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The path planning and tracking problem of the multi-robot system (MRS) has always

been a research hotspot and applied in various fields. In this article, a novel multi-robot

path planning and tracking model (MPPTM) is proposed, which can carry out online

path planning and tracking problem for multiple mobile robots. It considers many

issues during this process, such as collision avoidance, and robot failure. The proposed

approach consists of three parts: a neural dynamic path planner, a hyperbolic tangent

path optimizer, and an error-driven path tracker. Assisted by Ultra-wideband positioning

system, the proposed MPPTM is a low-cost solution for online path planning and

high-accurate tracking of MRS in practical environments. In the proposed MPPTM, the

proposed path planner has good time performance, and the proposed path optimizer

improves tracking accuracy. The effectiveness, feasibility, and better performance of the

proposed model are demonstrated by real experiments and comparative simulations.
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1. INTRODUCTION

As the development of disciplines and technologies, robotics always involves numerous disciplines.
It covers many aspects from control, mechanics, electronics to communication, computer science,
materials, and so forth. Robotics has also developed from a simple single robot system (SRS) to a
complexmulti-robot system (MRS). For dealing with complex problems,MRS hasmore advantages
than SRS. Large numbers of researches state that the cooperation of MRS has been applied to more
practical fields, such as services (Morita et al., 2018; Krizmancic et al., 2020), therapy (Ali et al., 2019;
Mehmood et al., 2019), rescue (Queralta et al., 2020), training (Xu and Tang, 2021), and so on.

Path planning and tracking problem of MRS has always been a research hotspot and applied in
various fields, including delivery (Chen et al., 2021), monitoring (Silic and Mohseni, 2019; Koutras
et al., 2020), task assignment (Chen and Zhu, 2019; Wang et al., 2020b), target tracking (Zhou et al.,
2018), and so on. In order to solve this problem, many kinds of research can be divided into three
aspects: task-level, control-level, and task-control-level (Zeng et al., 2015; Rubí et al., 2019). The
task-level research focuses on finding the optimal solution to the problem without considering the
hardware conditions, which is top-down. It includes path planning of MRS and task assignment
of MRS. The control-level research needs to consider the hardware of MRS and the realization of
the solution, which is down-top. Tracking the target or path with high accuracy is one of these
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kinds of research. The task-control-level research combines task-
level and control-level, and the path planning and tracking
problem is one of this kind of research.

In the task-level research of MRS, path planning and task
assignment are the two mainstreams. Compared with task
assignments, path planning is more focused on the time-space
continuity and process. For example, these studies (Yi et al., 2017;
Dai et al., 2019; Ali et al., 2020; Dong et al., 2020; Han and
Yu, 2020; Wang et al., 2020a) only consider task-level without
considering control-level details. Combining with deep learning,
(Wang et al., 2020a) proposed a neural RRT* for path planning
of MRS, but it needs a lot of processed data for training before
path planning (Wang et al., 2020a). Han et al. used database
heuristics for fast near-optimal path planning of MRS, it can
carry out efficient path planning, but its applicable scene is
only based on grid environment (Han and Yu, 2020). Yi et al.
proposed a bio-inspired approach to plan the path of robots in
3-D environments. Also, it can make real-time path planning but
can not avoid obstacles (Yi et al., 2017). Dong et al. proposed a
path planning method of UAVs in the 3-D environment for the
inspection of transmission lines. But it is only made available for
a single target, not for multiple targets (Dong et al., 2020).

Path tracking for MRS is solved by control-level algorithms.
These algorithms tend to reduce error during the tracking process
while considering the difference of robot hardware in MRS. Ma
proposed cooperative tracking of MRS with circular formation,
but it can not track multi-target (Ma, 2020). Yu et al. proposed a
formation tracking method based on an adaptive neural network,
but it just makes MRS formate to track a single target (Yu et al.,
2018). Zhou et al. presented a resilient tracking method for MRS.
It is suitable for patrol and monitoring in the area but can not
track the immovable target (Zhou et al., 2018).

Both task-level and control-level studies are very limited in
practical application. Therefore, some studies focusing on both
task-level and control-level have occurred.

Park et al. proposed a distributed approach combing
alternating direction method of multipliers (ADMM) to non-
myopic path planning for multi-target tracking, but it can not
avoid obstacles in the environment (Park et al., 2019). Yordanova
et al. proposed a path planning and tracking method for the area
coverage of autonomous underwater vehicles, but in essence, the
method is still only for the 2-D environment without obstacles
(Yordanova and Gips, 2020). Penin et al. proposed a vision-
based path planning and target tracking method for UAVs (Penin
et al., 2018). It can deal with collision avoidance and obstacle
avoidance, but its accuracy of vision-based positioning is still
questionable for indoor environments.

Compared with these studies (Penin et al., 2018; Park et al.,
2019; Yordanova and Gips, 2020; Yu et al., 2020), there are
few studies for online path planning and tracking of MRS.
During online path planning and tracking of MRS, the proposed
model needs to plan the trajectories easy to track in real-time,
which deals with dynamic environments and accidents, such as
robot fault, moving obstacles, and so on. Online path planning
and tracking need to solve the following three problems. (1)
How can path planning meet the requirements of real-time;
(2) How can the planned paths be transformed into trajectories

easy to track; and (3) How to efficiently organize related
processes?

In this study, a novel model named MPPTM (multi-
robot path planning and tracking model) is proposed for
online path planning and high-accuracy tracking of MRS. It
does not depend on the sensors of the individual robot in
MRS by using an Ultra-wideband (UWB) positioning system.
Therefore, the proposed approach is a low-cost solution for
warehouse or factory environments. The proposed model has the
following innovations.

1. The proposed model uses superscalar pipelining mode to
organize these processes more efficiently. Therefore, the
process of path tracking does not need to wait until the end
of path planning.

2. Compared with traditional path planners, the proposed neural
dynamic path planner has better time performance.

3. In our proposed model, the hyperbolic tangent path optimizer
bridges the planned paths and the trajectories easy to track,
and it reduces the tracking error of MRS.

The remainder of the article is organized as follows. In section
2, the components and framework of the proposed model
are introduced in detail. The experiments for MRS in a 3-D
environment are present in section 3. Some further discussions
about the comparative studies are given in section 4. Finally, the
conclusion and future study are presented in section 5.

2. PROPOSED APPROACH

The proposed MPPTM is described in detail in this section. It
is applicable for not only 2-D but also 3-D environments. It
combines the task-level and control-level, which can deal with the
path planning of MRS, and cope with the path tracking of MRS.

The proposed MPPTM mainly integrates three parts,
including the path planner, the path tracker, and the path
optimizer. The path planner is responsible for dealing with
the online path planning of MRS at the task-level. During the
path planning of MRS, obstacles avoidance, collision avoidance,
and other robot accidents are considered. The path tracker is
used to cope with the path tracking of MRS. During the path
tracking of MRS, reducing tracking error and compatibility with
different hardware are considered. The path optimizer is used to
bridge the gap between the path planner and the path tracker,
which makes the planned path to be easier tracked. It can
process the online path planning and path tracking for MRS in
complex environments.

The framework of MPPTM with environments is shown
in Figure 1. The process of path planning and tracking, the
cooperation mechanism between the path planner and the path
tracker are given in the framework of MPPTM. In Figure 1,
k and t are the iterations of the planner and the iteration of
the tracker, respectively. For the path planner, I(k) represents
the environmental information, and Pc(k) represents the current
posture of theMRS. Both are used to generate the desired posture
Pd(k) through Q(k). Through the path optimizer, the desired
posture Pd(k) is transferred into the desired trajectory Td(t) for
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FIGURE 1 | Overall schematic diagram of multi-robot path planning and tracking model (MPPTM) with environments.

the path tracker to track. In the path tracker, the desired posture
Td(k) and current posture Pc(t) of MRS are used to generate
the desired velocity V(t) by path tracker for MRS. Additionally,
then it is converted into the desired motor speed U(t) by robot
dynamics. In the MRS, each robot tries to achieve the desired
motor speed U(t) to move.

Usually, there are two different modes to deal with the path
planning and tracking of MRS, which are superscalar pipelining
mode and traditional mode.

In traditional mode, path tracking must wait until all path
planning and optimization are completed. This mechanism
handles these processes serially, which can save computing
resources. However, it is only suitable for path planning and
tracking of MRS in static environments.

Due to the time performance of the proposed path planner, the
proposed MPPTM applies superscalar pipelining mode to deal
with these processes, such as path planning, path optimizing, and
path tracking, as shown in Figure 2.

In superscalar pipelining mode, part of the planned path
is used to be optimized by the path optimizer, and tracked
by the path tracker. Path tracking does not have to wait
for all path planning and optimization to be completed. This
mechanism parallels these processes to some extent, which can
be suitable for online path planning and tracking of MRS in
dynamic environments.

The proposed MPPTM is introduced in detail by three
following parts: (A) The neural dynamic path planner; (B)
The error-driven path tracker; and (C) The hyperbolic tangent
path optimizer.

2.1. The Improved Neural Dynamic Path
Planner
As an important part of MPPTM, the neural dynamic path
planner is used to plan paths for MRS. It is based on neural
dynamics and has the advantages and characteristics of the
biological neural system. The neural dynamic path planner for
3-D environments is introduced in the section, and the proposed
path planner for 2-D environments is similar to this. The neural
dynamic path planner includes three following parts.

2.1.1. The Neural Dynamic Network (NDN)
In the neural dynamic path planner, the NDN is used to real-time
describe the environment where MRS is located. In NDN, the
distance between any two adjacent neurons is equal, its distance
is 1, and any two adjacent neurons are also connected to each
other. The structure of NDN describing the 3-D environment is
as shown in Figure 3.

The activity of neuron qijk is in the ith row, the jth
column, and the kth page of the NDN, which describes
the environment that it maps. The activities of NDN Q
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FIGURE 2 | Two different operation modes in MPPTM. (A) The superscalar pipelining mode. (B) The traditional mode.

describing 3-D environments is a 3-D matrix defined by
Equation (1).
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In Figure 3, r is the radius of the range that neurons can
affect, x is horizontal offset, y is vertical offset, z is longitudinal
offset, and x, y, z are integers. The radius of the search sphere r
directly affects the computation performance and the accuracy
of path planning. If radius r is set too large, the planned
path will pass through the obstacles in the environment. In
NDN, the activity of each neuron q represents the environment
where it maps. Therefore, the activities of NDN Q describe the
whole environment.

2.1.2. The Improved Neural Activity Algorithm
This algorithm states the activity of neural signals in NDN.
Through multiple iterations of neural activity, the activities of
NDN Q tend to be stable, and all kinds of signals have been
fully spread in NDN. The neural activity of NDN is the core
part of the proposed path planner, and it is also the most time-
consuming process. Therefore, we proposed an improved neural
activity algorithm of NDN, and it is defined by Equation (2).

dQ
dt

= −KQ+ (D− Q)
(

[I]+ + [F(x, y, z)]+
)

−(J + Q)
(

[I]− + [F(x, y, z)]−
) (2)

Three parameters,K,D, J, are decay rate, upper bound, and lower
bound, respectively, in the dynamic equation of neural activity.
Meanwhile, two operators, [a]+ and [b]−, obtain, respectively,
max{a, 0} andmax{−a, 0}. The function F(x, y, z) is the weighted
sum of the shifting matrix Q with these offsets x, y, z, and it is
defined by Equation (3).

F(x, y, z) =
∑

xyz
wxyzshift(Q, x, y, z)

√

x2 + y2 + z2 ≤ r (3)

where shift(Q, x, y, z) shifts the elements of matrix Q with the x
rows, the y columns, and the z pages, but it satisfies the condition
√

x2 + y2 + z2 ≤ r. This weight wxyx is defined by Equation (4).

wxyz =
u

√

x2 + y2 + z2

√

x2 + y2 + z2 ≤ r (4)

where wxyz is the connection weight when the horizontal offset
is x, the vertical offset is y, and longitudinal offset is z in
NDN, u is the positive parameter and represents the intensity of
the connection.

In Equation (2), environmental information I is a 3-D matrix
with the same size as Q, its element is defined as Equation (5). Ex
and In are positive parameters, which represent the intensity of
excitatory nerve signal and inhibitory nerve signal, respectively,
in NDN.

iijk =







Ex The neuron maps target
−In The neuron maps robot
0 Others

(5)

2.1.3. The Path Generation for 3-D Environments
After the multiple iterations of neural activity, the activities of
NDN Q are used to generate the next position during the path
planning of MRS. The next position of the ith robot Pi(k+ 1) is
defined as Equation (6).

Pi(k+ 1) ⇐ qabc = max
{

qefg
∣

∣ 0 <
∥

∥qefg − qijk
∥

∥ < r
}

(6)

Assume that the current position of the ith robot is mapped by
the neuron qijk, qefg is the set of neurons in the affected range
of the neuron qijk. In the set qefg , the maximum activity of the

neuron qabc is selected as the next position Pi(k+ 1) of the ith
robot during path planning.

2.2. The Error-Driven Path Tracker
The proposed path tracker uses error driven method to track the
path planned by the proposed path planner. The error-driven
path tracker is capable of being compatible with a variety of
controllers and the hardware of MRS. In order to better test the
performance of the proposed MPPTM in 3-D environments, a
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FIGURE 3 | The neural dynamic network (NDN) describing 3-D environments.

path tracker with PID controller for quadrotor is given briefly in
the article, which is used in the following experiments.

Quadrotor, a helicopter with four rotors, is a small unmanned
aerial vehicle (UAV). Additionally, it is used as an individual
MRS in 3-D environments. Two control loops with PID control
are used in the path tracker of MRS for path tracking in 3-
D environments. The system architecture of the proposed path
tracker for 3-D tracking with PID control is shown in Figure 4.

2.3. The Hyperbolic Tangent Path Optimizer
The path optimizer bridges the gap between the path planner
with the path tracker, it translates the task-level paths planned

by the path planner into the control-level paths for the path
tracker. During this process, the task-level paths Pi(k) with low
frequency should be transformed into the control-level trajectory
Ti(t) with high frequency, which canmake the planned paths easy
to track forMRS. The planned paths are given by the path planner
are defined as Equation (7), where Pathsi(γ ) is the continuous
planned path of the ith robot in MRS, k is the iteration of the path
planner, and R is the number of robots in MRS.

Pi(k) ∈
{

Pathsi(γ )| i = 1, 2 . . . ,R γ ≥ 0
}

k = 1, 2 . . . , n i = 1, 2 . . . ,R
(7)
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FIGURE 4 | The proposed path tracker for quadrotors in 3-D environments.

The control-level trajectory Ti
os(t) given by the path optimizer

with original sampling from Pi(k) can be obtain by Equation (8),
where the operator ⌊a⌋b obtains the largest element in set b and
less than or equal to a, and w is the sampling frequency.

{

a =
⌊

t/w
⌋k

Ti
os(t) = [Pi(a+ 1)− Pi(a)]× t%w

w i = 1, 2 . . .R
(8)

In order to improve the tracking performance of MRS, an
improved sampling method is proposed in the article. Pi(τ ) is the
set of elements in set Pi(k) whose elements are not differentiable
on the paths of MRS, which can describe as Equation (9).

Pi(τ ) ∈

{

Pi(k)|
lim

1δ→0+
Ṗi(k+ 1δ) 6= lim

1δ→0−
Ṗi(k+ 1δ)

k ∈ 1, 2 . . . , n

}

i ∈ 1, 2 . . . ,R (9)

The trajectory Ti
hts
(t) given by the path optimizer with hyperbolic

tangent sampling from Pi(τ ) can be obtain by Equation (10),
where the operator ⌈a⌉b obtains the smallest element in set b and
more than or equal to a, w is the sampling frequency.











a =
⌈

t/w
⌉τ

b =
⌊

t/w
⌋τ

Ti
hts
(t) = [Pi(a)− Pi(b)]× f ( t−w×b

w×(a−b)
) i = 1, 2 . . .R

(10)

where f (x) is the hyperbolic tangent function defined as Equation
(11). Optimal trajectory with hyperbolic tangent sampling Ti

hts

is generated by optimizing the path Pathsi(γ ) according to the
referenced velocity.

f (x) = 0.5× (
e2x+1 − 1

e2x+1 + 1
+ 1) (11)

Compared with the path planner with original sampling, the
one with hyperbolic tangent sampling can give the trajectory
which is easier to track for MRS, which is demonstrated in the
following experiment.

3. EXPERIMENTS

For demonstrating the feasibility of the proposed MPPTM,
online path planning and tracking experiments for multi-UAV
are designed in this section. However, it should be noted that
the proposed MPPTM is suitable for online path planning and
tracking of MRS not only in 2-D environments but also in
3-D environments.

3.1. Experimental Preparations
In order to accurately locate UAV groups in 3-D environments,
the UWB positioning system is used, as shown in Figure 5. At
least four UWB locator nodes are used to locate UAV groups in
3-D environments, and the distance between two adjacent nodes
is 15m. A micro quadrotor produced by Zeronetech is used as
an individual of the UAV group in this experiment, and it has a
built-in UWB tag and wireless communication module.

The laptop with R5800u CPU and 32GB ROM is responsible
for collecting the location data of UAVs via the UWB positioning
system, recoding the flight data of UAVs, and controlling the fight
of UAVs viaWiFi communication. The system is implemented by
Matlab and C++, the proposed path planner is coded by Matlab,
the proposed path optimizer and the proposed path tracker are
coded by C++. The obstacles in 3-D environments are realized
by marking the environmental information I(k) in the proposed
path planner.

3.2. Online Path Planning and Tracking for
3-D Environments
The size of the outdoor environment used for testing is
10 m×10 m× 10 m, which is mapped by the NDN with size
50×50×50 in the neural dynamic path planner. In the proposed
path planner, we setK to 50,D to 5, J to 3, u to 0.3, r to 2, Ex to 50,
and In to 5. In the proposed path optimizer, hyperbolic tangent
sampling is used at the condition w = 100. The initial positions
of targets and quadrotors are randomly located. The initial sizes
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FIGURE 5 | The experimental preparations for online path planning and tracking. (A) The experimental site for online path planning and tracking of multi-UAVs.

(B) The UWB locator node. (C) A micro quadrotor with UWB tag.

and initial positions of obstacles are randomly generated to mark
the environmental information I(k).

The snapshot of path planning and tracking at 30 s
is shown in Figure 6, and the 1th quadrotor has finished
capturing the target. Figure 7 shows the snapshot of path
planning and tracking at 65 s, where all quadrotors have
captured targets.

The velocities of quadrotors in X,Y ,Z directions are recoded
and shown in Figure 8. The experimental result shows that
all quadrotors can avoid collision and obstacles, and capture
targets. The experimental result demonstrates that MPPTM is

capable of online path planning and tracking of MRS in 3-D
complex environments.

3.3. Online Path Planning and Tracking
With Robot Fault
This experiment uses the same parameters and the same
environment from the experiment in section 3.2. But
in the online path planning and tracking, there are two
quadrotors that have a certain probability 0.05 of failure
during the process. Additionally, MPPTM needs to allocate
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FIGURE 6 | The snapshot of path planning and tracking for UAVs in 3-D environments at 30 s. (Red circles and black squares present the initial positions of robots

and targets respectively on the main diagram. Four sub diagrams zoom in the main diagram and show the current flight states of quadrotors. The red dot line presents

the real path and the blue dot line presents the referenced path).

FIGURE 7 | The snapshot of path planning and tracking for UAVs in 3-D environments at 65 s. (The meaning of markers is the same as that in Figure 6).

these two targets to the other two quadrotors during
the process.

As shown in Figure 9, after two quadrotors break down, the

other quadrotors have also successfully completed four targets

capturing. Therefore, the Experimental result indicates that

MPPTM can deal with robot fault during online path planning

and tracking, and it can reassign targets timely after robot fault.

3.4. Online Path Planning and Tracking
With Dynamic Obstacles
This experiment is conducted in the 3-Dworkspace 8m× 2.5m×

2.5 m, and the experimental environment is mapped by the NDN
with size 40 × 10 × 10. The experimental parameters are the
same as those of the experiment in section 3.2. Obstacles in this
experiment move at different times (8 s, 14 s, 28s) in the order
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FIGURE 8 | The snapshot of path planning and tracking for UAVs in 3-D environments at 65 s.

shown in Figure 10. In order to better observe the experimental
results, only two UAVs are used for the experiment. However,
the proposed MPPTM can carry out online path planning and
tracking for more robot individuals in an environment with
dynamic obstacles.

Figure 10 shows that two quadrotors can avoid dynamic
obstacles to capture targets during the path planning and
tracking. The experimental result indicates that MPPTM carries
out online path planning and tracking of MRS in an environment
with dynamic obstacles.

4. DISCUSSION

Several comparative experiments on the proposed path optimizer
and the proposed path planner are given in this section.

4.1. The Performance of the Proposed Path
Optimizer
By using two different path optimizers, the actual paths and the
desired paths are recoded in the experiment in section 3.2. The
tracking error is the sum of the errors between the actual path
and the desired path on the X, Y , and Z axes. The errors of the
quadrotors are shown in Figure 11.

An indicator, defined as Equation (12), is given to measure the
tracking error of UAVs during online path planning and tracking,
where R is the number of quadrotors in UAVs, errori(t) is the
error the ith quadrotor, and t is the time.

E =
1

R

R
∑

i=1

+∞
∫

0

errori(t)dt (12)

In order to eliminate the influence of a series of factors as far as
possible, such as wind speed, battery status, and measurement
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FIGURE 9 | The snapshot of path planning and tracking with quadrotor fault in 3-D environments. (A) Observation from view (-38, 30). (B) Observation from view (60,

30). (Green triangle represents the position of quadrotor fault. The meaning of other markers are the same as that in Figure 6).

FIGURE 10 | The path planning and tracking with dynamic obstacles in 3-D environments. (A) The snapshot at 8 s. (B) The snapshot at 14 s. (C) The snapshot at

28 s. (D) The snapshot at 40 s. (Red arrow represents the direction of obstacles movement. The meaning of other markers are the same as that in Figure 6).

error, we test 20 experiments and collect the data of tracking
error. These data are shown in Table 1.

Table 1 shows that, compared with the original path
optimizer, the proposed path optimizer can reduce the tracking
error of UAVs during online path planning and tracking.

4.2. The Time Performance of the
Proposed Path Planner
By using the proposed neural activity algorithm, the
proposed path planner has better time performance than other
approaches (Li et al., 2009; Yi and Zhu, 2013; Sun et al., 2019;
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FIGURE 11 | The tracking errors of quadrotors by using two different path optimizers. (The solid line represents the tracking error by using the hyperbolic tangent path

optimizer, and the dashed line represents the tracking error by using the original path optimizer).

TABLE 1 | The comparison of tracking error of unmanned aerial vehicle (UAVs).

Case Max(E) Min(E) Avg(E)

The original path optimizer 1.5669 1.3768 1.4797

The proposed path optimizer 1.0453 0.9765 1.0278

Bold indicates that this indicator is the most superior to other cases.

Ni et al., 2020; Zhu et al., 2021). The comparative simulations
are coded by Matlab, which is run on the PC with Intel i7-7700,
28GB ROM, and Win10 OS. The average time consumptions of
single path planning by using different approaches and different
sizes are shown in Table 2.

Table 2 indicates that the time performance of the proposed
path planner is better than other approaches, and it is insensitive
to the number of robots in MRS. The proposed path planner
has excellent time performance, which makes it very suitable
for superscalar pipelining mode in the proposed path planner
of MPPTM for online path planning and tracking in 3-
D environments.

5. CONCLUSION

The proposed model, MPPTM, can deal with task-level and
control-level problems for path planning and tracking of MRS
in 3-D environments. During the online path planning and
tracking, our proposed model only needs to obtain the position
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TABLE 2 | The average time consumptions of different approaches (s).

Case Size R=4 R=8 R=12 R=16

Our approach
30X30 0.1738 0.1831 0.1686 0.1826

50X50 0.8563 0.8322 0.8647 0.8534

Li et al. (2009)
30X30 3.5184 7.4610 9.8962 15.7595

50X50 18.3248 37.6820 46.9013 74.6896

Yi and Zhu (2013)
30X30 0.9502 0.8306 0.9999 0.9882

50X50 5.0008 3.9363 5.0498 4.9412

Sun et al. (2019)
30X30 2.8010 5.6704 6.8507 10.5158

50X50 13.2122 25.7745 34.4256 52.0586

Ni et al. (2020)
30X30 2.563 2.7275 2.9789 3.4007

50X50 12.0897 13.8657 15.0516 18.0413

Zhu et al. (2021)
30X30 2.2681 4.5916 5.5473 8.5152

50X50 10.6986 20.871 27.8763 42.1546

Bold indicates that this indicator is the most superior to other cases.

of MRS instead of relying on the complex sensor data of
individual robots to plan paths. The cost of MRS equipped with
such complex sensors is huge. Therefore, our proposed model,
MPPTM, is a low-cost solution for the online path planning
of MRS. Based on the UWB positioning system, MPPTM can
carry out online path planning and high-accuracy path tracking
for MRS in indoor or outdoor environments. It is suitable
for application in manufacturing plants and industrial parks.

Real experiments in this article demonstrate the applicability
and effectiveness of the proposed model. In this model, the
proposed path planner has excellent time performance to meet
the requirement of superscalar pipelining mode. Meanwhile,
the proposed path optimizer can guarantee the high-accuracy
tracking of UAVs.
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