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In order to deal with the multi-target search problems for swarm robots in unknown

complex environments, a multi-target coordinated search algorithm for swarm robots

considering practical constraints is proposed in this paper. Firstly, according to the target

detection situation of swarm robots, an ideal search algorithm framework combining

the strategy of roaming search and coordinated search is established. Secondly,

based on the framework of the multi-target search algorithm, a simplified virtual force

model is combined, which effectively overcomes the real-time obstacle avoidance

problem in the target search of swarm robots. Finally, in order to solve the distributed

communication problem in the multi-target search of swarm robots, a distributed

neighborhood communication mechanism based on a time-varying characteristic swarm

with a restricted random line of sight is proposed, and which is combined with the

multi-target search framework. For the swarm robot kinematics, obstacle avoidance, and

communication constraints of swarm robots, the proposed multi-target search strategy

is more stable, efficient, and practical than the previous methods. The effectiveness of

this proposed method is verified by numerical simulations.

Keywords: multi-target search, swarm robots, roaming search, coordinated search, simplified virtual force model,

distributed neighborhood communication

INTRODUCTION

Inspired by the group behavior of social insects such as ants and bees, the concept of swarm
intelligence is put forward by scholars (Bonabeau, 1999), which is defined as the collective
intelligence emerging from a group of simple agents. The swarm robot system (Doty and Van
Aken, 2002) is a typical artificial swarm intelligence system, which consists of a large number of
homogeneous autonomous robots with a simple structure. By the coordination and cooperation
of robots with limited individual capabilities under a specific mechanism, the system can present
intelligent behavior and complete relatively complex tasks.

The common research contents of swarm robot systems include target search (Alfeo
et al., 2019; Booth et al., 2020), task assignment (Liang et al., 2018), cluster avoidance
(Khan et al., 2019), path planning (Ryan, 2008; Luo et al., 2017), and cluster formation
(Anonymous, 1993; Alsamman, 2011). In this paper, the target search problem of swarm
robots in unknown complex environments is mainly studied, such as forest fire detection
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(Yao et al., 2018; Marzaeva, 2019), toxic gas leak detection (Zhang
et al., 2010; Moshayedi and Gharpure, 2013), search and rescue of
missing personnel (Goodrich et al., 2009; Kamegawa et al., 2020),
military target detection (Ha and Cho, 2018; Jiong et al., 2019)
and so on. In order to solve this type of search problem, there
are mainly composed of two main categories of design strategies,
namely, behavior-based search and learning-based search (Cizek
and Faigl, 2019; Berscheid et al., 2020; Suzuki et al., 2020), and
this article mainly discusses the former.

According to the number of search targets, searches can be
divided into single-target searches and multi-target searches.
When the swarm robot system is applied to single-target search,
it is necessary to pay attention to the cooperation mechanism
between individual robots. Gudise (2004) proposed an extended
particle swarm optimization (EPSO) algorithm, which was
successfully applied to single-target searches. Ducatelle et al.
(2011) used the local wireless network communication strategy
to strengthen the communication ability between robots and
enhance the robustness of the swarm robot system. Majid and
Arshad (2017) mainly focused on the performance indicators
in the EPSO coordinated search algorithm such as trajectory
smoothness, search success rate, and search time, and studied
the impact of the inertial weight on the search performance of
swarm robots. Tang et al. (2020) proposed an improved adaptive
bat algorithm (IABA) search algorithm by focussing on the
problem of obstacle avoidance and improving the performance
of the algorithm in the single-target search process of swarm
robots. Aiming at the distributed communication problem in the
single-target search process of swarm robots, Yang et al. (2019)
proposed a time-varying characteristics swarm of visual limited
(V-TVCS) model.

However, when the swarm robot system is applied to the actual
neighborhood search, the number of search targets is more than
one. Therefore, how to set up a multi-target search algorithm
considering the actual search environment is the focus of scholars
at home and abroad. Manic (2009) proposed a multi-target
task allocation model with response threshold (TRT) to realize
self-organizing task allocation, and then robots with the same
objective task used the EPSO algorithm for coordinated search.
Zhang and Xue (2014) proposed a dynamic task division strategy
with closed-loop adjustment for the problem of uneven subgroup
size of the TRT model. Xinjie (2020) established a simplified
virtual force model (SVFM) for the unknown and complex
environment, and successfully solved the obstacle avoidance
problem in the multi-target search process. Zhang and Xue
(2015) proposed the strategies of competition and cooperation
and cooperation for the problem of subgroup interaction in
parallel search. Jie (2019) proposed a probabilistic finite state
machine search framework for the multi-target search problem
of swarm robots. Xinjie (2020) extended the two-dimensional
SVFM (2D-SVFM) to 3D-space, and successfully implemented
this type of search method to achieve multi-target search in the
Unmanned Aerial Vehicle (UAV) cluster system.

Based on the above literature analysis, the above methods
can be applied to specific target search scenarios, but there are
the following problems. First of all, there is no standard multi-
target search algorithm framework in these methods. Most of

the algorithms’ settings are only suitable for searching for a
specific number of targets, not for searching for any number
of targets. Secondly, most of the algorithms only start to study
a specific performance index of swarm robots, and do not
consider the algorithm performance, obstacle avoidance, and
swarm communication problem of swarm robots in actual search
scenarios at the same time.

Aiming at the static multi-target search problem of swarm
robots in unknown complex environments, a multi-target
coordinated search algorithm for swarm robots considering
practical constraints (MSRCPC) is proposed in this paper. The
main work of this paper is as follows. First, based on the
mechanism of finite state machines, an ideal multi-target search
framework for swarm robots is proposed. Then, on the basis
of the entire framework, combined with the simplified virtual
force model, the obstacle avoidance problem of the swarm robot
in the multi-target search process is solved. Finally, considering
the communication interaction problem in the coordination
and cooperation of swarm robots and the random line-of-
sight problem of individual robots in the actual communication
process, the distributed neighborhood interaction model based
on a time-varying characteristic swarm with a restricted random
line of sight (RS-TVCS) is constructed. By embedding the sub-
algorithms in the whole algorithm framework, the MSRCPC
algorithm proposed in this paper can greatly improve the search
performance of the swarm robot system, making the entire
system more scalable and practical.

The remaining parts of this paper are summarized as follows.
In section 1, the research background of this algorithm and the
research progress at home and abroad was introduced. In section
2, the ideal multi-target search framework for swarm robots
is introduced. In section 3, the obstacle avoidance mechanism
and distributed communication mechanism of the swarm robot
system are described, and the multi-objective search framework
of swarm robots considering practical constraints is proposed.
The simulation test analysis on the proposed algorithm is
conducted in section 4. Finally, the main work is summarized.

THE FRAMEWORK OF IDEAL SEARCH
ALGORITHM

In a closed two-dimensional space R2, the task environment for
multi-target search of swarm robots can be described by the set
{R, T, S, D}.where, R = {R1,..., Ri,..., Rm, m > 1} is the search
subject (swarm robots); T = {T1,..., Tj,..., Tn, n > m} is the
searched target; S = {S1,..., So,..., Sp, p > 1} is the static obstacle
and D = {D1,..., Dl,..., Dq, q > l} is the dynamic obstacle. In
addition, we let w exist in the task set {R, T, S, D}.

The set targets can send out a continuous specific signal,
and are randomly distributed in the search map. The sensors
carried by swarm robots can detect the strength of the target
signal, which cannot determine the direction of the signal. The
initial positions of swarm robots are randomly in a certain corner
of the search map. In the case without considering obstacles
and ideal communication interaction, the multi-target search
algorithm framework of swarm robots can be described in the
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FIGURE 1 | Multi-target search algorithm framework diagram.

form of a finite state machine. The specific description is shown
in Figure 1.

As shown in Figure 1, the basic multi-target search algorithm
framework can be described as: when the robot detects the target
signal, it enters the coordinated search state, and uses the swarm
intelligence optimization algorithm to coordinate the search;
when the robot does not detect the target signal, it will follow a
certain roaming mechanism to detect the target signal.

The Multi-Assignment Model Based on
Response Threshold
Sensor Detection Model
Sensors with different detection distances have different response
strengths for target signal, and the function to describe the target
signal strength can be set as follows (Manic, 2009):

I(i, j) =

{

sQ
d2ij

+ rand(), dij ≤ d0

0, dij ≥ d0
(1)

where Q is the constant power signal sent from the center of the
target, dij denotes the distance between the robot and the target,
d0 is the maximum detection distance of the sensor, s is the signal
attenuation factor, rand is the random disturbance of the signal,
and I(i, j) is the signal strength between robot and target.

Multi-Target Allocation and Design
In the robot roaming search process, the robot may detect
multiple target signals. How to make self-organizing decisions
on the target signals and find subgroup alliances is the key to
the coordinated search of swarm robots. First, the target response
function is used to calculate the detection of each target signal for
each robot at time t. Then, the probability that the robot selects
the target is calculated via the target response signal strength,
Finally, the decision about the target based on the roulette
probability decision algorithm is made. As shown in Table 1, the
induction about the target signal strength of the robot at the
moment t is as follows:

The probability response process of the i-th robot to the j-th
target is:

p(i, j) =
I2j

m
∑

k=1

I2
k

(2)

where Ij is the signal strength of the target Tj detected by the
robot Ri. If the robot can detect the number of targets, i.e., m, the
probability that Ri responds to the excitation from target Tj is p
(i, j). TheRi decision-making process of the robotRi is as follows:

k = min





m
∑

j=1

p(i, j) ≥ rand()



 (3)

where rand () is subject to a uniform score between 0 and 1, and
k is the smallest target sequence number satisfying its condition.
According to the processed decision-making method, it can be
determined from Table 1 that the subgroup alliances composed
of the task target set are T1 = {R1, R5}, T2 = {R2, R3}, and T3 =

{R4}, and the members of R6 are in the roaming search state and
do not participate in the coordinated search.

The Roaming Search Algorithm Based on
Nearest Neighbor Exclusion Diffusion
At the initial moment, the robot cannot detect the target
signal. Therefore, it is very important to design an effective
individual roaming search model to detect the target signal at the
fastest speed. Typical roaming search models include Levy Flight
(Viswanathan et al., 1999) and Intermittent Search (Bénichou
et al., 2006). However, the roaming search strategies of these
models suffer from the following disadvantages: (1) the search
efficiency is not high, and (2) the factor of obstacle avoidance is
not considered in the search process. Therefore, a new roaming
search algorithm, namely, the Nearest Neighbor Exclusion
Diffusion (NNED) Algorithm is introduced in this section.

Suppose the position information of the i-th robot in the
search space at time t is expressed as Xri(t) = [Xi(t), Yi(t)]

T ,
and the maximum speed of the roaming robot is Vm. The NNED
algorithm is described below.

Without considering obstacles, the distance matrix Dim

between the i-th robot and other robots at time t can be expressed
as follows:

Dim =
[

di1, di2, . . . , dik, . . . , dim
]

(4)

where dik is the Euclidean distance between the i-th robot and the
k-th robot. Sort equation (4) by row from small to large to obtain
the distance sorting matrix Dis.

Dis = sort(Dim) (5)

The position sequence information index of the neighboring
robot can be expressed as follows:

index = find(Dim(1, :) == Dis(1, 2)) (6)
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TABLE 1 | Detection of target signals by robots members at time t.

Robot Perceived target type Perceive target signal strength Personalized task set

T1 T2 T3 T4 T5 T6

R1 I-type Unknown I-type 0.9358 0 0.3346 {T1,T3}

R2 Unknown I-type Unknown 0 0.6632 0 {T2}

R3 Unknown I-type Unknown 0 0.6632 0 {T2}

R4 Unknown II-type I-type 0 0.9358 0.6632 {T2,T3}

R5 I-type II-type I-type 0.3346 0.6632 0.9358 {T1,T2,T3}

R6 Unknown Unknown Unknown 0 0 0 none

The repulsion angle θ between the i-th robot and the index-th
robot is expressed as follows:

θ(t) =

{

ac sin(
Xi(t)−Xindex(t)

diindex
),γindex(t)≥γi(t)

π−ac sin(
Xi(t)−Xindex(t)

diindex
),γindex(t)≤γi(t)

(7)

where diindex is the Euclidean distance between the i-th robot and
the index-th robot. Set the expected position of the robot at time
t + 1 as X′

ri(t + 1)= [x
′

i (t + 1), y
′

i (t + 1)]T , and the step size is
updated as follows:

[

xi
′(t + 1)

yi
′(t + 1)

]

=

[

xi(t)
yi(t)

]

+

[

Vm cos(θ(t))
Vm sin(θ(t))

]

(8)

Taking into account the boundary constraints, the actual position
of the roaming robot is updated as follows:







Vx
′ = −Vm cos(θ(t)),Vm cos(θ(t)) ≤ 0 ∩ xi(t + 1) ≤ 0

Vx
′ = −Vm cos(θ(t)),Vm cos(θ(t)) ≤ 0 ∩ xi(t + 1) ≥ L

Vx
′ = −Vm cos(θ(t)),Vm cos(θ(t)) ≥ 0 ∪ 0 ≤ xi(t + 1) ≤ L

(9)

where L is the search boundary. In the same way, the y-
axis velocity component considering the boundary limit can be
updated. Set the actual updated position of the robot at time t + 1
as Xri(t + 1)= [xi(t + 1), yi(t + 1)]T , and the position update of
the roaming robot considering boundary constraints is as follows:

[

xi(t + 1)
yi(t + 1)

]

=

[

xi(t)
yi(t)

]

+

[

Vx
′

Vy
′

]

(10)

where Vic(t + 1) = [V ′(x), V ′(y)]T is update step of the robot
roaming speed.

Coordinated Search Algorithm of Particle
Swarm Based on Kinematics Constraints
By analyzing and comparing several benchmark concepts in the
cooperative search state of the particle swarm algorithm and
swarm robots, it can be found that there is a certain mapping
relationship between them. Based on the inertial weight particle
swarm algorithm, kinematic constraints can be used to describe

this mapping relationship, and the specific expression is as
follows (Gudise, 2004):























Vie(t + 1) = ωVRi(t)+ c1r1(X
∗
Ri(t)− XRi(t))

+c2r2(g
∗
Ri(t)− XRi(t))

VRi(t + 1) = VRi(t)+ (Vie(t + 1)− VRi(t)) · α
XRi(t + 1) = XRi(t)+ VRi(t + 1) · δ

VRi(t + 1) ≤ Vm

(11)

where Vie(t + 1) is the expected speed of the robot at the next
moment, VRi(t + 1) is the speed of the robot at time t, X∗

Ri(t)
is the historical optimal position of the individual robots, g ∗

Ri (t) is the optimal position of the robot at time t, VRi(t + 1)
is the actual expected speed considering the kinematics of the
robot, XRi(t) is the position coordinate of the robot at time t,
XRi(t + 1) is the expected position of the robot at the next time,
w is the inertial weight, c1 and c2 are the individual and social
cognitive coefficients of the robot, r1 and r2 are random numbers
uniformly distributed between 0 and 1, α is the inertia coefficient,
δ is the step size control factor of the robot, and Vm is the limited
maximum speed.

Setting the target position as [Xot,Yot]
T, the fitness function of

the coordinated search of the robot is as follows:

f (t) =

√

(xi(t)− Xot)
2 + (yi(t)− Yot)

2 (12)

Because the particle swarm optimization algorithm easily falls
into the local best optimum, its inertia weight is improved
by combining the actual search situation of the robot in this
paper. The basic idea is as follows: when the distance between
the particle and the target exceeds a certain threshold, w
remains large and the global search is performed; when the
distance between the particle and the target is less than a given
threshold, w uses its fitness value to performs adaptive non-linear
decrement value, fine-grained search and continuously approach
the target point. The sigmoid function in the neural network has
a strong non-linear approximation ability, whose extreme value
ranges between 0 and 1. Since the value of the inertia weight w in
the particle swarm is almost the same, the mapping relationship
is as follows:

g(x) =
2

1+ e−x
− 1, x ≻ 0 (13)
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FIGURE 2 | SVFM obstacle avoidance model.

Then, a function is introduced into a distance-dependent robots
system to adapt the value of inertia weight, and the specific
expression is as follows:

ω =

{

2

1+e−5d/dl
− 1, d = f (i) ≤ dl

0.8, d = f (i) ≻ dl
(14)

where dl is the set distance threshold and d = f (i) is the fitness
value of the robot.

THE FRAMEWORK OF SWARM ROBOT
SEARCH ALGORITHM CONSIDERING
PRACTICAL CONSTRAINTS

On the basis of the ideal multi-target search algorithm framework
in the previous section, in this section, the problems of real-
time obstacle avoidance and distributed communication in the
search process of swarm robots are considered, and a multi-
target search algorithm framework for swarm robots considering
practical constraints is designed.

Simplified Virtual Force Model
Aiming at the obstacle avoidance problem in the multi-target
search process of swarm robots, introducing a simplified virtual
force model can not only perfectly overcome the collision
avoidance problem between robots, but also can be well
integrated with the entire search algorithm framework, and the
performance of the algorithm is also guaranteed.

The Construction of Obstacle Avoidance Model
The idea of this model is described in Figure 2. Supposing that
the position of the i-th robot at time t is Xri(t), the position of the
robot at time t + 1 under the framework of the ideal multi-target
search algorithm is Xri(t+ 1). It is obvious from Figure 2 that the
local path planned by the robot from t to t + 1 will coincide with
the position of the obstacle.

First, find out the position information of two neighboring
obstacles or robots based on the information of obstacles or

neighboring robots detected by the sensor of i-th robot sensor,
which are Xo1 and Xo2 respectively.

Then it is assumed that the robot will be affected by the
virtual introduction fac at the next moment and two neighboring
obstacles or robot repulsion which are fio1 and fio2 respectively.

Now define the rotation matrix TR of the new coordinate
system XOY generated by rotating the xoy coordinate system
counterclockwise by angle a as follows:

TR =

[

cos(a) sin(a)
− sin(a) cos(a)

]

(15)

Set gravity fac as follows:

fac =

[

facx(t)
facy(t)

]

=

[

xi(t)
yi(t)

]

−

[

xi(t + 1)
yi(t + 1)

]

(16)

The rotation matrix parameter a can be expressed as follows:

a = arctan(
facy(t)

facx(t)
) (17)

The force function of a given neighbor obstacle or robot is
as follows:

frep = k1 · (
1

dik
−

1

da
)
2

(18)

where da is the obstacle avoidance distance of the object (static
obstacles, robots, and dynamic obstacles) in the search process,
and dik is the distance between the robot and the obstacle in
the search process, and k1 is the obstacle avoidance parameter
of the robot.

Therefore, the coordinate components of obstacles (robots)
Xo1 and Xo2 to robot i in the XOY coordinate system can be
respectively obtained by the simultaneous equations (15)-(18),
which are as follows:

[

fio1X(t)
fio1Y (t)

]

=

[

cos(a) sin(a)
− sin(a) cos(a)

]

·

[

fio1x(t)
fio1y(t)

]

(19)

or

[

fio2X(t)
fio2Y (t)

]

=

[

cos(a) sin(a)
− sin(a) cos(a)

]

·

[

fio2x(t)
fio2y(t)

]

(20)

where, fio1x and fio1y represent the components of the repulsive
force fio1 in the coordinate system xoy, and fio2x and fio2y
represent the components of the repulsive force fio2 in the
coordinate system xoy. These components can be all obtained by
equation (18).

Finally, only considering the deflection force in the X-axis
direction and ignoring the resistance in the Y-axis direction, the
final motion direction fri of the robot is expressed as follows:







fiXY = fio1X + fio2X
fri = fiXY + fac

vri(t + 1) = vif (t)+ vie(t + 1)
(21)
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where, vri(t + 1) is the actual speed required by the robot at
the next moment, which can be regarded as the vector sum of
the robot state update speed vie(t + 1) at time t + 1 under the
framework of the ideal search algorithm and the deflection speed
vif (t) of the neighboring obstacles in the X-axis direction.

The Strategy of Robot State Step Update

Considering Obstacle Avoidance Constraints
Based on the idea of the SVFM combined with the ideal search
algorithm framework with SVFM, the step size update strategy of
the robot in different search states is given in this section. When
the robot is in the roaming search state, rstate = 0; when the robot
is in the coordinated search state, rstate = 1. The speed step update
strategy of swarm robots in different states is as follows:















vri(t + 1) = Vic(t + 1), rstate = 0 ∩ dij ≻ da
vri(t + 1) = Vie(t + 1), rstate = 1 ∩ dij ≻ da

vri(t + 1) = Vic(t + 1)+ vif (t), rstate = 0 ∩ dij ≤ da
vri(t + 1) = Vie(t + 1)+ vif (t), rstate = 1 ∩ dij ≤ da

(22)

The position update strategy of swarm robots considering
obstacle avoidance constraints is as follows:

x∗ri(t + 1) = xri(t)+ vri(t + 1) (23)

The Distributed Neighborhood
Communication Mechanism Based on
Time-Varying Characteristic 179 Swarm
With Restricted Random Line of Sight
(RS-TVCS)
The Communication Model Based on RS-TVCS
In biological research, perception and communication between
animal groups are often limited by perception distance. For
example, when the Ouqiong bird population flies in formation,
its individuals can only exchange information with neighboring
individuals within its communication radius to form a local
communication network. There is a common neighboring
individual between two individuals, and they cannot directly
communicate and interact. Through sharing the information of
common neighboring individuals, it can spread to the individuals
outside their neighbors to form a global communication network.
Based on this idea, a representation based on distributed
neighborhood communication is defined. The communication-
based neighborhood of robot i is a set of teammates within a fixed
radius dc to the position of robot i, which can be written as (Xue
et al., 2009):

�(ri) =
{

rj∈m,j 6=i,
∥

∥xri − xrj
∥

∥ ≤ dc
}

(24)

where � is the communication-based neighborhood, m is the
number of members in the swarm, and ri denotes the robot
i. xri and xrj are the spatial positions of robots i and j, robots
respectively. dc is the maximum communication radius.

During swarm moving, the neighborhoods may change over
time, causing the whole swarm to be divided into several
dynamically changing sub-swarms. Xue et al. defined those sub-
swarms with the concept of Time-Varying Characteristic Swarm

FIGURE 3 | Schematic diagram of individual neighbor collection.

(TVCS). The TVCS of robot i at time t can be represented as
follows (Junior and Nedjah, 2016):

�(ri)(t) = ri ∪
{

rj∈m,j 6=i,
∥

∥xri(t)− xrj(t)
∥

∥ ≤ dc
}

(25)

where �(ri)(t) represents the TVCS of robot i. The number of
members in a TVCS is dynamically changing, i.e., ri can only
able to communicate with other agents in �(ri)(t) at the time t.
Taking into account the limited field of view in the robot signal
interaction process, Yang et al. (2019) defined a notation of visual
limited TVCS (V-TVCS), which can be written as:

�v(ri)(t) = ri ∪
{

rj∈m,j 6=i,
∥

∥xri(t)− xrj(t)
∥

∥ ≤ dc ∧ ϕi,j ≤
ω

2

}

(26)

where �v(ri)(t) is the V-TVCS. ω is the single of view of i-th
robot, and its sight range is generally set to φi,j ǫ (0, 2π]. φi,j is
the sight judgment vector of robots i and j, which is expressed
as follows:

ϕi,j =
〈

rij(t), vri(t)
〉

(27)

where, rij(t) is the location vector of robots i and j, vri(t) is the
speed vector of the ith robot, and 〈 rij(t), vri(t)〉 is the angle
between vectors rij(t) and vri(t).

Since the line of sight of the robot is not always in the
direction of its speed in the process of motion, it is assumed
that the line of sight of individual robots changes randomly
along the direction of movement in this paper and that the
change law obeys the normal distribution, namely, η ∼ N(0,
σ2), where σ is the standard deviation of the deflection angle of
the line of sight, and the mean value is 0, indicating that the
probability of the individual going straight ahead is greater than
that of information interaction to the diagonal side. Considering
the limitation of the random line of sight of the robot, the
relationship structure diagram of the neighborhood distributed
neighborhood communication based on RS-TVCS designed in
this paper is shown in Figure 3.

The distributed neighborhood communication mechanism
based on RS-TVCS is defined as followed:

�RS(ri)(t) = ri ∪
{

rj∈m,j 6=i,
∥

∥xri(t)− xrj(t)
∥

∥ ≤ dc ∧ ϕi,j ≤
ω

2

}

(28)
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where, the expression of φi,j is as follows:

ϕi,j =
〈

rij(t), LOSri(t)
〉

(29)

where LOSri(t) is the vector of line of sight. When LOSri(t)
= vri(t), it indicates that the line of sight of the robot is
consistent with its moving direction. Therefore, the V-TVCS
distributed communicationmechanism based on V-TVCS is only
a special case of RS-TVCS. RS-TVCS has better scalability and
practicability than V-TVCS.

RS-TVCS Distributed Network Connected Subset

Judgment Based on BFS Algorithm
The global communication network based on the RS-TVCS
will change with the dynamic migration of swarms. Under the
ideal search algorithm framework, it will iteratively change with
the position of the robots, which will make it impossible for
some robots to interact with each other, thus forming connected
subgroups. Therefore, based on graph theory, assuming that the
position of each robot at a certain moment represents a dynamic
node, the connected subgroup of each robot is determined based
on the idea of the breadth first search (BFS) algorithm. Through
this algorithm, the interactive information of each robot under
the entire global communication network based on RS-TVCS
can be obtained, so as to realize the coordinated search of
swarm robots.

The specific ideas are as follows:

1) Taking the position of the robot at time t as the node, the
weight matrix dij is constructed by using the distance between
the two points as follows:

di,j =







0 d1,2 · · · d1,j · · · d1,m
... 0

...
...

...
...

dm,1 dm,2 · · · dm,j · · · 0






(30)

2) Through the neighborhood judgment conditions of equations
(28) and (29), the neighborhood weight matrix is constructed.
When the neighborhood judgment conditions are not satisfied
between the robots i and j, the weight between the two robots
(nodes) is 0; otherwise, the weight between the two robots
(nodes) is Euclidean distance value.

3) Based on the idea of the BFS (Awerbuch and Gallager, 1987;
Jia et al., 2008; Wang et al., 2020) algorithm, all the connected
nodes of the neighborhood weight matrix are found to obtain
the neighborhood communication information of each robot
in the global network.

The Flow of Multi-Target Search Algorithm Swarm

Robots Considering Practical Constraints
Under the ideal multi-target search algorithm framework, the
distributed communication problem in the search environment
is combined with the real-time obstacle avoidance problem. The
flow chart of the multi-target search algorithm for swarm robots
considering practical constraints (i.e., MSRCPC) is shown in
Figure 4.

FIGURE 4 | MSRCPC algorithm flow diagram.

TABLE 2 | The table of MSRCPC algorithm parameter.

Symbol Symbolic meaning Parameter value

m Swarm robotics 10–100

n Search target 1–10

s Signal attenuation factor 0.1

Q Constant power signal 10,000

d0 Sensor maximum detection distance 100

Vm Robot maximum speed 10

α Inertia coefficient 0.4

δ Step size control factor 0.6

dl Adapted distance threshold 100

k1 Obstacle avoidance parameter 0.8

da Obstacle avoidance distance 80

dc Neighborhood communication distance 100

w Robot sight range 150

The main sub-algorithms involved in the proposed algorithm
include NNED roaming search algorithm, IAEPSO coordinated
search algorithm, TRT multi-target task assignment, obstacle
avoidance algorithm based on SVFM, and distributed
communication algorithm based on RS-TVCS. The entire
algorithm framework basically considers all the problems in
the search process of swarm robots, which greatly enhances the
scalability and usability of the algorithm.

SIMULATION

In this section, the proposed MSRCPC algorithm has been
verified by several experiments in Matlab2019a. First, the
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FIGURE 5 | The figure of MSRCPC single-target search. (A) T = 0, (B) T = 40, (C) T = 80, (D) T = 124.

MSRCPC algorithm is described in detail by simulating the
search behavior of swarm robots in single-target environments
and multi-target environments. Then, four multi-target search
comparison modes are set up, and the simulation tests are
carried out 30 times by using different modes simulation tests
30 times under different group sizes. The effectiveness of the
MSRCPC algorithm is verified by comparing and analyzing the
simulation results.

The MSRCPC Algorithm Test
In this part, the basic parameter settings of the MSRCPC
algorithm are shown in Table 2.

With constant basic parameters, the algorithm is applied to
single-target and multi-target simulation environments. In view

of the randomness of the algorithm, an algorithm search process
is randomly recorded to describe the searchmechanism and show
the performance of the algorithm in detail.

The Single-Target Search Test in Unknown Complex

Environments
The initial environment settings of the swarm robotics single-
target search simulation for swarm robots are shown in
Figure 5A. As shown in Figure 5A, at T = 0, swarm robots are
distributed in the corners of the search space, represented by red
dots. The position of the target to be searched is set in the middle
of the search space, represented by a black regular hexagon.
The various black shapes in the figure represent obstacles in
the search space. For the robot, the maximum speed is 10, the
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FIGURE 6 | MSRCPC single-target search path simulation diagram.

direction of its initial speed is random, the communication range
is limited to 150 degrees, and the direction of moving speed is
inconsistent with the direction of the line of sight, and meets
the communication conditions of robot in RS-TVCS. Since the
robot does not detect the target signal at the initial moment,
the NNED algorithm is used to perform random search and
diffusion. When T = 40, the robot still does not detect the target
signal point, and the NNED algorithm continues to be used
to randomize, as shown in Figure 5B. As shown in Figure 5C,
at T = 80, the No. 1 robot detects the target signal, and then
based on the RS-TVCS algorithm proposed in this paper, the
number of the robots is learned that can communicate, and the
group communication is conducted to form sub swarms. The
robot that can detect the target signal through group information
sharing switches from the roaming search state to the coordinated
search state, and uses the IAEPSO algorithm to coordinate the
search for the target point. Finally, as shown in Figure 5D, at
T = 128, the robots numbered 5, 6, 7, 8, 9, 11, and 12 basically
converge to the target point, and the target search is successful.
The simulation search process with the MSRCPC algorithm
can basically be divided into two stages: roaming search and
coordinated search.

The search path of the robot recorded in this single-target
simulation is shown in Figure 6, and it can be seen that the
MSRCPC algorithm can not only search for targets quickly and
accurately, but also can intelligently avoid obstacles, and has good
cluster avoidance performance.

The Multi-Target Search Test in Unknown Complex

Environments
Given that the initial number of robots is 30 and the number of
targets is 5, other algorithm parameters are consistent with those

of the single-target search algorithm in the previous section. The
specific simulation search process is shown in Figures 7A–D.

In Figure 7A, at T = 0, the drone swarm is randomly
distributed at 200 × 200 unit positions in the search space,
and the target points are randomly distributed in the 1,000 ×

1,000 search space. The black irregular shape represents the
obstacles in the search environment, and the proposed RS-TVCS
method is adopted by the robot group to communicate. Based
on the RS-TVCS communication rules, using the BFS algorithm,
it can be known that at T = 0, the 30 robots are neighbors
and can maintain information sharing. As shown in Figure 1,
the 30 fan-shaped shared areas of the robots are group global
communication area of the robot group. The robot does not
detect the target signal in the global communication area, and
the robot is in a roaming search state, that is, it uses the NNED
algorithm to perform a roaming search at its maximum speed.

In Figure 7B, when T = 87, some robots detect the No. 2
target signal and the No. 3 target signal. At this time, the robots
in the RS-TVCS global communication neighborhood share local
information, and then perform target assignment based on the
TRTmodel to form a subgroup alliance and enter the coordinated
search state. However, the robots that fail to communicate with
their subgroups continue to maintain the roaming search state
and perform roaming searches. In addition, the No. 4 robot
detects the No. 2 target signal and the No. 13 robot detects
the No. 3 target signal. Based on the RS-TVCS neighborhood
communication algorithm, it can be seen that the robots 6, 8,
9, 11, 17, 21, 24, and 29 that share information with the No.
4 robot form a subgroup alliance. Their state changes to the
coordinated search state, and then a collaborative search will be
conducted on the No. 3 target. In the same way, the No. 29
robot that shares information with the No. 13 robot forms a
subgroup alliance, and then performs an accurate collaborative
search on the No. 3 target. Since the remaining robots cannot
communicate with the two subgroup alliances, or detect the
target signal, they continue to maintain the roaming search state
for random diffusion.

As shown in Figure 7C, when the MSRCPC algorithm iterate
to T = 123, the subgroup alliances that perform a coordinated
search on the targets No. 2 and No. 3 converge to the vicinity of
targets No. 2 and No. 3, respectively, and the search for targets
No. 2 and No. 3 succeeds. At the same time, the search target
information disappears, and the subgroup alliance is disbanded.
The formation of robot is the No. 9 robot and the No. 26
robot detect the signal of the No. 1 target and the No. 5 target,
respectively. Similarly, according to the solution of the RS-TVCS
distributed communication model, it can be seen that 8 robots
(2, 18, etc.), which can share information with the No. 9 robot
form a subgroup alliance to conduct a collaborative search for
the No. 1 target, while the No. 26 robot that fails to interact
with other robots cannot obtain communication and maintains
a coordinated search alone. In addition, the remaining individual
robots that fail to communicate with the target groups No. 1 and
No. 5 continue to roam and search using the NNED algorithm.

Finally, as shown in Figure 7D, at T = 186, the robots
successfully detect the No. 4 target, and the search of swarm
robots ends.
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FIGURE 7 | The figure of MSRCPC multi-target search. (A) T = 0, (B) T = 87, (C) T = 123, (D) T = 186.

TABLE 3 | The four search algorithm mode table.

Mode Task allocation Roaming search Coordinated search Obstacle avoidance Distributed communication

Mode1 ITRT NNED EPSO SVFM v–TVCS

Mode2 ITRT NNED IABA SVFM v-TVCS

Mode3 ITRT NNED IAEPSO SVFM v-TVCS

Mode4 ITRT NNED IAEPSO SVFM RS-TVCS

The Simulation Analysis of the MSRCPC Algorithm
In the test of the single-target and multi-target search process,
the MSRCPC algorithm proposed in this paper has the following
advantages. (1) The search process of the algorithm mainly

includes roaming search processes and coordinated search
processes. In the roaming search process, the robot cannot
obtain the prior information of the target, and spreads the
search space at the fastest speed; in the coordinated search
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FIGURE 8 | (A) Searching time T and (B) total energy consumption S of the swarm robotics system.

TABLE 4 | System performance comparison statistics table of four search modes.

Swarm size Search T S

model Max Mean Min Max Mean Min

20 Mode1 845 771.234 765 6.091E + 04 5.876E + 04 5.491E + 04

Mode2 786 763.541 698 4.871E + 04 4.791E + 04 4.469E + 04

Mode3 754 737.421 712 4.452E + 04 4.912E + 04 5.367E + 04

Mode4 707 675.741 674 4.087E + 04 4.178E + 04 4.619E + 04

40 Mode1 746 698.39 678 7.189E + 04 6.654E + 04 6.291E + 04

Mode2 645 645.48 610 5.908E + 04 5.769E + 04 5.491E + 04

Mode3 631 654.31 631 6.598E + 04 6.235E + 04 5.561E + 04

Mode4 607 587.431 571 5.798E + 04 5.668E + 04 5.247E + 04

60 Mode1 639 619.361 591 8.271E + 04 8.018E + 04 7.789E + 04

Mode2 579 550.189 547 6.154E + 04 5.789E + 04 5.554E + 04

Mode3 619 576.981 539 7.981E + 04 7.467E + 04 7.086E + 04

Mode4 520 504.861 476 7.234E + 04 6.967E + 04 6.431E + 04

80 Mode1 581 543.187 538 8.913E + 04 8.761E + 04 8.531E + 04

Mode2 489 471.67 468 8.318E + 04 7.971E + 04 7.689E + 04

Mode3 549 518.60 471 8.241E + 04 7.987E + 04 7.618E + 04

Mode4 459 449.356 423 8.089E + 04 7.709E + 04 7.136E + 04

100 Mode1 471 451.61 406 1.109E + 05 9.971E + 04 9.012E + 04

Mode2 389 368.071 319 1.012E + 04 9.456E + 04 8.956E + 04

Mode3 397 369.178 365 9.780E + 04 9.438E + 04 9.129E + 04

Mode4 368 326.678 306 9.109E + 04 8.754E + 04 8.497E + 04

process, by obtaining the target information, the robots are
determined by the RS-TVCS communication interaction model
in the global communication range, and then the sub-group
alliances approach the optimal position of the target point
based on the group optimal information and individual optimal
information in the IAEPSO algorithm. (2) Self-organization and

adaptability are embodied in the process of the target search of
swarm robots. In the process of target searching, swarm robots
adaptively transform their own state by acquiring information
of the external environment or sharing local information and
participating in task collaboration. (3) The intelligence of swarm
robots in the target search process is also reflected. In the process
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of roaming search and coordinated search, individual robots can
realize intelligent obstacle avoidance by sensing the information
of the external environment and successfully avoiding obstacles.
In order to verify the performance of the MSRCPC algorithm, a
series of comparative experiments are carried out in the next part.

Comparison and Discussion of MSRCPC
Algorithm Simulation
In this part, the four sets of comparison modes are set up to
further verify the superiority of the MSRCPC algorithm based
on the multi-target search framework of the finite state machine.
The settings of the four comparative search models are shown in
Table 3.

Based on its framework, the search algorithm is divided
into the following five parts, namely, multi-target task
allocation model, roaming search algorithm, coordinated
search algorithm, cluster obstacle avoidance, and distributed
communication model.

For Mode 1, the NNED algorithm is adopted for roaming
search, the traditional TRT model is used to assign tasks to the
target, the EPSO algorithm proposed in Gudise (2004) is applied
to coordinated search, the 2D-SVFM model (Xinjie, 2020) is
applied to group obstacle avoidance, and the V-TVCS model
proposed in Yang et al. (2019) is used for robot communication.
For Mode 2, the IABA algorithm proposed in Tang et al.
(2020) is applied to the robot coordinated search, and the other
sub-algorithms remain constant. For Mode 3, the proposed
IAEPSO algorithm is applied to the robot coordinated search,
and the remaining sub-algorithms remain unchanged. For Mode
4, the proposed MSRCPC algorithm is used to set up the
search experiment.

When the number of targets in the search environment of
swarm robots is 10, by changing the number of swarm robots,
these four modes were used to conduct 30 simulation search
experiments. The change of the search path S and the mean value
of the search time T of the swarm robots with the population
number is shown in Figure 8; Table 4.

It can be seen from Figure 8; Table 4 that when the number
of constant search targets is 10, as the scale of the swarm
robots increases, the search time of the swarm robot system will
decrease, but the system energy consumption of the swarm robots
will increase. Therefore, we are surprised to find that how to
balance the search time and energy consumption of the entire
system by balancing the scale of swarm robots is a basic problem
in the practical application of swarm robot systems.

By comparingMode 3 withMode 1 andMode 2, it can be seen
that in the entire multi-target search framework, the proposed
IAEPSO coordinated search algorithm has better performance
than EPSO and IABA algorithms in different population sizes.
The main reason is that the adaptive inertia weight set by the
IAEPSO algorithm can satisfy the coordinated search behavior
of the robot. However, when the target signal exceeds a certain
threshold, the robot has a larger inertia weight and can conduct
a large-scale coordinated search. When the target signal is less
than a certain threshold, in order to avoid the robot oscillating
around the target, the algorithm can adaptively adjust the motion
behavior of the robot to avoid the oscillation of the path, thereby
reducing system energy consumption.

From the performance comparison curves of Mode 4 and
Mode 3, it can be seen that in the case of the other sub-algorithms
being the same, the search performance of swarm robots using
the RS-TVCS distributed communication algorithm is better
than that of Mode 3. The main reason is that the RS-TVCS
distributed neighborhood communication model can meet the
communication interaction performance of actual swarm robots.
Using the RS-TVCS model in the process of forming subgroup
alliances will make the configuration of the robot members
within eachmember more reasonable, which can greatly improve
the utilization of robot members and provide a more efficient
search for the entire algorithm framework.

All in all, compared with the first three modes, the search
performance of the swarm robotics can be improved by at least
25 by using the proposed MSRCPC algorithm (Mode 4).

CONCLUSION

The multi-target search problem of swarm robots in unknown
complex environments is studied in this paper. The main
innovations are as follows. (1) Aiming at the target search
problem of swarm robots in actual environments, a target
search framework based on a finite state machine is proposed.
The proposed framework can not only solve the single-
target search problem, but also solve the multi-target search
problem, which improves the applicability of this algorithm
in actual search scenarios. (2) In this algorithm, the problem
of cluster obstacle avoidance is considered as a problem in
the actual search environment, and the intelligence of cluster
search for the robot is reflected. (3) In order to solve the
distributed communication interaction problem in the unknown
environments, by considering the random communication
between individual robots and the limited visual area, a RS-TVCS
model is proposed, which overcomes the shortcomings of the
V-TVCS communication model.

Simulation analysis and comparison experiments show that
this proposed algorithm has good search performance and strong
scalability and stability, and can adapt to any search environment.
In addition, we find, surprisingly, that the balance of search
performance of the swarm robot system is related to the number
of swarm robots. Therefore, how to balance the search path and
search time of swarm robot systems by setting a certain number
of swarm robots is the focus of further research.
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