg. However,
the evaluation is still done subjectively by the physiotherapist,
who decides how to tune the orthosis parameters manually based
on both subjective assessment and objective measurements.
Simulation (or automatic tuning) presents some advantages
compared to trial-and-error tuning: it is quicker (Fricke et al.,
2020), and many parameter sets can be virtually tested without
the risk of trying a combination that will not work and could
be harmful to the patient. Despite these advantages, there is no

clinical evidence to date that the automatic tuning of assisted
motions results in better clinical outcomes (Fricke et al., 2020). It
is difficult to develop a system that objectively takes into account
all of the factors that a physiotherapist evaluates whilst assisting a
patient to walk. It could be that for a specific parameter set, some
important clinical measures improve while others do not, and
one clinical parameter could be more critical for one patient than
for others. Before this method can be applied to choose optimal
knee control parameters for a specific subject, more research is
needed to understand better and define objectively the targeted
assisted gait pattern for the patient according to functional status.

Although trends in clinical measures were well-predicted for
the healthy subject, in some cases absolute predicted values
differed from experimental values. Cadence was well-predicted:
37 steps/min and 40 steps/min in locked and flexed kneemotions,
respectively, in both experimental and predicted results. For
foot clearance, a lower value was generally found for predicted
motions compared to experimental motions, with the highest
difference being 2.10 cm for the left leg with a 45◦ maximum
knee flexion angle. Stride length and hip flexion ROM were also
lower in predicted motions compared to experimental motions.
Stride length was 14 cm lower for predicted locked knee motion
compared to experimental conditions (0.51 vs. 0.37m) and 4–
5 cm lower for predicted flexed knee motions. Hip flexion ROM
was up to 12◦ lower in predicted vs. experimental conditions
for locked knee motion and up to 18◦ lower for flexed knee
motion. These reductions in stride length and hip flexion ROM
were mainly caused by lower joint angle ROMs in predicted
motions compared to experimental motions (Figure 3), which
also resulted in lower foot clearance.
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Differences in joint angles and ground reaction forces between
predicted and experimental motions were lowest for the healthy
subject with locked knee condition (that is, for the case for which
the cost function was selected). This finding may indicate that
different cost functions should be used for locked/flexed knee
and healthy/SCI subjects, or, if healthy and pathological human
gaits emerge from similar control strategies (Falisse et al., 2019),
that the appropriate cost function has not yet been identified, and
other terms should be added that may play an important role
only for the SCI subject. Further research is needed to determine
the best cost function for predicting assisted walking of SCI
subjects. This effort will require the collection of a complete set
of experimental data (including marker trajectories and foot-
and crutch-ground reactions). Moreover, the best cost function
for simulating crutch walking may be different than the best
one for simulating normal walking. As far as the authors know,
there is only one study that predicts crutch-assisted walking
using a 3D full-body model (Febrer-Nafría et al., 2021). In the
SCI subject lower limbs, only the hip is actuated by muscles,
and the hip ROM was not well-predicted. This result may be
caused by the fact that hip motion was controlled by net torque
actuators instead of individual muscle-tendon units. Meyer et al.
(2016) found that predicting walking under new conditions
was more accurate if muscles rather than net torque actuators
were used to generate the motion, with muscles controlled by
synergies instead of individual muscle activations producing the
most accurate walking predictions. Therefore, we hypothesize
that including muscles in the model and controlling them by
synergies could improve the prediction results. However, for that
approach, it would be challenging to calibrate muscle-tendon
model parameter values for patients with SCI. Moreover, when
we tested whether adding more tracking terms might improve
the predicted motions (Meyer et al., 2016), we did not find a clear
improvement compared to cost functions without tracking terms.
Given our results, we believe that adding targeted tracking terms
could produce more subject-specific assisted motions following
a pattern closer to the one chosen initially by the patient with
a locked knee. Even though the cost function requires further
investigation, these results are promising as we have been able
to predict changes in crutch-orthosis-assisted walking motions
that are in good (for the healthy subject) or reasonable (for the
SCI subject) agreement with experimental trends. Our hypothesis
is that by finding a cost function that predicts the locked knee
condition better, we will be able to predict walking motions with
knee flexion assistance more reliably, and changes from locked to
flexed knee conditions will be maintained.

This work possesses several limitations. First of all, no training
or learning process was performed by the healthy subject, and
experimental data were collected before the subject was used
to walking with the active orthoses. Therefore, some clinical
measures could be different after such a training process.
Moreover, only two different levels of maximum knee flexion
were tested for the healthy subject, and the maximum value
was the only knee angle trajectory parameter varied. For the
clinical application, the assisted gait of a single SCI subject
was simulated, and only one of the parameters that define
the knee angle trajectory was explored. Although maximum

knee flexion is the most critical parameter, it would also be
interesting to predict how varying the other three parameters
would affect the predicted motion. In addition, we assumed
that the stance-to-swing transition event was perfectly detected
during the simulation. Gait event detection is done using IMUs
in the real device, and some threshold parameters need to be
adjusted as well. In future experiments, we will start with some
training sessions, and we will collect data for different values
of all parameters that define the knee angle trajectory and gait
event detection. In this way, we will be able to assess if some
parameters are more subject-dependent and others more general.
Another limitation was that we did not directly compare manual
tuning using a trial-and-error process with the computational or
simulation tuning. This comparison process would be complex,
as different aspects should be taken into account: (1) time and
effort of the physiotherapist to find these values, (2) time and
effort of the patient, (3) if different physiotherapists find different
values, and (4) if both methods produce similar results in terms
of the better-assisted motion. A benefit of using a computational
model would be to obtain a personalized default set of parameters
that could then be easily tuned in the clinic. This approach
would reduce fitting time and would be safer for the patient,
as there would be less risk of adverse events than when using
non-personalized parameters. An adverse event like a fall would
have a big impact on the patient’s health and confidence in the
technology. We hypothesize that in general, the set of parameters
provided by the model will work well for the patient, though
there will always be particular cases where the manual tuning of
this initial set of parameters will be needed. These cases include
patients who fatigue over the session or have changing levels of
spasticity or pain. These aspects are currently not considered in
the model, and therefore, it might be necessary to tune the initial
set of parameters to accommodate these issues. In future work,
how to include fatigue, spasticity, or pain in the model should be
investigated. Another potentially complicating factor is that the
cost function might vary with time. Regarding the active KAFO
modeling, in this work, the knee motor modeling was simplified.
We assumed that the knee flexion angle trajectory was followed
correctly, and that maximum knee flexion was reached. However,
we observed experimentally that maximum flexion was lower
than the targeted value. In future work, we will investigate how
to include actuator dynamics (Nguyen et al., 2020). Finally, we
considered the same knee flexion angle trajectory for both right
and left legs, but asymmetry was observed in the trials in both
healthy and SCI subjects. In the future, we will investigate if the
assisted knee flexion trajectory should be different for both legs
to achieve a more symmetric gait pattern.

In conclusion, this study explored the feasibility of using
a computational approach to personalize the pre-defined knee
trajectory parameters for an active KAFO for SCI subjects.
We developed an optimal control prediction approach to test
different pre-defined knee angle trajectories of an active orthosis
to assist the gait of SCI subjects. We checked if our optimal
control approach was capable of correctly predicting assisted
motions for different values of maximum knee flexion angle,
evaluating results against experimental data collected from a
healthy subject assisted by the active orthoses. While trends in
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clinical measures were well-predicted, absolute predicted values
differed from experimental values in some cases. We applied
the framework to predict assisted gaits of an SCI subject with
four different maximum knee flexion values. To the best of the
authors’ knowledge, no study in the literature has addressed how
to formulate optimal control problems to predict novel crutch-
orthosis-assisted walking motions using 3D full-body models.
Although more research is needed before this method can be
used to choose optimal knee control parameters for a specific
subject, our findings suggest that optimal control prediction
of crutch-orthosis-assisted walking using biomechanical models
might possess benefits over the current trial-and-error method
used to select the best maximum knee flexion angle for a specific
SCI subject. Having a simulation tool that allows different pre-
defined knee motions to be tested on a specific SCI subject
model, with the aim of finding a more balanced and improved
assisted gait pattern (with respect to the standard locked knee
motion), could overcome limitations of the current manual
personalization process and could yield an improved assisted
motion for each SCI subject.
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