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To control highly-dynamic compliant motions such as running or hopping, vertebrates

rely on reflexes and Central Pattern Generators (CPGs) as core strategies. However,

decoding how much each strategy contributes to the control and how they are adjusted

under different conditions is still a major challenge. To help solve this question, the

present paper provides a comprehensive comparison of reflexes, CPGs and a commonly

used combination of the two applied to a biomimetic robot. It leverages recent findings

indicating that in mammals both control principles act within a low-dimensional control

submanifold. This substantially reduces the search space of parameters and enables the

quantifiable comparison of the different control strategies. The chosenmetrics are motion

stability and energy efficiency, both key aspects for the evolution of the central nervous

system. We find that neither for stability nor energy efficiency it is favorable to apply the

state-of-the-art approach of a continuously feedback-adapted CPG. In both aspects, a

pure reflex is more effective, but the pure CPG allows easy signal alteration when needed.

Additionally, the hardware experiments clearly show that the shape of a control signal has

a strong influence on energy efficiency, while previous research usually only focused on

frequency alignment. Both findings suggest that currently used methods to combine

the advantages of reflexes and CPGs can be improved. In future research, possible

combinations of the control strategies should be reconsidered, specifically including the

modulation of the control signal’s shape. For this endeavor, the presented setup provides

a valuable benchmark framework to enable the quantitative comparison of different

bioinspired control principles.
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1. INTRODUCTION

It is one of the longest standing goals of neuroscience to decode
how the mammalian central nervous system (CNS) controls
locomotion. Until the beginning of the twentieth century, it was
widely assumed that such locomotion was purely triggered and
controlled by sensory feedback in the form of reflexes. Brown
(1911) questioned this assumption and proposed instead the
presence of what is now known as Central Pattern Generators
(CPGs): coordinated patterns of periodic activity that emerge
without periodic input from sensory feedback from higher
control centers (Ijspeert, 2008). With time, experiments have
supported the notion that both control mechanisms, reflexes
and CPGs, are important to control highly-dynamic compliant
movements in all limbs (Ivanenko et al., 2006), even when they
are not primarily used for locomotion (Zehr and Chua, 2000).
Thereby sensory information is not only essential for the reflex
control, but is also necessary to adapt the oscillations of CPGs to
body motion, especially during unexpected disturbances (Mellen
et al., 1995; Rossignol et al., 2000; Raibert et al., 2008). However,
the degree to which reflexes and CPGs influence the control
of highly-dynamic compliant movements is still a fundamental
open question in neurosience.

In the ongoing quest to understand biological control
mechanisms, we can seek inspiration from modern control
approaches that have been engineered for robots that mimic the
dynamics of the mammalian locomotor system. Robotic control
theory comprises a range of well-tested analytical frameworks
that can help to analyze bioplausible control approaches. This can
provide useful insights into how the brain implements different
control principles (Pearson et al., 2006; Jagacinski and Flach,
2018; Stratmann et al., 2018). In simplified technological terms,
a pure reflex controller can be regarded as a static state feedback
controller, while pure CPG control translates to a time-based
feedforward strategy. In this form, both control approaches have
been longstanding subjects to robotic investigations of limit
cycle motions, mainly applied to quadrupedal (Tsujita et al.,
2001; Ferreira et al., 2015) and bipedal locomotion (Endo et al.,
2004; Liu et al., 2019). However, only more recently have these
approaches been applied to biomimetic models that take into
account the major constraints of the CNS.

In contrast to static walking, where a system is always
supported by a stable base of at least three legs, highly-
dynamic gaits, such as running or hopping, rely on continuous
movements to achieve stable motions. The leg is not only
regarded as an inverted pendulum, but additionally incorporates
an elastic element, i.e., a spring, which allows the system to
take advantage of intrinsic mechanical dynamics for stability
and robustness (Maus et al., 2010). As multiple studies based
on such spring-loaded inverted pendulums have shown (Schwab
and Wisse, 2001; Seyfarth et al., 2003), passive dynamic walkers
can withstand small disturbances even without the need of
any control when properly designed. But in order to recreate
the mammalian flexibility to adjust their motions or to react
to disturbances, control mechanisms are necessary. A reflex as
pure feedback control is the simplest control extension and

can achieve relatively stable and adaptive locomotion in bipedal
robots (Manoonpong et al., 2007). Taking into account the
constraints of the CNS, Geyer and Herr (2010) proposed a
more realistic neuro-musculoskeletal model for a compliant
system that was driven solely by bioplausible reflex loops. In
simulations, the system was able to resist disturbances without
a CPG component. However, the research also showed that when
relying only on feedback control deliberate gait modifications are
challenging, i.e., modulating the gait by changing speed or step
length, thus limiting the flexibility of pure reflex control. Such
gait modulations become easier when the CPG component is
added to the proposed neuro-musculoskeletal model as proposed
by Dzeladini et al. (2014) and applied to a bipedal model by
Greiner et al. (2018). While the application of this control
strategy leads to promising results in theory (Greiner et al.,
2018), it also becomes clear that tuning the many involved
control parameters of this complex model is a tedious task,
which requires prior optimizations with computationally high
efforts. It still remains unclear how each parameter or even the
CPG and reflex component in general contribute to stable and
adaptable limit cycle motions. In which scenario is each of the
two control approaches more beneficial? And what parameters
must be adapted in different situations, e.g., frequency or wave
form of the control signal?

To better understand the contribution of reflexes and
CPGs during highly-dynamic movements, the present paper
quantitatively compares these two control mechanisms from a
functional point of view. As simple example, we regard a single
compliant leg hopping forward as a basic form of a highly-
dynamic limit cycle motion. We further simplify the complex
interplay of all sensory input and motor output for individual
joints by harvesting from the recent findings of Santello et al.
(2016) how the CNS reduces the dimensionality of motor
control signals by synergies. As mentioned by Del Vecchio et al.
(2019), such dimensionality reduction simplifies the size of the
search space that must be covered. Research by Lakatos et al.
(2013, 2014) has shown how this concept can be put into an
algorithm to control compliant limit cycle motions in robots
in an energy-optimal way (Stratmann et al., 2016b). Stratmann
et al. (2016a, 2018) also showed that the same principle is
likely used by the CNS. For the comparison of the bioinspired
control strategies, we are specifically interested to see how
increasing levels of sensory information affect the performance
of biomimetic systems. Thus, we apply a pure CPG, an adaptive
CPG shaped by sensory feedback, and a pure reflex controller in
the one-dimensional control space to the biomimetic robotic leg.
We evaluate the performance of the biomimetic leg under each
control approach in varying environment conditions regarding
performance measures that are essential for the evolution
of mammalian motion control, namely, stability and energy
efficiency. To better understand the causes of the observed
effects under the different control strategies, we study the system
with increasing nuisance factors, i.e., stronger disturbances and
higher loads. In the first step, we analyze the system by means
of a multi-body simulation, in which the control signals are
applied in an idealized manner. Following, the controllers are

Frontiers in Neurorobotics | www.frontiersin.org 2 December 2021 | Volume 15 | Article 762431

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Schmidt et al. Benchmark Comparison of Biological Control Strategies

applied to a corresponding hardware setup including effects of
actuator dynamics, realistic noise, and further constraints of real
mechanical systems.

The contribution of the research presented in this paper
is manyfold: First, we identify how reflexes and CPGs
contribute to control highly-dynamicmovements under different
environmental conditions. This offers a guideline for future
work to develop a strategy for bioinspired robots that unites the
advantages of reflexes and CPGs, which can possibly improve
current approaches for locomotion control. Second, the proposed
method of comparison provides a benchmark case to which
newly developed bioinspired control strategies can be compared
to. Third, our results imply that adaptive CPGs must carefully
adapt their oscillation shape to create meaningful body motion,
which suggests a reevaluation of current mathematical CPG
models that are usually designed to adapt only the control signal
frequency. Fourth, due to the functional similarity of the tested
controllers and biomimetic system to the biological counterparts,
the findings might be able to trigger new bioplausible hypotheses
about when reflexes and CPGs are active in mammals.

2. METHOD

To quantify the benefits that different biological control concepts
provide during highly-dynamic compliant movements in
changing environmental conditions, bioinspired controllers
with increasing levels of sensory feedback were implemented
to command a biomimetic robot leg. The system was analyzed
in idealized simulation conditions as well as in experiments
with corresponding robotic hardware to better understand the
influence of each controller. In both cases, two changing
environmental influences were applied to quantify the
controllers’ performance: First, we studied a fall from varying
heights to analyze the controller’s ability to recover to a limit
cycle. Second, additional loads were applied to judge how
efficiently each controller could insert energy into a system with
changing dynamics. In the following, the model of the robot and
the controllers are explained and the simulation and hardware
setup are introduced. Additionally, the applied conditions and
the metrics used for comparison are defined.

2.1. Biomimetic Robot Leg
Especially during highly-dynamic movements, the CNS of
mammals must efficiently orchestrate the coordination of
multiple joints of one limb and be able to quickly react to external
changes. To understand the underlying control principles that
allow this joint coordination, this work regards a simplified
scenario of one single biomimetic robotic leg during hopping.
The leg chosen as test platform is part of the compliant
quadruped robot Bert (Lakatos et al., 2018) developed at the
German Aerospace Center (DLR). It had already served as test
bed for investigations on compliant mechanisms and bioinspired
control previously (Lakatos et al., 2015; Stratmann et al., 2016b)
and will allow for easy extension of the investigated concepts
on locomotion in the future. The investigated control principles
were applied to the leg in an idealized multi-body simulation
implemented in Gazebo (cf. Figure 1A, section 2.1.1) as well as

in a corresponding hardware setup to take into account realistic
nuisance (cf. Figure 1B, section 2.1.2). In both cases, the upper
body of the individual leg was considered to be a floating base
that can freely translate, but was fixed in all rotational axes. This
assumption was made because, as part of a complete (biological)
quadruped, a leg is typically likewise constrained through the
attachment to the trunk.

The floating base position was described by xbxbxb = (xb1, xb2)
T ∈

R
2. The leg attached to the base was composed of two serial links

both with a length of 0.08m connected by rotational compliant
joints. The revolute joint between the base and the upper link
was denoted as hip, while the connecting joint between the upper
and lower link was defined to be the knee. The joint angles
are denoted q1 and q2 for the hip and knee, respectively, and
directions were defined as shown in Figure 1. The initial position
of the system was defined to be at qqq0 = (−0.7, 0.7)T rad. The
system coordinates are summarized by xxx = (xbxbxb

T ,qqqT)T ∈ R
4.

The two joints can be moved independently, each individually
driven by a serial elastic actuator (SEA) with a stiffness k. The
SEA of the hip was directly connected to the upper link, while
the SEA for the knee was fixed in the upper part of the base and
linked to the lower link via belt drives (cf. Figure 1). Deviating
the SEAs in each joint by an angle θ1,2 generated a torque in
the corresponding joint. The algorithms that derive the control
signal θθθ will be explained in detail in section 2.2. The complete
dynamics of the system can be summarized by

MMM(xxx)ẍ̈ẍx+CCC(xxx, ẋ̇ẋx)ẋ̇ẋx+ ggg(xxx) =

(

0
k(θθθ − qqq)− c q̇̇q̇q

)

+ τττ contact (1)

where MMM(xxx) denotes the symmetric positive inertia matrix,
CCC(xxx, ẋ̇ẋx) the generalized Coriolis and centrifugal matrix, and
ggg(xxx) the gravitational forces. The generalized external forces are
summarized by τττ contact . For more details refer to Lakatos et al.
(2018).

2.1.1. Simulation

As a platform for the idealized multi-body simulation of the
system, the Neurorobotics Platform (NRP) developed within
the Human Brain Project (Albanese et al., 2017) was chosen.
Using the NRP allows the implementation and comparison of
the technical bioinspired controllers with more sophisticated
biological counterparts in future research. The underlying
simulation framework used by the NRP was Gazebo 9.8.0 with
ROS melodic. The NRP integrates a Python-based closed-loop
engine that synchronizes the physics simulation with the high-
level control implemented in Python after each global NRP
timestep (Hinkel et al., 2017). As simulation parameters, the NRP
default settings were used with a time step of 0.001 s for the
Gazebo physics engine and 0.02 s as global NRP step to update
the controller models.

The robot was implemented as a multi-body system according
to the above explained definitions. The floating base is
constrained accordingly in all rotation axes and only able
to translate vertically and horizontally. In line with previous
simulations of the biomimetic leg carried out by Stratmann
et al. (2016b), the mass of the floating base was set to 0.49 kg.
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FIGURE 1 | Stability and energy efficiency are analyzed by means of a

biomimetic robotic hopper in simulation (A) and hardware (B). The hopper

consists of a floating base with two links connected by compliant joints. The

hip (q1) and knee joint (q2) are independently driven by series elastic actuators,

implying that the rotation of either joint does not affect the other joint. The

beige circle indicates the knee motor location, the green one the hip motor.

Angles are defined clockwise relative to vertically extended links.

The masses of the upper and lower leg link were set to 0.059
and 0.038 kg, respectively. The stiffness k for the SEA was set
to be 1.46Nm rad−1. Additionally, a damping factor of c =

0.0219 Nm s rad−1 was added in the two joints to account for
friction occurring in the real robot. The friction between the
robot foot and the ground was defined as µ = 1.0. Researchers
who want to replicate the simulation can find the model as
template experiment on the openly accessible NRP1. For the
idealized simulation scenario, control signals of the different
controllers were applied instantaneously as joint torques without
taking into account motor dynamics or other delay.

In each simulation, the robotic leg was initialized at a base
height of 20 cm above the ground or obstacle. At simulation
start, the hopper dropped and started jumping forward driven
by one of the investigated controllers. All simulations were
repeated 10 times to average out non-deterministic effects due to
synchronization of the different sampling times in the NRP.

2.1.2. Hardware

For the hardware experiments, the biomimetic robotic hopper
described by Lakatos et al. (2018) was used. It had a total mass
of 0.562 kg and the SEA stiffness was measured to be k ≈

2 Nm rad−1. To realize the mentioned rotational constraints,
the base was attached to a boom so that it could freely jump
vertically and move horizontally in a circle around a fixed center
(cf. Figure 2A). Due to a limited range of motion in the physical
system, the defined initial position of the joints was adjusted to
q0q0q0 = (−0.61, 0.61)T rad. Sensors in each joint measured the link
positions qqq and motor positions θθθ . A sensor in the boom joint
measured jump height and horizontal position.

1https://neurorobotics.net/index.html

FIGURE 2 | (A) In the experimental hardware setup, the robotic hopper is

attached to a boom to realize the floating base. (B) In the fall scenario the

hopper is initialized on a plateau. The gap between the plateau pieces did not

cause any disturbance. (C) For the analysis of energy efficiency, an increasing

load in form of weights is attached to the system.

For the control and communication infrastructure it was
chosen to use proprietary DLR software, despite the fact that
the NRP had been designed to easily replace a robot simulation
with corresponding hardware. This feature makes the NRP a
sophisticated tool to investigate bioinspired control strategies,
especially when considering bioplausibe neuron models, but in
the present line of research we were not able to take advantage
of this characteristic. Since the proprietary communication
infrastructure had already been implemented with the robot
and was tested to be robust, it was preferred over a new
integration with the ROS interface that is used by the NRP.While
this entailed that the investigated controllers had to be coded
twice, the implementations were mathematically equivalent for
the simulation and the hardware experiments and the results
are thus comparable. For the experiments, the bioinspired
controllers were implemented in aMatlab Simulinkmodel, which
communicated with the hardware in a 1 kHz control cycle. The
commanded and measured link and motor positions, as well as
the boom sensor measurements, were also recorded at 1 kHz.
The low-level control of each individual SEA motor was realized
through PD-control, where the proportional term had a gain of
P = 55 and the derivative termwas set to zero in the experiments.

At the beginning of the experiment, the joint sensors were
calibrated once, while the boom sensor was calibrated before
each new test condition. For both calibrations, the robot legs
were extended straight down, such that qqq = (0, 0)T . At the
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beginning of each trial, the system was placed at the same
position indicated by a marker on the floor (cf. Figure 2C). The
experiment was started from a resting equilibrium position. To
ensure repeatability, each trial was repeated three times.

2.2. Controller Design
For high-level control, different bioinspired controllers with
a varying balance between intrinsic CPG-based oscillation
and reflexive sensory feedback were implemented. Established
control models were used that can be regarded as simplified
implementations of the biological principles reflecting the
main characteristics of reflex control and CPGs as well as a
combination of both.

2.2.1. Control Space

As previously mentioned, this work leverages the findings by
Santello et al. (2016) that the mammalian CNS reduces the
dimensionality of motor control signals. Recent insights gained
through simulations (Stratmann et al., 2016a) support this
hypothesis, possibly pointing to a pathway in the CNS that
realizes such a dimensionality reduction. Such a reduction of
sensory input of multiple joints to a lower-dimensional control
space simplifies the control problem and reduces the parameter
space to be considered. Simultaneously, robotic experiments with
a functionally analog dimensionality reduction have shown that
essential motion properties such as movement stability (Lakatos
et al., 2013) and energy optimality (Stratmann et al., 2016b) are
maintained with this approach.

In this work, the transformation from the multi-DOF joint
space to the 1D control manifold and back to the joints was
carried out by means of an adaptable weight vector w in IRn,
where n denotes the number of actuated joints. This allows in the
first step the reduction of the sensory input from all joints, i.e.,
the joint torques τττ , to a combined scalar feedback signal,

τz =
wwwT

||www||
τττ . (2)

This feedback signal τz combines information about all joints
and can be used to derive the control signal θz according to
the different bioinspired control strategies (reflex or CPG) as
described in the following subsections. The one-dimensional
control signal is then mapped back to the joint space using the
same transformation weights according to

θθθ =
www

||www||
θz . (3)

The signal θi is then commanded to the corresponding ith joint to
drive the joint motion. Thus, the implementation of the different
bioinspired control mechanisms in the one-dimensional control
space allows the quantifiable comparison of the investigated
strategies. Here, the weights were set constant to focus on the
effect of the different control strategies. Previous work (Lakatos
et al., 2013; Stratmann et al., 2016b) described how to choose and
adapt the modal weightswww to changing environments.

2.2.2. Reflex Control

A pure reflex forwards sensory information directly toward
motor output. In mammals, this reflex is usually triggered by
cutaneous or load receptors (Bastiaanse et al., 2000; Nielsen and
Sinkjaer, 2002) and has also been implemented in this way in
different robots using contact sensors to trigger the control signal
(Manoonpong et al., 2007; Zhao et al., 2020). Nevertheless, this
implementation approach was not used in this work, mainly
due to hardware limitations at the point of experimentation,
where a contact sensor was not available. Instead, we used the
approach previously presented by Lakatos et al. (2013), in which
a bang-bang controller was triggered when crossing a certain
torque threshold in the joints. However, the concept of using
either a contact sensor or the joint torques to trigger the reflex
response are functionally equivalent, because the joint torques
proportionally depend on the contact forces during stance phase.
For our implemented reflex controller, the joint torque is a
function of the motor coordinate θθθ and the joint state qqq and
depends on the stiffness k of the SEA spring, which was defined
in section 2.1:

τττ = k(θθθ − qqq) . (4)

The torque is transformed from the higher dimensional joint
space, onto the 1D control signal according to Equation (2). The
combined feedback signal τz is then compared to a threshold
value ǫτ to trigger the control signal θz of constant amplitude:

θz =











+ θ̂z if τz > ǫτ

0 if − ǫτ ≤ τz ≤ ǫτ

− θ̂z if τz < − ǫτ

. (5)

The control signal θz is then mapped back into joint space as
described in Equation (3) and applied to drive the position of the
SEA in each joint. It is important to note that in contrast to the
work of Lakatos et al. (2013) the torque threshold was tuned in
such a way that it was not crossed during the flight phase, thus
only triggering the reflex during the stance phase.

In order to prove that the chosen approach to implement a
reflex is indeed functionally equivalent to the control method
based on contact sensing, for the simulations we additionally
implemented the reflex as proposed by Zhao et al. (2020). As
described in Equation 9 of their paper, we triggered the control
signal θz based on perceived ground contact plus a given time
delay. We exemplary carried out the simulations for the fall
condition with this reflex trigger to show that both approaches
lead to the same fundamental behavior. All other simulations
and the experiments were carried out using the method based on
Lakatos et al. (2013) described by Equations (4) and (5).

2.2.3. CPG Control

To replicate the working principle of a CPG, we implemented
the control model proposed by Matsuoka (1985) and Matsuoka
(1987), which is one of the most widely used methods in robotics
and computational neuroscience (Yu et al., 2013). It implements
two reciprocal inhibiting oscillators, of which one is usually
controlling an extensor unit, the other one a flexor unit.While the
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investigated leg model is not actuated by antagonistic actuators,
the flexor unit is active when the leg lowers down to the ground
and the extensor unit drives the upwards motion to jump. Each
oscillator is governed by the following set of equations:

τuu̇
{e,f } = −u{e,f } + wfey

{f ,e} − βv{e,f } + u0 + Feed{e,f }

τvv̇
{e,f } = −v{e,f } + y{e,f }

y{e,f } = max(u{e,f }, 0)

θz = −y{e} + y{f } .

(6)

The superscripts e and f correspond to the extensor and flexor
unit, respectively. The outputs y{e,f } of the two units depend on
the inner state u{e,f } and the degree of self-inhibition v{e,f } in each
unit scaled by β . The connection strength of the two oscillating
units is defined by wfe. Through the tonic input u0 a constant
drive is induced to the CPG. For a pure CPG control, where the
signal is not shaped by feedback of the system, the variable Feed
was set to zero. To take into consideration the control possibility
in which the CPG is adapted by means of sensory feedback, the
Feed variable can be added. This combines the influence of the
feedforward CPG approach with the state-based reflex. To allow
a valid comparison with the reflex, the previously mentioned
scalar feedback variable τz was used here as state variable of the
mechanical system. The degree of entrainment with the sensory
feedback could be adjusted by the gain h.

Feed{e} = −Feed{f } =

{

h τz if ‘CPG+sensory input’

0 if ‘pure CPG’
. (7)

Due to the reciprocal inhibition, the feedback of the two
oscillation units needed to be opposite in sign. Identical to the
reflex controller, the 1D control signal θz that is commanded in
the latent space was transformed according to Equation (3) to
drive the SEA in the knee and hip joint.

2.3. Controller Tuning
With the above mentioned methods, three bioinspired control
algorithms were implemented on the biomimetic leg in this work:
(1) the reflex representing control solely dependent on sensory
information, (2) a CPG including feedback to shape the control
signal, thus functioning as adaptive oscillator, and (3) a pure
CPG without sensory feedback to completely exclude sensory
modulation of the intrinsic CPG oscillation (nF-CPG).

The inclusion of feedback means that the reflex and adaptive
CPG will automatically adjust to match the inherent frequency
of the mechanical system. However, the nF-CPG needs to
be tuned manually to match the intrinsic dynamics of the
mechanics. Only then can a fair comparison between the different
control strategies be drawn. To achieve this, all controllers were
empirically tuned to obtain a similar hopping trajectory for
the default system without applied environment changes. The
corresponding parameter values for all controllers are shown
in Table 1. With these parameters, a visually similar hopping
motion of the biomimetic leg could be generated with all
implemented bioinspired control methods in both the simulation

TABLE 1 | Parameter values used for the tested controllers.

Reflex CPG nF-CPG

Param Value Param Value Param Value

θ̂z ±0.45 (0.23) τu 0.04 τu 0.045

ǫτ 0.3 τv 0.08 τv 0.09 (0.08)

β 2.5 β 2.5

wfe -2 wfe -2

w1 -0.5 u0 0.4 (0.2) u0 0.6

w2 1.0 h 0.3 h 0

The values in brackets differed in the hardware setup from the simulations. Weighting w1,2

is applied to all controllers.

and the hardware setup. In simulation, the biomimetic leg was
hopping with a similar frequency with all applied bioinspired
control strategies. The pure reflex controller and the nF-CPG
led to a hopping frequency of 3.12 and 3.13 Hz, respectively,
while the frequency with the modulated CPG was 3.2 Hz.
As previously mentioned, to prove functional equivalence of
our reflex implementation with the more bioplausible method
that triggers the control signal based on contact sensing, we
additionally implemented and tested the method of Zhao et al.
(2020) for the fall condition in simulation. The time delay for the
trigger after ground contact detection was set to the minimum
possible value, i.e., 0.02 s, which is the used default time step of the
NRP. The control signal θz as well as the weighting parameters
remained unchanged. With this reflex controller the identical
hopping frequency of 3.12 Hz as for the torque triggered reflex
was achieved.

In hardware, the hopping frequency with the unmodulated
nF-CPG resulted in 3.05 Hz, while the hopping with the feedback
adapted controllers both resulted in a frequency of 2.90 Hz.

2.4. Environmental Conditions
To investigate the influence of the different bioinspired control
strategies with regard to stability and energy efficiency, two
environmental conditions were considered. In each experiment
trial, a total of 20 s was recorded and analyzed.

The first condition aims to investigate the ability of the
controlled system to return to a limit cycle after a disturbance.
For this purpose, the hopper robot was dropped from a plateau of
varying heights. The hopper was initialized on top of the plateau
at the beginning of the experiment, hopping forward on the
plateau for approximately 10 s to achieve a limit cycle motion.
Subsequently, the robot reached the end of the plateau and
dropped forward to the ground, causing a horizontal and vertical
disturbance at the same time. The experiment was recorded for
another 10 s to give the hopper a sufficient amount of time to
recover from the fall and return to a stable limit cycle. In the
simulation setup, the experiment was carried out for ten different
plateau heights starting from 2 cm and increasing to 20 cm in
steps of 2 cm. For the hardware setup, the experiment was carried
out solely for plateau heights between 1 and 5 cm to protect the
hardware from mechanical damage. In each trial, the height was
increased by 1 cm (cf. Figure 2B).
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In the second environmental condition, the ability of each
bioinspired controller to react to increasing load and efficiently
apply energy to the robotic system during highly-dynamic
motions is explored. For the simulation, a sudden onset of load
was applied after 10 s of undisturbed jumping. Eleven different
cases were considered, applying additional load forces from
0 to 5.5 N in increments of 0.5 N. For hardware validation, 54
g were added to the system initially. In each of the following five
trials, the load was repeatedly increased by 100 g (cf. Figure 2C).
Thus, up to 200 % of the hopper’s initial gravitational force were
applied as additional load in the simulations and the hardware
setup.

2.5. Performance Metrics
For the quantified comparison of the tested bioinspired
controllers, the stability and energy efficiency of each controller
was analyzed. For this purpose, two performance metrics were
defined.

The first metric was dedicated to judge the ability of each
controller to recover from the fall disturbance and return to a
stable motion. Common limit cycle metrics such as a Poincaré
map were not used, as they consider only individual points
across the movement cycle. To better judge the overall trajectory
progression, instead a metric based on autocorrelation of the
state variables was chosen. For this, the joint trajectory in each
period was compared to the trajectory in the previous period
(cf. Figure 3A). The curves of the two periods were overlayed
with maximum correlation and then subtracted from each other.
The mean difference of the overlayed trajectories within two
subsequent periods was defined to be the convergence error in
every period. Thismeasure quantifies the deviation from the limit
cycle. Right after a disturbance, the convergence error should
thus be large as the joint trajectories of two following periods
do not match. Once stable periodic motion is reached again,
the error should converge to a constant value, ideally zero. The
overall error curve was hypothesized to decay exponentially after
the initialized disturbance, which indeed fitted the data very
well (cf. Figure 3B). Thus, by using the least square method an
exponential curve was fitted through the error values for every
tested disturbance condition:

econv(t) = E0 e
−λt + e∞ , (8)

where the exponent λ determines how fast the error signal decays,
i.e., how fast the applied controller can return the system to
stable limit cycle motion. The constant e∞ corresponds to the
final converged error value. In theory this value should be zero
during limit cycle motion with the joint trajectories of every
period being identical. However, slight offsets were possible in the
considered test case as e.g., the hardware environment poses non-
deterministic effects. The fitting parameter E0 describes the initial
error magnitude at the moment of disturbance. However, since
the biomimetic leg did not only fall down, but simultaneously fell
forward during the stability testing, the initial error magnitude
did not scale proportionally with the tested fall heights. Instead,
error decay λ characterized each controller’s ability to return
the system to a limit cycle motion. Consequently, for better

FIGURE 3 | Data analysis to derive stability metric. (A) To find the

convergence errors for the stability metric, the joint trajectory in each (last)

period was compared to the previous one by autocorrelation, where a period

was defined to start at the maximum body height in flight phase. The

overlayed trajectories of the two periods were subtracted resulting in a

cumulative error value per period. (B) The cumulative error value determined

for every period was expected to decrease with time after a disturbance and

reach zero once the hopping leg returned to a limit cycle motion. To better

compare the convergence properties of the different fall heights, the error

curves were normalized for the different test conditions and then fitted with an

exponential curve over all repetitions. Exemplary data (black) are shown for a

simulated fall from 12 cm while being controlled by the reflex. Curve fits for all

other fall heights are shown in other colors.

comparison of the bioinspired controllers in the different tested
conditions, i.e., fall heights, the error curves were normalized by
subtracting the converged end value and dividing by the peak
value such that E0 = 1 and e∞ = 0. For a more intuitive
expression, the error decay in each condition could be expressed
in terms of half-life T1/2 time by

λ =
ln(2)

T1/2
. (9)

The half-life times in all conditions were statistically compared
between the different controllers with a paired t-test, by accessing
the simulation and hardware setup separately.

As metric for the energy efficiency, the amount of energy the
motors inserted per limit cycle was compared to the amount of
internal energy in the system during each period. This measure
was chosen instead of conventional measures such as Cost of
Transport (COT), which relates energy to traveled distance.
However, for this work the COT was regarded as insufficient
metric, since the goalwas not to judge the efficiency in terms of
locomotion capabilities, but focused on the controllers’ ability
to efficiently add energy during highly-dynamic motions. The
energies were calculated for each period individually over 10 s.
A period was defined to lie between two peak points of the body
height when jumping in a stable limit cycle. For each period the
motor energy was calculated by

Eθ =

∫

θ

k(θθθ − qqq) dθ . (10)

The positive energy input ⌈Eθ⌉ = E+θ in the two joints of the
system corresponds to the total energy added by the controller.
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Negative energy values ⌊Eθ⌋ = E−θ indicate that the motor
torque was commanded with the same direction as the joint
velocity, which pulled the motor to essentially act as a generator.
This energy was considered to be “lost,” neither animals nor
most robots can recuperate energy. The internal energy of the
mechanical system is estimated at the peak point of the body
in each period. The jumping height h is set relative to the
equilibrium position of the resting body with the respective load
applied for the tested condition. The total energy of the system
Esys at that point is then calculated by

Esys = mtotgh+
1

2
kqqq2 +

1

2
mtotvvv

2. (11)

Where mtot is the total system mass including the applied load,
and v denotes the system’s full velocity at that point. At the peak
point of the flight phase, the rotational kinetic energy is expected
to be negligibly small, while the majority of the system’s energy
comes from the potential height energy. Unlike mechanical
efficiency, the resulting energy ratio κ between internal system
energy and motor energy can be > 1 as energy in the system can
accumulate over multiple cycles. The energy metric κ for each
controller is defined by

κ =
Esys

Eθ

. (12)

3. RESULTS

In simulations and hardware experiments, different bioinspired
controllers were implemented to drive a biomimetic compliant
robot leg hopping forward as example of a highly-dynamic
movement. The controllers were tested in two changing
environmental conditions to compare their stability against
disturbances as well as the energy efficiency of the excited
movements. In the following, first the controllers’ ability to
recover a stable motion after a fall is described. Subsequently, the
efficiency of each controller to insert energy into the system under
different loads is presented.

3.1. Stability
Analyzing stability showed that all tested controllers were able to
recover the biomimetic leg to the hopping limit cyclemotion after
the disturbance through a fall (cf. Figure 4). In the simulations
and hardware experiments, the reflex controller was overall
fastest to converge back to a stable motion.

Over all conditions, in the simulation the reflex converged
significantly faster back to a stable limit cycle than the
adaptive CPG [0.56 ± 0.05 s (ste); p = 0.008] and the CPG
without feedback modulation [nF-CPG, 0.53 ± 0.04 s (ste);
p = 0.021]. As expected by theory, it showed to be irrelevant
if the reflex was triggered through contact sensing [0.38 ±

0.05 s (ste)] or the torque threshold [0.37 ± 0.03 s (ste)].
Between both methods, no significant difference was found and
an overlaying curve progression of the stability measure was
obtained (cf. Figure 4A). This proves the functional equivalence
of the two reflex implementations. Thus, in the following,

FIGURE 4 | Fitted curves for the cumulative errors determined per period in

the fall scenario for the biomimetic leg. Results are shown for the simulation

(A) and the hardware setup (B). For better comparison, all error curves were

scaled by the initial disturbance value at the fall (t = 0), thus all starting at 1.

The light-colored curves show the individual fits for each fall height. Overall, the

reflex was fastest to recover a stable motion. In the simulation, the reflex was

tested with two different methods, either triggered through (1) contact sensing

(orange) or (2) a torque threshold (red). As expected by theory, no difference

between the two trigger methods could be found, thus, validating functional

equivalence. While triggering based on ground contact is the bioplausible

strategy, we chose the latter to implement the reflex on the robotic leg in

hardware without the need of additional sensors.

we will solely compare and refer to the torque-triggered
reflex controller.

Figures 5A,B emphasizes the faster recovery of the reflex
in comparison the two CPGs for each fall height individually.
Averaged over all fall heights, the two CPGs showed a similar
performance (cf. Table 2). However, a closer look at the
individual half-life times shows a notable trend (cf. Figure 5C):
for falling heights below 14 cm, the nF-CPG had a similar if not
better ability to converge back to a stable motion in comparison
to the adaptive CPG. But above 14 cm, this trend seemed to flip to
the opposite and the adaptive CPG started to recover faster than
the unmodulated CPG.

The averaged half-life times in the hardware closely matched
the overall results of the simulations for the reflex with 0.4 ±

0.06 s (ste) and the adaptive CPGwith 0.5± 0.07 s (ste). Although
the reduced number of trials did not allow statistically significant
conclusions, the individual conditions (cf. Figures 5D–F and
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FIGURE 5 | Visualization of the half-life time differences between the reflex, the adaptive CPG and the pure (no feedback) CPG as stated in Table 2. Results are

shown for the simulation (A–C) and the hardware experiments (D–F). The half-life times are individually compared for the reflex vs. the adaptive CPG (A,D), the reflex

vs. the pure CPG (B,E) and the adaptive CPG vs. the pure CPG (C,F). The colors are chosen according to which controller was faster in each condition. For every

comparison a curve is fitted to investigate the trend.

TABLE 2 | Error half-life times (in seconds) for the different fall disturbances in

simulation and hardware; last line corresponds to the fit through all condition

errors.

Simulation Hardware

Height Reflex CPG nF- Reflex CPG nF-

[cm] CPG CPG

1 0.3 > 0.18 < 0.72

2 0.4 > 0.36 < 0.44 0.2 < 0.39 < 0.78

3 0.17 < 0.5 < 0.95

4 0.18 < 0.57 < 0.59 0.62 < 0.64 < 0.83

5 0.69 < 0.72 < 0.95

6 0.5 < 0.76 > 0.31

8 0.37 < 0.66 > 0.37

10 0.11 < 0.64 > 0.46

12 0.24 < 0.53 > 0.47

14 0.44 = 0.44 < 0.48

16 0.66 > 0.47 < 0.67

18 0.37 < 0.6 < 0.67

20 0.28 < 0.62 < 0.74

Overall 0.37 < 0.56 > 0.53 0.4 < 0.5 < 0.85

Table 2) showed a similar trend with the reflex usually being
fastest to recover the limit cycle motion. The nF-CPG recovered
the limit cycle with 0.85 ± 0.15 s (ste) overall much slower
than in the simulation and significantly slower (p = 0.003)
than both feedback modulated controllers in the hardware (cf.
Figures 5E,F).

3.2. Energy Efficiency
To assess how well each bioinspired controller could insert
energy in the biomimetic leg during hopping as an example of
a highly-dynamic movement, the introduced energy metric was
analyzed. For this purpose, the energy stored within the robotic
system was calculated by Equation (11) and set in relation to
the energy inserted by the controllers in each step (cf. Equation
10). The higher the resulting energy ratio κ was, the more
efficiently a controller could inject energy into the system. In the
following, the results of the energies are reported separately for
the simulation (cf. Figures 6A–C) and the hardware experiments
(cf. Figures 6D–F).

As illustrated by the higher energy ratio κ in Figure 6A, in
simulation the energy efficiency for the reflex controller was
highest over all load conditions. With more load, the reflex even
seemed to become more efficient. In contrast, the energy ratio
κ for both CPGs was relatively constant with no significant
difference between them. To better understand these energy
ratios, the two influencing factors, (1) energy inserted by the
controller, and (2) internal system energy, are examined in the
following.

The inserted energy (cf. Figure 6B) showed a contrasting
progression to the energy ratios: The inserted energy through
the reflex stays constant over all loads, while the energy inserted
by both CPGs increased seemingly linearly with higher loads.
This related to the way the motor signal was commanded.
While the reflex was applied instantaneously, the CPGs were
commanded as a continuous signal (cf. Figure 7A). Thus, for
both CPGs a notable amount of inserted energy was found to
be “negative energy” (E−θ ), i.e., the motor essentially acting as
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FIGURE 6 | Comparison of the energies and their ratios to judge the energy efficiency of the different controllers. Results are shown for the tested load conditions in

simulations (A–C) and corresponding hardware setup (D–F). (A,D) The energy ratio κ quantifies the controllers’ ability to efficiently add motor energy to the

mechanical system. In the simulations, the reflex outperformed both CPGs, while in the hardware similar results were obtained. (B,E) The effective energy generated

by the motor E+
θ was mainly constant while the different controllers appeared to “lose” a varying proportion of motor energy (E−

θ ), especially in the simulations. (C,F)

The internal system energy was mainly dependent on the relative jump height. Only for the nF-CPG in the experiment did a higher proportion relate to spring deflection

(gray). The x-ticks indicate the total system mass relative to the initial mass without load, with the first tick having no load attached. The striped bars indicate trials in

which the mechanical system could not hop anymore.

a generator. This “lost” energy was particularly high for the
adaptive CPG. However, the portion of the effectively usable
motor energy (E+θ ) that was driving the hopping motion, did
not show a significant difference between the reflex and any of
the CPGs.

The corresponding internal energy, i.e., potential energy
within the leg at the peak position of the flight phase (cf.
Figure 6C) increased for all controllers over increasing loads.
This was due to the fact that with increasing load the equilibrium
position of the biomimetic leg likewise decreased. Relative to this
new (lower) equilibrium position the jump height only decreased
little. At the same time, the added weights caused the total massm
of the system to be substantially higher, which explains the overall
increase in potential energy for all controllers.

In the hardware experiments, the energy ratios based on
the inserted motor energy and internal system energy showed
clear differences from the simulation results (cf. Figure 6D). The
energy ratios of the reflex and the adaptive CPG were overall in
a similar range independent of the applied load. The nF-CPG
was unable to jump when more than 150 g were added, instead
starting to teeter in place.

Individual examination of the inserted motor energies (cf.
Figure 6E) showed that the reflex and the adaptive CPGwere able
to supply constant input for all loads with only a small portion
being “lost” (E−θ ). Although the reflex was still commanded as
an instantaneous signal, the dynamics of the motor caused the
measured motor signal to be very similar for the reflex and the
adaptive CPG (cf. Figure 7B). In contrast, the nF-CPG showed
an increasing amount of “lost” energy, especially when it became
unable to jump (above 150 g) and instead teetered in place. Thus,
the effective motor energy E+θ inserted by the controllers with
feedback was seen to be higher.

As for the system’s total internal energy (cf. Figure 6F) it could
be observed that it stayed relatively constant for all controllers
over the increasingly higher applied loads. For the reflex and
the adaptive CPG this is due to the fact that the increase in
total system mass seemed to be proportional to the jump height
relative to the decreasing equilibrium position. For the nF-CPG,
however, it could be observed that the leg motion was generally
not in sync with the control signal. Therefore, the joint springs
did not return to their zero position at the body’s peak point
but were actively deflected. Thus, internal system energy was not
solely due to the potential height energy, but a noticable amount
was also due to the deflection of the springs at the peak point.

As expected, the controllers with feedback component could
successfully adjust the signal frequency to the changing system
behavior, while for obvious reasons the frequency of the nF-CPG
remained unchanged. In favor of both CPGs, however, it must
be mentioned that they were always able to initiate some sort of
periodic motion in the biomimetic leg, even when it was only
teetering in place. In contrast, the reflex controller fell silent when
the load was further increased in the simulation as the needed
threshold was not triggered.

4. DISCUSSION

In order to better understand underlying control principles
in the CNS for highly-dynamic motions, different bioinspired
control strategies were investigated on a biomimetic robotic
leg. We determined how increasing levels of sensory feedback
influence two key motion performance measures under changing
environmental conditions: stability and energy efficiency. As
anticipated, the fall conditions showed that a pure reflex-based
control most effectively supports inherent system dynamics,
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FIGURE 7 | Comparison of the commanded (solid line) and measured (dotted line) motor signal for the reflex (red) and the adaptive CPG (blue), exemplarily shown for

the knee without applied load. (A) In the simulation, the ideal curve could be followed. (B) In the hardware experiment the commanded signal was delayed through the

motor dynamics leading to overall more similar control signals.

which leads to stable limit cycle motions and very fast recovery
from disturbances. Without continuous feedback modulation, a
quick recovery is only possible for small disturbances, even when
a controller is well-entrained to the system. Applying different
loads to the biomimetic system to study the energy efficiency
also led to questioning the commonly held assumption that
a controller needs only to adjust its frequency to match the
inherent dynamics of a system (Buchli et al., 2006; Iwasaki and
Zheng, 2006; Dzeladini et al., 2014; Khoramshahi et al., 2017;
Santos et al., 2017). It seems equally important to adjust the
temporal shape of the control signal in order to drive energy
efficient motions.

With these findings, the presented work provides new insights
with respect to existing literature. Previous research mainly
focused only on analyzing benefits of individual biological
control strategy, i.e., reflexes (Geyer and Herr, 2010) or CPGs
(Dzeladini et al., 2018). Dzeladini et al. (2014) already presented
early results showing how CPGs might extend reflexive pathways
as feedback predictors. We here extend this work by a systematic
comparison that quantifies the influence of bioinspired feedback
and feedforward components on motion performance. Such a
comprehensive overview has so far been missing, partly due to
the fact that a meaningful comparison of different controllers is
not trivial because of the large number of degrees of freedom of
biological locomotor systems. In this paper, such a comparison
was made possible by our recent work that showed how the
brain can control complex compliant movements from a one-
dimensional synergy manifold (Lakatos et al., 2013; Santello
et al., 2016; Stratmann et al., 2016b; Del Vecchio et al., 2019).
This work allowed the analysis of a large parameter space by
implementing the different controllers in this low-dimensional
control manifold.

Our comparative investigations led to three important
contributions: First, we presented a setup with quantifiable
metrics to identify the relevance of reflexes and CPGs in
different environmental conditions. Second, we provide a useful
benchmark to better compare the performance of different
bioinspired controllers in the future. Third, our results point
out possible ways to improve current control strategies for
highly-dynamic motions in compliant robots, which could also
benefit strategies for locomotion control. Forth, due to the
biological plausibility of the control space concept (Stratmann
et al., 2018) and applied control strategies, our findings can

additionally help to generate testable hypotheses about control
mechanisms in mammals.

4.1. Stability
The reflex controller is shown to be faster than both CPGs to
converge the mechanical system back to a limit cycle motion
after the fall disturbance. This is in line with previous findings
on dynamic walking (Schwab and Wisse, 2001; Geyer and Herr,
2010; Maus et al., 2010) showing that pure feedback control can
effectively support the stability of compliant systems and return
them to a limit cycle motion after disturbance. The drawback
of this control strategy, however, is that it is hard to modulate
the gait pattern, i.e., tune the step length or speed (Dzeladini
et al., 2014). Thus, it is commonly hypothesized that a feedback
controller like a reflex is combined with a feedforward approach
like a CPG in biological systems (Guertin, 2013). However, as
shown in the fall experiments, this combination comes at the cost
of decreasing the stability. In both the simulation and hardware,
the adaptive CPG was overall slower to return the biomimetic
leg to its limit cycle motion than the reflex. For simulated small
perturbations (2–12 cm height), even the non-adaptive CPG (nF-
CPG) showed a tendency to return the system faster to the limit
cycle motion than the adaptive CPG. This is due to the fact
that the nF-CPG was initially tuned to support the unperturbed
system dynamics of the biomimetic leg. Thus, it can recover well
from small disturbances, while larger perturbations might move
outside the basin of attraction, making stabilizing the system
eventually more challenging. In contrast, the adaptive CPG can
also recover from larger disturbances, but is slower than the reflex
due to the constant signal modulation.

The hardware experiments point out a further important
aspect. Here, the nF-CPG performed considerably worse than the
two feedback-adjusted controllers over all fall heights. We believe
that this is due to the fact that manually tuning a controller to
perfectly match the intrinsic dynamics of a system remains very
challenging. In comparison to the feedback-adapted controllers,
which drove the leg motion with 2.90 Hz, the nF-CPG resulted
in a hopping frequency of 3.05 Hz. This mismatch caused an
inherent offset, such that the systemmotion deviated even further
from the limit cycle after a disturbance and the nF-CPG needed
longer to recover.

Overall, the stability analysis clearly stressed how crucial the
feedback component is for proper entrainment between the
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control signal and the mechanical system, as especially in a
hardware setup manual tuning is a tedious task with unreliable
results. However, a well entrained system is able to withstand
small disturbances without further signal adjustments, while with
larger disturbances the feedback component once more gains
crucial importance. Here, a pure feedforward approach with
an imminent reflex response in disturbance scenarios is more
beneficial than a constantly, but slowly feedback-adapted CPG.

4.2. Energy Efficiency
In the simulations, the reflex controller was shown to
be significantly more efficient at inserting energy into the
biomimetic leg than both CPGs, mainly due to the differing
shape of the reflex control signal. In contrast, in the hardware
setup the performance of the adaptive CPG matched the reflex
capabilities as here motor dynamics led to a similar signal
shape for the different control approaches. This clearly showed
that, independent of the applied control strategy, not only does
the frequency of the control signal need to be adapted in
changing environmental conditions, but likewise the signal shape
is important.

The reflex was implemented as a bang-bang controller
(Lakatos et al., 2013). Thus, in the idealized simulation, the
same defined amount of energy per limit cycle was inserted
instantaneously into the system when the threshold was crossed.
Therefore, energy was never “lost.” In contrast, the control
signal commanded by the CPGs was continuous, which is more
appropriate to assume for real systems, robotic and biological
ones alike. With a continuous signal, energy is added over a
longer period of time, here during the stance phase. During
each limit cycle the motors were commanded to counteract
the joint deflection while the springs simultaneously unloaded
the joints. As the springs extended faster than the motor was
commanded, the joint motion pulled the motors creating the
generator-effect, in which large portions of motor energy were
“lost” (cf. Figure 6B). Therefore, energy could not be applied as
efficiently. With the feedback modulated CPG this effect was seen
to be even larger as the joint deflection was adjusted to be higher
with increased loads.

The influence that the shape of the control signal exerted
in driving efficient motions was verified by the hardware
experiments. Here, the dynamics of the real motor overlayed
the ideally given signals of the controllers leading to a
throughout similar shape of the control signals. Thus, the
reflex and the adaptive CPG performed similarly well. The
much worse performance of the unmodulated nF-CPG can be
attributed to the inherent mismatch between control signal and
system dynamics. With increasing load, the frequencies of the
inherent system motion and the control signal deviate further
and subsequently the nF-CPG cannot effectively insert energy
anymore to drive the hopping motion.

Therefore, the analysis of the energy efficiency stresses the fact
that not only the adaptation of the control signal frequency is
crucial for efficient motions, but also the shape of the control
signal. This contrasts current work on CPGs and adaptive
frequency oscillators, which usually focuses only on using
the feedback component for frequency entrainment to exploit

resonance effects (Buchli et al., 2006; Iwasaki and Zheng, 2006;
Dzeladini et al., 2014; Khoramshahi et al., 2017; Santos et al.,
2017). Our work shows that this focus should be extended to also
consider and adjust the temporal shape of the control signal.

5. CONCLUSION AND OUTLOOK

The presented research applied different bioinspired control
strategies with varying degrees of feedback to a biomimetic
robotic leg. By assessing the system’s stability and energy
efficiency in simulations and hardware experiments, we
quantified the contributions that reflexes and CPGs have
on highly-dynamic compliant movements under different
environmental influences. This can help to improve future
control strategies for robotics as well as generate testable
hypotheses for implemented control mechanisms in biology.

Considering robotic applications, the key findings of our
research extend previous knowledge about reflexes and CPGs,
which suggests the need to reevaluate current methods to
combine both strategies in one controller. Commonly used
adaptive CPGs are usually continuously modulated by feedback
to enable proper entrainment between the system and the
control signal, while also offering easy ways to modulate the
gait. Conversely, the stability analysis of our work showed that
such a continuous signal adaptation might not be the most
beneficial option, as it is too slow to react to an imminent large
disturbance. Instead, the feedback component should be applied
more strategically, either to newly entrain a CPG in the case
of environmental and system changes or to quickly recover the
system from a large disturbance. Otherwise, the modulation of
the CPG signal might not be necessary. Additionally, the analysis
of the energy efficiency stressed that not only the adaptation
of the control signal frequency is crucial, but the shape of the
control signal matters as well. This aspect is usually not regarded
in current adaptive oscillator models, but would leverage the
dynamics of a given mechanical system for energy efficient
motions. For future work to improve robotic control approaches
based on the gained insights, our present work has also provided
a valuable benchmark framework against which newly developed
bioinspired control strategies can be compared.

Besides their implications for robotic controllers, our key
findings can likewise be used to reconsider current hypotheses
about the presence and possible implementation of reflexes and
CPGs in mammals. Our findings suggest that a continuous and
uniform feedback modulation of CPGs, which is assumed in
many CNS models, might not be the most favorable solution to
combine the known advantages of reflexes and CPGs. Instead, the
modulation strength of the CPG might depend on the proximity
of the joints as suggested by the principle of the proximo-
distal gradient (Daley et al., 2007). The principle states that
proximal joints, i.e., hip and knee, are largely modulated through
feedforward control, while the feedback component seems to
have a stronger influence on distal joints, i.e., the ankle. Our
findings support this hypothesis. The pure reflex showed to be
clearly superior to recover stable limit cycle motions. Thus, the
reflex component should be strong in distal joints that first
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encounter external disturbances. The proximal joints experience
the disturbances only indirectly and in an attenuated form, hence,
needing less immediate feedback. Instead, in these joints the
CPG structures could be dominant, because they seem to be
mainly needed for intentional motion adjustments, i.e., speed
or gait changes. Controlling motion changes from the proximal
joints could be more efficient since the limb inertia can be
exploited to dictate the change. Indeed, robotic implementations
of the proximo-distal gradient showed that it leads to more
energy efficient motions (Xiong et al., 2015). In order to expand
this theory and possibly further increase energy efficiency, our
findings suggest to investigate how the reflexive behavior of the
distal joints might affect not only the frequency, but also the
temporal shape of the control signals in the proximal joints.
In this way, the findings of this work help to spark new
hypotheses about the implementations of reflexes and CPGs in
the mammalian CNS.
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