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This paper explores the realization of a predefined-time synchronization problem for

coupled memristive neural networks with multi-links (MCMNN) via nonlinear control.

Several effective conditions are obtained to achieve the predefined-time synchronization

of MCMNN based on the controller and Lyapunov function. Moreover, the settling time

can be tunable based on a parameter designed by the controller, which is more flexible

than fixed-time synchronization. Then based on the predefined-time stability criterion and

the tunable settling time, we propose a secure communication scheme. This scheme

can determine security of communication in the aspect of encrypting the plaintext signal

with the participation of multi-links topology and coupled form. Meanwhile, the plaintext

signals can be recovered well according to the given new predefined-time stability

theorem. Finally, numerical simulations are given to verify the effectiveness of the obtained

theoretical results and the feasibility of the secure communication scheme.

Keywords: predefined-time synchronization, coupled memristive neural networks, multi-links topology, secure

communication scheme, Lyapunov function

1. INTRODUCTION

With the development of information technology and the higher requirement of information
transmission, it is vital to ensure the security of communication. The field of secure communication
has also attracted a large number of scientific researchers. Meanwhile, some important scientific
research achievements have been obtained in the aspect of secure communication based on the
synchronization performance of a chaotic system (Tao and Chua, 1997; Feki, 2003; Femat et al.,
2004; Zheng et al., 2009). The types of chaotic systems include simple three-dimension chaotic
systems, complex dynamical networks, and general neural networks, etc. Similar to a general neural
network, the memristive neural network is also a kind of chaotic system, but differs in that the
parameters of MNN are state-dependent. Memristor was first proposed by Chua (1971). Unlike
ordinary resistors, which have fixed resistance values, the memristor is nonlinear and its value is
not unique; the memristor is also considered to be the electronic equivalent of the synapse. As the
memristor is often used to mimic the synapse, the model of MNN is widely applied in associative
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memory, next-generation computers, and powerful brain-like
“neural” computers. MNN is the more realistic model for
the description of real neural systems. Moreover, MNN with
a coupling term is more suitable for real complex neural
networks, which is known as a coupled memristive neural
network (CMNN). Therefore, there has been an upsurge in
the study of dynamic behavior based on the model of CMNN.
In addition, the main considered problems also include secure
transmission performance in synchronization time and the
encryption performance based on a chaotic complex system. The
speed of synchronization control time is also a key factor affecting
communication security and quality.

The types of synchronization time include asymptotic time
synchronization, exponential synchronization, finite-time
synchronization, fixed-time synchronization, and predefined-
time synchronization. Asymptotic time synchronization
and exponential synchronization are types of infinite time
synchronization, but the convergence rate of exponential
time is slightly faster than that of asymptotic time. However,
finite-time stability has more practical significance in secure
communication. Finite time was introduced in 1961 (Dorato,
1961), which has a much faster convergence time. In secure
communication, compared with asymptotic synchronization and
exponential synchronization, the finite-time synchronization
technique enables us to recover the transmitted signals
in a setting time, which improves the efficiency and the
confidentiality greatly. The concept of fixed-time stability was
proposed by Polyakov (2012), and the criteria for determining
whether the system can achieve fixed-time stability were also
attained. Fixed-time stability is a special kind of finite-time
stability. It is different from general finite-time stability in that
its stability time has a definite upper bound, and the settling
upper bound time is not dependent on the initial value of the
system, but can be calculated by the system parameters and
controller parameters. Therefore, the research of fixed-time is
still fascinating to many researchers, who have committed to
exploring the smaller conservative of the fixed-time upper bound
value. Unfortunately, the control issues of fixed-time algorithms
are still challenges related to convergence time estimation. The
main drawback is that convergence time is not explicit and
controllable. In order to overcome the problems presented
above, a new stability with a tunable parameter is proposed
based on fixed-time stability, which is defined as predefined-time
stability (Sanchez-Torres et al., 2014).

Tao and Chua (1997) attained the general stabilization of
chaotic systems, and it was applied to secure communication.
Then, many kinds of synchronization of more complex systems
were also studied, which can also be applied to secure
communication schemes. Many previous studies have made
important considerations to the convergence of synchronization
time. Therefore, during a period of time, many researchers have
found many excellent results in the aspect of finite-time and
fixed-time stabilities of coupled neural networks. Yang et al.
(2015) and Yang and Lu (2016) focused on the finite-time
synchronization of coupled neural networks and gave some novel
conclusions. Some effective guiding conclusions are given in
Lv et al. (2019) and Zhang et al. (2020). Since the existence

of memristor was confirmed by the HP laboratory in 2008
(Strukov et al., 2008), many scholars introduced memristor in
the study of neural networks, which can more truly simulate
the memory characteristics of biological neural networks. Guo
and Gao (2014), Wang et al. (2016), Chen et al. (2018), Zhang
and Qi (2021), and Peng et al. (2020) considered the asymptotic
time synchronization of CMNN and gave full consideration
to various cases of random disturbances. Various results about
exponential synchronization of CMNN (Wang and Shen, 2014;
Bao et al., 2016; Feng et al., 2016; Guo et al., 2018; Chen
et al., 2021) were given, and Guo et al. (2018) also considered
multiple coupled terms. Especially, with the requirement of the
development of converge speed, these results about finite/fixed
time synchronization of CMNN are discussed (Li et al., 2019;
Lu et al., 2019; Yang et al., 2019; Huang et al., 2020; Gong
et al., 2021). Since the concept of predefined-time stability was
proposed in 2014 (Sanchez-Torres et al., 2014), predefined-
time stability in dynamical systems has been studied (Juan
et al., 2018; ), and some theorems of predefined-time stability
have been obtained. Recently, Anguiano-Gijon et al. (2019), Lin
(2021b), Assali (2021), Lin et al. (2021), and Muoz-Vazquez
et al. (2021) went further and discussed the predefined-time
synchronization of two chaotic systems, one of them obtained the
projective synchronization criterion about predefined-time (Lin
et al., 2021), and another two of them considered chaotic systems
of fractional-order forms (Lin et al., 2021; Muoz-Vazquez et al.,
2021). In 2020, Lin defined the novel criterion of predefined-time
synchronization in different kinds of neural networks, including
a chaos neural network andmemristive neural network (Lin et al.,
2020; Lin, 2021a).

For nearly 2 years, many effective conclusions were given in
the research of synchronous control in a coupled memristive
neural network. Zhou et al. (2020) constructed a novel
synchronization about weighted sum synchronization for
CMNN. Chen et al. (2021) and Feng et al. (2021) obtained some
results in exponential and fixed-time synchronization of CMNN.
Bao et al. (2021) completed further research on prescribed-
time synchronization in CMNN. But, few papers fully take
into account coupled topology and multi-links performance to
explore the predefined-time stability of the systems, and give
some application on image encryption and decryption schemes.
The detailed contents of multi-links performance of complex
networks are referred to by Zhao et al. (2015) and Zhao et al.
(2016).

Motivated by the above discussions, multi-links performance,
coupled forms, and synchronization time of systems are
taken fully into account in this paper. We investigate the
predefined-time synchronization of MCMNN and design an
efficient secure communication scheme based on predefined-
time stability. The contributions of this paper are given
as follows: Firstly, we overcome the complexity of factor
interaction including multi-links performance and coupled
forms, dealing with some parameter mismatches and complex
topological structure problems, the network model is more
general; secondly, the predefined-time synchronization issue of
drive-response MCMNN is first studied based on the feedback
controller and give a new predefined-time stability theorem.
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The predefined-time is a case of fixed-time, the bound time
can be explicitly tuned; thirdly, the secure communication
scheme is designed based on predefined-time synchronization
of drive-response MCMNN. The preset synchronization time
can be used as an important common key, the plaintext
signal can be recovered after the settling time; finally,
numerical simulations are given to verify the effectiveness
of our theoretical results and the feasibility of the secure
communication scheme. Therefore, our work aims to fill some
gaps in the research of coupled memristive neural networks and
predefined-time synchronization.

The paper is organized as follows. In section 2, the
model of MCMNN and preliminaries are explained. In
section 3, the predefined-time synchronization theorem and
corollaries are respectively shown. In section 4, we designed
the security communication scheme based on predefined-
time synchronization of MCMNN. The numerical example of
predefined-time stability and application example of secure
communication scheme are given to show the effectiveness of
our theoretical results in section 5. Finally, the conclusion and
prospects are given in section 6.

2. NETWORK MODEL AND
PRELIMINARIES

In the paper, according to the property of multi-links coupled
topology, we consider a model of MCMNN as follows:

ẋik(t) = −ckxik(t)+
n
∑

q=1
akq(xik(t))ḡq(xik(t))

+
n
∑

q=1
bkq(xik(t − τ0))gq(xik(t − τ0))+ σ

N
∑

j=1
w0
ijŴxjk(t)

+σ
m
∑

l=1

N
∑

j=1
wl
ijŴxjk(t − τl)+ Ii(t),

(1)
where xi = (xi1, xi2, ..., xin)

T ∈ Rn, i = 1, 2, ...N is the state
vector of the ith node; C = diag(c1, c2, ..., cn) is a positive
matrix and denotes the decay rates to the ith neuron. ḡ(xi(t)) =
(ḡ1(xi1(t)), ḡ2(xi(t)), ..., ḡn(xin(t))) ∈ Rn and g(xi(t − τ0)) =

(g1(xi1(t − τ0)), g2(xi2(t − τ0)), ..., gn(xin(t − τ0))) ∈ Rn are the
discontinuous feedback functions, τ0 is time delay, σ represents
the coupling strength, and Ŵ = diag(γ1, γ2, ..., γn) > 0 is
the inner coupling matrix between each pair of nodes. W0 =

(w0
ij)N×N ,Wl = (wl

ij)N×N , l = 1, ...,m represents the outer
coupling configuration matrix of MNN, which is the different
sub-network’s Laplacian matrices, τl(l = 1...,m) > 0 denote
different time-delays in the sub-networks. If nodes i and j are
linked by an edge, then wl

ij = wl
ji > 0(i 6= j), otherwise,

wl
ij = wl

ji = 0, and the diagonal elements ofmatrixWl are defined

as wl
ii = −

∑N
j=1,j 6=i w

l
ij. If there are no isolated nodes in the

network, then all of the matrixWl(l = 0, 1, ...,m) is an irreducible
real symmetric matrix. I(t) = (I1(t), I2(t), ..., IN(t))

T ∈ Rn is the
external input.

The parameters akq(xik(t)) and bkq(xik(t − τ0)) denote the
non-delayed and delayed memristor-based synaptic connection

weights, respectively. They can be described as follows:

akq(xik(t)) =

{

âkq, |xik(t)| ≤ Ti,

ǎkq, |xik(t)| > Ti,
(2)

bkq(xik(t − τ0)) =

{

b̂kq, |xik(t − τ0)| ≤ Ti,

b̌kq, |xik(t − τ0)| > Ti,
(3)

where the switching jumps Ti > 0, âkq, ǎkq, b̂kq, b̌kq, k, q =

1, 2, ..., n, are all constants.
If Equation (1) denotes the drive system, the corresponding

response system with a control input can be characterized by:

ẏik(t) = −ckyik(t)+
n
∑

q=1
akq(yik(t))ḡq(yik(t))

+
n
∑

q=1
bkq(yik(t − τ0))gq(yik(t − τ0))+ σ

N
∑

j=1
w0
ijŴyjk(t)

+σ
m
∑

l=1

N
∑

j=1
wl
ijŴyjk(t − τl)+ Ii(t)+ uik(t),

(4)
where i, j = 1, 2, ...,N, yi = (yi1, yi2, ..., yin)

T ∈ Rn is the state
vector of the ith node of the response network and uik(t) is the
controller for node i. The remaining parameters of Equation (4)
have the same meanings as those in Equation (1).

Definition 1. Filippov (1960) For a differential system: ẋ(t) =
f (t, x), where f (t, x) is discontinuous in x(t), and x(t) is a solution
of the differential system on [t0, t1] in Filippov’s sense, if x(t) is
absolutely continuous on any compact interval [t0, t1], for almost
all t ∈ [t0, t1] such that

ẋ = KF[f ](t, x),

where

KF[f ](t, x) =
⋂

δ>0

⋂

µ(N)=0

co[f (B(x, δ) \ N), t],

where co[·] is the convex closure hull of a set, B(x, δ) = {y : ‖y −
x‖ ≤ δ} is the ball of center x and radius δ, the intersection is
takes over all setsN of measure zero and over all δ > 0, andµ(N)
is the Lebesgue measure of set N.

Definition 2. Polyakov (2012) considering the nonlinear
system v̇ = f (v, r) is said to suggest global fixed-time stability,
if it has global finite-time stability and the settling time function
Tmax is bounded and independent of the initial conditions, i.e.,
there exists Tmax > 0 such that

T(v) ≤ Tmax,∀v0 ∈ Rn.

Definition 3. Sanchez-Torres et al. (2014) The drive-response
systems (1) and (4) are said to achieve the predefined-time
synchronization if there exists Tv in the case of fixed-time
synchronization and if the settling time function T :Rn → R+
is such that

T(x0) ≤ Tv,∀x0 ∈ Rn.
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Assumption 1. For the neuron activation functions ḡq(·), gq(·),
there exist Lipschitz constants ḡq and gq > 0 satisfying the
following Lipschitz conditions:

‖ḡq(y)− ḡq(x)‖ ≤ f̄q‖(y− x)‖,

‖gq(y)− gq(x)‖ ≤ fq‖(y− x)‖, x, y ∈ R.

Assumption 2. The neuron activation functions are bounded
functions, there exists a real number Mq, M̄q for any gq(x), ḡq(y)
such that gq(x) ≤ Mq, ḡq(y) ≤ M̄q.

Lemma 1. Hu et al. (2017) If there exists a regular, positive
definite, and radially unbounded function V(t) :Rn → R+ and
constants a > 0, b > 0, η > 1 meet

V̇(t) ≤ −(aVη(t)+ b), t ∈ Rn\0,

the ∀t ≥ Tmax of the origin system V(t) is fixed-time stability,
and the upper-bounded settling time Tmax is estimated by

Tmax =
η

b(η − 1)
(
b

a
)
1
η .

Lemma 2. Khalil and Grizzle (2002) Let a1, a2, ..., aN , η > 1,
then the following inequality holds

N
∑

i=1

a
η
i ≥ N1−η(

N
∑

i=1

ai)
η.

Remark 1. The algebraic inequality of Lemma 2 is used in
many studies to determine stability, such as Yang and Daniel
(2016) and Yang et al. (2017), which focused on the research
of exponential synchronization and finite-time synchronization
in memristive neural networks without coupled links. Next, we
extend the coupled memristive neural network model to explore
predefined-time synchronization, in which the synchronization
time can be adjusted in the controller.

Lemma 3. If there exists a regular, positive definite, and
radially unbounded function V(t) :Rn → R+ and constants
a > 0, b > 0, η > 1 are satisfied

V̇(t) ≤ −
Dv

Tv
(aVη(t)+ b), t ∈ Rn\0,

where Tv is a user-defined parameter and

Dv = a
− 1

η ·
2(η−1)

η − 1
· b

1−η
η .

Then, for ∀t > Tv, we have V(t) = 0. The origin system can
achieve predefined-time synchronization.
Proof: By Lemma 2, we have

aVη(t)+ b = (a
1
η V(t))η + (b

1
η )η

≥ 21−η(a
1
η V(t)+ b

1
η )η.

Then

T(x0) ≤ −

∫ 0

V(x0)

Tv
Dv

· 1
aVη(t)+bdV ,

= −

∫ 0

V(x0)

Tv
Dv

· 1

(a
1
η V(t))η+(b

1
η )η

dV ,

≤ −

∫ 0

V(x0)

Tv
Dv

· 1

21−η(a
1
η V(t)+b

1
η )η

dV ,

= Tv
Dv

· 2η−1 ·

∫ V(x0)

0

1

(a
1
η V(t)+b

1
η )η

dV ,

= Tv
Dv

· 2η−1

a
1
η (1−η)

· (a
1
η V(t)+ b

1
η )1−ηdV

∣

∣

V(x0)
0 ,

= Tv
Dv

· 2η−1

a
1
η (1−η)

· ((a
1
η V(x0)+ b

1
η )1−η − b

1−η
η ),

= Tv
Dv

· 2η−1

a
1
η (η−1)

· (b
1−η
η − (a

1
η V(x0)+ b

1
η )1−η),

= Tv
Dv

· 2η−1

a
1
η (η−1)

· (b
1−η
η − 1

(a
1
η V(x0)+b

1
η )η−1

).

If V(x0) = 0, then T(x0) = 0. If V(x0) → ∞, then
1

(a
1
η V(x0)+b

1
η )η−1

→ 0, thus we have

T(x0) ≤
Tv

Dv
·

2η−1

a
1
η (η − 1)

· (b
1−η
η −

1

(a
1
η V(x0)+ b

1
η )η−1

),

≤
Tv

Dv
· a

− 1
η ·

2η−1

η − 1
· b

1−η
η = Tv.

The proof is completed.
Denote

ākq = max{âkq, ǎkq}, akq = min{âkq, ǎkq},

b̄kq = max{b̂kq, b̌kq}, bkq = min{b̂kq, b̌kq},

akq =
1

2
(ākq + akq), ãkq =

1

2
(ākq − akq),

bkq =
1

2
(b̄kq + bkq), b̃kq =

1

2
(b̄kq − bkq).

Therefore, based on Definition 1 and the theory of differential
inclusion, Equation (1) and Equation (4) can be written as

ẋik(t) ∈ −ckxik(t)+
n
∑

q=1
(akq + c̄o[−ãkq, ãkq])ḡq(xik(t))

+
n
∑

q=1
(bkq + c̄o[−b̃kq, b̃kq])gq(xik(t − τ0))

+σ
N
∑

j=1
w0
ijγkxjk(t)

+σ
m
∑

l=1

N
∑

j=1
wl
ijγkxjk(t − τl)+ Ii(t),

(5)
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and

ẏik(t) ∈ −ckyik(t)+
n
∑

q=1
(akq + c̄o[−ãkq, ãkq])ḡq(yik(t))

+
n
∑

q=1
(bkq + c̄o[−b̃kq, b̃kq])gq(yik(t − τ0))

+σ
N
∑

j=1
w0
ijγkyjk(t)

+σ
m
∑

l=1

N
∑

j=1
wl
ijγkyjk(t − τl)+ Ii(t)+ uik(t).

(6)

Remark 2. According to the state-dependence conditions of

Equations (5) and (6), the variables c̄o[−ãkq, ãkq], c̄o[−b̃kq, b̃kq]
may not reach their maximum and minimum values at the same
time. Therefore, we give the following four different measurable
functions to represent interval information.

According to the measurable selection theorem
(Xiao and Zeng, 2017), there exist measurable functions
ξ 1kq(t), ξ

2
kq(t), ξ

3
kq(t), ξ

4
kq(t) ∈ c̄o[−1, 1] such that

ẋik(t) = −ckxik(t)+
n
∑

q=1
(akq + ãkqξ

1
kq(t)ḡq(xik(t))

+
n
∑

q=1
(bkq + b̃kqξ

3
kq(t)gq(xik(t − τ0))+ σ

N
∑

j=1
w0
ijγkxjk(t)

+σ
m
∑

l=1

N
∑

j=1
wl
ijγkxjk(t − τl)+ Ii(t),

(7)
and

ẏik(t) = −ckyik(t)+
n
∑

q=1
(akq + ãkqξ

2
kq(t)ḡq(yik(t))

+
n
∑

q=1
(bkq + b̃kqξ

4
kq(t)gq(yik(t − τ0))+ σ

N
∑

j=1
w0
ijγkyjk(t)

+σ
m
∑

l=1

N
∑

j=1
wl
ijγkyjk(t − τl)+ Ii(t)+ uik(t).

(8)
Let eik(t) = yik(t) − xik(t), the corresponding error system is

given as follows:

ėik(t) = −ckeik(t)+
n
∑

q=1
akq(ḡq(yik(t))− ḡq(xik(t)))

+
n
∑

q=1
ãkqξ

2
kq(t)(ḡq(yik(t))− ḡq(xik(t)))

+
n
∑

q=1
ãkq(ξ

2
kq(t)− ξ 1kq(t))ḡq(xik(t))

+
n
∑

q=1
bkq(gq(yik(t − τ0))− gq(xik(t − τ0))

+
n
∑

q=1
b̃kqξ

4
kq(t)(ḡq(yik(t − τ0))− ḡq(xik(t − τ0)))

+
n
∑

q=1
b̃kq(ξ

4
kq(t)− ξ 3kq(t))ḡq(xik(t − τ0))

+σ
N
∑

j=1
w0
ijγkejk(t)+ σ

m
∑

l=1

N
∑

j=1
wl
ijγkejk(t − τl)+ uik(t).

(9)
Remark 3. Based on Definition 3, the issues of predefined-time
synchronization between drive system (1) and response system

(4) are transformed into the issues of predefined-time stability of
error system (9).

3. PREDEFINED-TIME SYNCHRONIZATION
FOR MCMNN

In order to guarantee the predefined-time synchronization of
drive-response systems, the controller is designed as follows:

uik(t) = −αieik(t)− sign(eik(t))(βi +

m
∑

l=0

ri|eik(t − τl)|)

+
Dv

Tv
δi|eik(t)|

η), (10)

where i = 1, 2, ...,N, k = 1, 2, .., n. αi,βi, ri, δi, η ≥ 0. Tv is the
tunable predefined time, Dv is a positive constant given by other
parameters. And sign(x) is the sign function which is defined
as follows:

sign(x) =







−1, if x < 0,
0, if x = 0,
1, if x > 0.

Remark 4. Designed controller (10) is discontinuous. To ensure
the existence of the solutions of error system (11), the Dini
derivative is used to ensure continuity at the breakpoint.

According to Assumptions 1 and 2, combined with designed
controller (10), we obtain

ėik(t) ≤ −ckeik(t)+
n
∑

q=1
|akq|f̄q|eik(t)| +

n
∑

q=1
ãkqξ

2
kq(t)f̄q|eik(t)|

+2
n
∑

q=1
ãkqM̄q +

n
∑

q=1
|bkq|fq|eik(t − τ0)|

+
n
∑

q=1
b̃kqξ

4
kq(t)fq|eik(t − τ0)| + 2

n
∑

q=1
b̃kqMq

+σ
N
∑

j=1
w0
ijγkejk(t)+ σ

m
∑

l=1

N
∑

j=1
wl
ijγkejk(t − τl)

−αieik(t)− sign(eik(t)(βi +
m
∑

l=0

rieik(t − τl)

+Dv
Tv

δi|eik(t)|
η).

Based on designed controller (10) applied on the response
system, a theorem is presented to achieve the predefined-time
synchronization for MCMNN.

Denote γmax = max
1≤k≤n

(γk), α = diag(α1,α2, ...,αN), β =

diag(β1,β2, ...,βN),
r = diag(r1, r2, ..., rN),Wl = (wl

ij)N×N , l = 1, 2, ...m.
Theorem 1. Under Assumptions 1 and 2, for a predefined-

time Tv > 0 and controller (10), error system (9) can achieve
predefined-time stability if



































φ1IN − α + σγmaxW0 ≤ 0,

φ2IN − r ≤ 0,

σγmax

m
∑

l=1

Wl −mr ≤ 0,

φ3IN − β ≤ 0.
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where


















































φ1 = max
1≤k≤n

{−ck +
n

∑

q=1

(|akq| + ãkq)f̄q},

φ2 = max
1≤k≤n

{

n
∑

q=1

(|bkq| + b̃kq)fq},

φ3 = max
1≤k≤n

{2
n

∑

q=1

(ãkqM̄q + B̃kqMq).

Proof: We construct a Lyapunov function as follows:

V(e(t)) =
N
∑

i=1
||ei(t)||1 =

N
∑

i=1

n
∑

k=1

|eik(t)|.

When e(t) = 0, V(e(t)) = 0 and the derivative of V(e(t)) is 0.
Then, the derivative ofV(e(t)) is along the trajectories of e(t) with
e(t) 6= 0. We have

V̇(e(t)) =
N
∑

i=1

n
∑

k=1

sign(eik(t))ėik(t),

≤
N
∑

i=1

n
∑

k=1

−ck|eik(t)| +
N
∑

i=1

n
∑

k=1

n
∑

q=1
(|akq| + ãkq)f̄q|eik(t)|)

+
N
∑

i=1

n
∑

k=1

n
∑

q=1
(|bkq| + b̃kq)fq|eik(t − τ0)|)

+2
N
∑

i=1

n
∑

k=1

n
∑

q=1
(ãkqM̄q + b̃kqMq)

+σ
N
∑

i=1

N
∑

j=1

n
∑

k=1

w0
jiγk|eik(t)|

+σ
N
∑

i=1

N
∑

j=1

n
∑

k=1

m
∑

l=1

wl
jiγk|eik(t − τl)|

−
N
∑

i=1

n
∑

k=1

αi|eik(t)| −
N
∑

i=1

n
∑

k=1

βi

−
N
∑

i=1

n
∑

k=1

m
∑

l=0

ri|eik(t − τl)|

−Dv
Tv

N
∑

i=1

n
∑

k=1

δi|eik(t)|
η).

According to the analysis above, we can obtain that

V̇(e(t)) ≤
N
∑

i=1

n
∑

k=1

[−ck +
n
∑

q=1
(|akq| + ãkq)f̄q

+σ
N
∑

j=1
w0
jiγmax − αi]|eik(t)|

+
N
∑

i=1

n
∑

k=1

[
n
∑

q=1
(|bkq| + b̃kq)fq − ri]|eik(t − τ0)|

+
N
∑

i=1

n
∑

k=1

m
∑

l=1

(σ
N
∑

j=1
wl
jiγmax − ri)|eik(t − τl)|

−
N
∑

i=1

n
∑

k=1

[βi − 2
n
∑

q=1
(ãkqM̄q + b̃kqMq)]

−Dv
Tv

N
∑

i=1

n
∑

k=1

δi|eik(t)|
η),

≤ −Dv
Tv

N
∑

i=1

n
∑

k=1

δi|eik(t)|
η

−
N
∑

i=1

n
∑

k=1

[βi − 2
n
∑

q=1
(ãkqM̄q + b̃kqMq)].

Let λ = min
1≤i≤N

{δi}, min
1≤i≤N

(βi − φ3) ≥
Dv
Tv
b, and by Lemma 2, we

obtain

−
Dv

Tv

N
∑

i=1

n
∑

k=1

δi|eik(t)|
η ≤ −

Dv

Tv
λn1−η(V(e(t)))η,

−

N
∑

i=1

n
∑

k=1

[βi − 2
n

∑

q=1

(ãkqM̄q + b̃kqMq)] ≤
Dv

Tv
b.

According to the above proof and a = λn1−η , we have:

V̇(e(t)) ≤ −
Dv

Tv
λn1−η(V(e(t)))η −

Dv

Tv
b,

= −
Dv

Tv
(a(V(e(t)))η + b),

where

Dv = a
− 1

η ·
2(η−1)

η − 1
· b

1−η
η .

The proof of Theorem 1 is completed.
Remark 5. The predefined-time stability is a spacial case

of fixed-time stability. Therefore, after removing the tuning
parameters Tv and Dv, the error system is said to achieve fixed-
time stability, and the upper bound of settling time can be
indicated as Tmax = Dv based on Definition 2 and Lemma 2.
Therefore, error system (9) can achieve fixed-time stability based
on the above controller (10).

The results of Theorem 1 can also easily extend to the
general single coupled memristive neural network which does
not include multi-links items. The drive-response systems are
given as































































































































ẋik(t) =− ckxik(t)+
n

∑

q=1

akq(xik(t))ḡq(xik(t))

+

n
∑

q=1

bkq(xik(t − τ0))gq(xik(t − τ0))

+ σ

N
∑

j=1

w0
ijŴxjk(t)+ Ii,

ẏik(t) =− ckyik(t)+
n

∑

q=1

akq(yik(t))ḡq(yik(t))

+

n
∑

q=1

bkq(yik(t − τ0))gq(yik(t − τ0))

+ σ

N
∑

j=1

w0
ijŴyjk(t)+ Ii + uik(t).

(11)

The controller is designed as follows:

uik = −αieik(t)− sign(eik(t))(βi + ri|eik(t − τ0)| +
Dv

Tv
δi|eik|

η).

(12)

Frontiers in Neurorobotics | www.frontiersin.org 6 December 2021 | Volume 15 | Article 783809

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhao et al. Predefined-Time Synchronization of MCMNN

According to drive-response system (12), the corresponding
corollary is given as

Corollary 1. Under Assumptions 1 and 2 and controller
(13), drive-response system (12) can achieve predefined-time
synchronization if











φ1IN − α + σγmaxW0 ≤ 0,

φ2IN − r ≤ 0,

φ3IN − β ≤ 0.

The results of Theorem 1 can also further extend to the general
memristive neural network which does not include coupled
topology. The drive-response systems are given as















































































ẋik(t) =− ckxik(t)+
n

∑

q=1

akq(xik(t))ḡq(xik(t))

+

n
∑

q=1

bkq(xik(t − τ0))gq(xik(t − τ0))+ Ii,

ẏik(t) =− ckyik(t)+
n

∑

q=1

akq(yik(t))ḡq(yik(t))

+

n
∑

q=1

bkq(yik(t − τ0))gq(yik(t − τ0))+ Ii + uik(t).

(13)

According to drive-response system (14), we give the
corresponding corollary as follows:

Corollary 2. Under Assumptions 1 and 2 and controller
(13), drive-response system (14) can achieve predefined-time
synchronization if,







φ1In − α ≤ 0,
φ2In − r ≤ 0,
φ3In − β ≤ 0.

4. DESIGN OF THE SECURE
COMMUNICATION SCHEME

This section presents the secure communication scheme based
on the predefined-time synchronous control of MCMNN, which
comprises the following steps:

Step 1: The three-dimensional drive-response systems xi(t)
and yi(t) are built, which together are the MCMNN;

Step 2: According to the drive-response systems, the
synchronization error system ei(t) = yi(t)− xi(t) is established;

Step 3: The predefined-time stability theorem (Theorem 1)
with low conservation is adopted;

Step 4: The appropriate predefined-time synchronization
controller ui(t) is designed;

Step 5: A new predefined-time synchronization control
theorem is given to realize the predefined-time stability of
the error system, and the controllability of stability time is
guaranteed via the tuning parameter Tv;

Step 6: The implementation of the secure communication
scheme:

Sender: The mixed signal generated by the plaintext signal
and the prefixed random signal is introduced into the drive
system of the coupled memristive neural network with multi-
links, and the sender generates the encrypted signal by
superimposing the drive system signal and mixed signal, and
sends it to the receiver through the transmission channel.

The designed plaintext signals without any encryption are
mi(t), i = 1, 2, 3.

The mixed signal by the plaintext signals and random signal
are given as

Mi(t) =

{

ri(t), 0 ≤ t < Tv,

mi(t − Tv), t ≥ Tv.

where i = 1, 2, 3.
The encrypted signal by superimposing the drive system signal

and mixed signal are Ei(t) = Mi(t)+ xi(t).
Remark 6. The use of the random signal before the encrypted

signal is to enhance the security of the transmit signals.
Receiver: The received transmitted signal, the known key, and

public parameter information are introduced into the response
system. The predefined-time stability theorem given by step 3 and
the predefined-time synchronization of drive-response systems
are realized under the synchronization controller. The receiver
can decrypt the plaintext signal after setting the predefined
synchronization time.

According to the predefined time Tv, if t > Tv, then
xi(t) = yi(t). The receiver can decrypt the plaintext signal by the
following formula:

m
′

i(t) = Ei(t + Tv)− yi(t + Tv),

= Mi(t + Tv)+ xi(t + Tv)− yi(t + Tv),

= Mi(t + Tv),

= mi(t), t ≥ 0.

Note: The sender and the receiver have a common key; all
parameters of the drive system generated by the sender are public;
after generating the drive system, the sender destroys the initial
value of the system which cannot be disclosed.

The transmission signal and the recovery plaintext signal can
improve the transmission efficiency and ensure the security of
signal transmission in the secure communication scheme based
on the predefined-time synchronous control of MCMNN. This
scheme has the following advantages:

(1) We can use Simulink in MATLAB to build a three-
dimensional MCMNN or program simulation in MATLAB to
design a secure communication scheme based on predefined-
time synchronous control of the drive-response systems, and the
design scheme is flexible.

(2) In the secure communication scheme, the encrypted
signal superimposed by the three-dimensional system is relatively
complex and is not easy to crack.

(3) In the secure communication scheme, both the drive
system and the response system contain three differential
equations, and the secure communication is realized under
the synchronous control of the drive-response system,
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which provides a new perspective for the research of secure
communication.

(4) The scheme can preset the synchronization time according
to the need, and it can predict the communication time more
accurately and effectively, and improve the efficiency and security
of the transmission information.

(5) The secure communication scheme has good expansibility
and can be applied to the encrypted transmission of various
images, videos, and other signals and the abnormal detection
system of information.

5. NUMERICAL SIMULATIONS

Example 1: Consider the following three-neuron CMNN with
three-links as drive-response systems:































































































































ẋik(t) =− ckxik(t)+ akq(xik(t))ḡ(xik(t))

+ bkq(xik(t − τ0))g(xik(t − τ0))

+ σ

N
∑

j=1

w0
ijŴxjk(t)+ σ

N
∑

j=1

w1
ijŴxjk(t − τ1)

+ σ

N
∑

j=1

w2
ijŴxjk(t − τ2)+ Ii(t),

ẏik(t) =− ckyik(t)+ akq(yik(t))ḡ(yik(t))

+ bkq(yik(t − τ0))g(yik(t − τ0))

+ σ

N
∑

j=1

w0
ijŴyjk(t)+ σ

N
∑

j=1

w1
ijŴyjk(t − τ1)

+ σ

N
∑

j=1

w2
ijŴyjk(t − τ2)+ Ii(t)+ ui(t),

(14)

where i = 1, 2, ..., 8, c = diag(5, 6, 7), N = 8, σ = 1, and Ŵ =

I3×3. Ii(t) can be omitted in the simulation. The active functions
are ḡ(x) = 1

2 |(|x+1|−|x−1|)|−1 and g(x) = 1
4 (|x+1|−|x−1|).

The time-delays are τ0 = 0.1, τ1 = 0.2, and τ2 = 0.4. The initial
values of drive-response systems (14) and (15) are given by:

x(0) = [5+ i, 1+ 3i, 2+ 5i], y(0) = [2+ 4i,−2+ 4i, 3+ 4i],

i = 1, 2, ..., 8.

The weight parameters are given by

a11(xi1) =
{

−0.8,|xi1(t)|≤1,
−1,|xi1(t)|>1,

a12(xi1) =
{

2.2,|xi1(t)|≤1,
2,|xi1(t)|>1,

a13(xi1) =
{

1.2,|xi1(t)|≤1,
1.8,|xi1(t)|>1,

a21(xi2) =
{

1,|xi2(t)|≤1,
0.8,|xi2(t)|>1,

a22(xi2) =
{

−1,|xi2(t)|≤1,
−0.8,|xi2(t)|>1.

a23(xi2) =
{

−2.4,|xi2(t)|≤1,
−2,|xi2(t)|>1,

a31(xi3) =
{

0.2,|xi3(t)|≤1,
0.4,|xi3(t)|>1,

a32(xi3) =
{

−0.6,|xi3(t)|≤1,
−0.4,|xi3(t)|>1.

a33(xi3) =
{

−1.8,|xi3(t)|≤1,
−1.2,|xi3(t)|>1,

b11(xi1) =
{

−3.2,|xi1(t−τ0)|≤1,
−3,|xi1(t−τ0)|>1,

b12(xi1) =
{

0.2,|xi1(t−τ0)|≤1,
0.4,|xi1(t−τ0)|>1,

b13(xi1) =
{

1,|xi1(t−τ0)|≤1,
1.5,|xi1(t−τ0)|>1,

b21(xi2) =
{

0.4,|xi2(t−τ0)|≤1,
0.2,|xi2(t−τ0)|>1,

b22(xi2) =
{

−3.6,|xi2(t−τ0)|≤1,
−3.2,|xi2(t−τ0)|>1.

b23(xi2) =
{

1.5,|xi2(t−τ0)|≤1,
2.1,|xi2(t−τ0)|>1.

b31(xi3) =
{

2.2,|xi3(t−τ0)|≤1,
2.6,|xi3(t−τ0)|>1,

b32(xi3) =
{

3.2,|xi3(t−τ0)|≤1,
2.8,|xi2(t−τ0)|>1.

b33(xi3) =
{

2.6,|xi3(t−τ0)|≤1,
2.4,|xi3(t−τ0)|>1.

The configuration matricesWl, l = 0, 1, 2 are given by

W0 =











−5 1 1 0 1 1 1 0
1 −5 0 1 1 1 0 1
1 0 −4 1 0 0 1 1
0 1 1 −4 1 0 1 0
1 1 0 1 −6 1 1 1
1 1 0 0 1 −3 0 0
1 0 1 1 1 0 −5 1
0 1 0 0 1 0 1 −4











,

W1 =











−4 0 0 1 1 0 1 1
0 −2 1 1 0 0 0 0
0 1 −4 1 1 1 0 0
1 1 1 −3 0 0 0 0
1 0 1 0 −4 1 0 1
0 0 1 0 1 −2 0 0
1 0 0 0 0 0 −1 0
1 0 0 0 1 0 0 −2











,

W2 =











−1 1 0 0 0 0 0 0
1 −2 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 −3 1 0 0 1
0 0 0 1 −3 1 0 1
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 −2











.

The controller is designed as

uik = −αieik(t)− sign(eik(t))(βi +

2
∑

l=0

|eik(t − τl)|

+
Dv

Tv
δi|eik(t)|

η), (15)

where η = 2 > 1, the remainder parameters are given by

α =



























2 3 4
2 3 4
2 3 4
2 3 4
2 3 4
2 3 4
2 3 4
2 3 4



























,β =



























5 5 5
5 5 5
5 5 5
5 5 5
5 5 5
5 5 5
5 5 5
5 5 5



























, r =



























1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1



























,
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FIGURE 1 | The phase curves of the drive system in three-dimensional neurons.

FIGURE 2 | The phase curves of the response system without the controller in three-dimensional neurons.
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Using the parameters of controller (15), we have λ = 12, a =

4, b = 4, and Dv = 2, the synchronization is realized
within the predefined time Tv = 2. Figures 1, 2 describe the
phase curves of the drive-response system in three-dimensional
neurons without the controller. Figure 3 shows the error state
trajectory of drive-response system (14) without the controller.
Figure 4 describes the phase curves of the drive-response system
in three-dimensional neurons with the controller. Figure 5 shows
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FIGURE 3 | The error system of drive-response system (15) without the controller.

FIGURE 4 | The phase curves of drive-response system (15) with the controller.

the error state trajectory of drive-response system (14) with

controller (15).
Example 2: In this example, we give the secure

communication scheme based on the predefined-time

synchronization of drive-response systems. Figure 6 shows

the schematic diagram of the proposed secure communication

scheme. It is worth noting that the transmitted signals are
superimposed on a single point three-dimensional neuron of the

MCMNN. We consider the following MCMNN of single point
form as the drive system:

ẋ1i(t) = −cix1i(t)+
n
∑

q=1
aiq(x1i(t))ḡq(x1i(t))

+
n
∑

q=1
biq(x1i(t − τ0))gq(x1i(t − τ0))

+σ
N
∑

j=1
w0
1jŴxji(t)+ σ

m
∑

l=1

N
∑

j=1
wl
1jŴxji(t − τl),

(16)
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FIGURE 5 | The error system of drive-response system (15) with the controller.

FIGURE 6 | The schematic diagram of the proposed secure communication scheme.
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FIGURE 7 | The state curve of single three-dimensional system (16).

FIGURE 8 | The time trajectory curve of the plaintext signal.

and

Mi(t) =

{

ri(t), 0 ≤ t < Tv,
mi(t − Tv), t ≥ Tv.

where







r1(t) = r and (−1, 1),
r2(t) = r and (−3, 3),
r3(t) = r and (−2, 2),











m1(t) = 0.5 sin(2t)+ 0.3 cos(0.5t),

m2(t) = − sin(3t)+ 2 cos(1.2t),

m3(t) = sin(3t)− 2 cos(3t).
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FIGURE 9 | The time trajectory curve of mixed signal by the plaintext signal and random signal.

FIGURE 10 | The time trajectory curve of the encrypted signal.

The remaining parameters are given as they are in Example 1.
Figures 7–10 illustrate the state trajectories of x1i(t),mi(t),Mi(t),
and Ei(t), i = 1, 2, 3. The initial values of drive system

(17), mi(t), ri(t), and Mi(t) can only be known by the sender.
The common keys of the sender and receiver are ci and
Ti and the predefined synchronization time Tv. After the
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FIGURE 11 | The error system of drive-response systems (17) and (18) with the controller.

receiver receives the secret keys and the encrypted signal
Ei(t), i = 1, 2, 3, the receiver generates the response system
as follows:

ẏ1i(t) = −ciy1i(t)+
n
∑

q=1
aiq(y1i(t))ḡq(y1i(t))

+
n
∑

q=1
biq(y1i(t − τ0))gq(y1i(t − τ0))

+σ
N
∑

j=1
w0
1jŴyji(t)+ σ

m
∑

l=1

N
∑

j=1
wl
1jŴyji(t − τl)+ ui(t),

(17)
where the parameters are given as in Example 1 too. Since Tv = 2,
we have x1i(t) = y1i(t), i = 1, 2, 3, t ≥ 2. The receiver can decrypt
the encrypted signal by calculating the following formula:

m
′

i(t) = Ei(t + 2)− y1i(t + 2),

= Mi(t + 2)+ x1i(t + 2)− y1i(t + 2),

= Mi(t + 2)

= mi(t), t ≥ 0.

Figure 11 illustrates the state trajectories of the error system
under the controller.

6. CONCLUSION AND PROSPECTS

We investigated the predefined-time synchronization of coupled
memristive neural networks with multi-links coupled forms;

the multi-links performance increased the complexity and the
instability of systems. The predefined-time stability theorem and
the effective controller are given to guarantee predefined-time
synchronization of drive-response systems based on differential
inclusion theory and the concept of set-valued mapping. Further,
we designed an effective secure communication scheme based
on predefined-time synchronization of drive-response systems.
Undeniably, compared with somemature secure communication
schemes, the secure communication schemes in this section are
also relatively shallow. However, the related research results are
expected to provide a new perspective for the research of secure
communication. Finally, numerical simulation of predefined-
time synchronization and an example of secure communication
are shown to verify the effectiveness of theoretical research.
In the future, a more expansibility secure communication
scheme based on predefined-time stability will be designed to
optimize encryption and selective encryption schemes needed
by people.
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