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This paper investigates the fixed-time synchronization and the predefined-

time synchronization of memristive complex-valued bidirectional associative

memory neural networks (MCVBAMNNs) with leakage time-varying delay.

First, the proposed neural networks are regarded as two dynamic real-

valued systems. By designing a suitable feedback controller, combined with

the Lyapunov method and inequality technology, a more accurate upper

bound of stability time estimation is given. Then, a predefined-time stability

theorem is proposed, which can easily establish a direct relationship between

tuning gain and system stability time. Any predefined time can be set as

controller parameters to ensure that the synchronization error converges

within the predefined time. Finally, the developed chaotic MCVBAMNNs and

predefined-time synchronization technology are applied to image encryption

and decryption. The correctness of the theory and the security of the

cryptographic system are verified by numerical simulation.

KEYWORDS

fixed-time synchronization, predefined-time synchronization, bidirectional

associative memory, image encryption and decryption, complex-valued neural

networks

1. Introduction

After entering the twenty-first century, brain-like intelligence and neural network

have developed rapidly. With the support of technologies such as artificial intelligence,

deep learning, and cloud computing, corresponding achievements have emerged in an

endless stream (Su et al., 2021; Wen and Su, 2022), which also poses greater challenges to

the large-scale information processing capacity of computing systems. Many researchers

have explored the direction of brain-like research (Rubinov and Sporns, 2010; Zhao H.

et al., 2021), trying to get inspiration from the structure of the human brain and the

way of information processing. Associative memory is one of the most active behaviors

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.1000426
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.1000426&domain=pdf&date_stamp=2022-10-17
mailto:hz_paper@163.com
https://doi.org/10.3389/fnbot.2022.1000426
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2022.1000426/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Liu et al. 10.3389/fnbot.2022.1000426

in the human brain, and it simulates the ability of the real

nervous system to process information. In 1988, Kosko extended

the traditional Hopfield neural networks and established

bidirectional associative memory (BAM) neural networks

(Kosko, 1988). The networks have a relatively complex structure,

and their neurons are distributed in two layers. Each neuron

in each layer is connected to all neurons in the other layer,

while all neurons in the same layer are not connected to

each other. At present, with the rapid development of artificial

intelligence, the synchronous control and stability analysis of

BAM neural networks has become the mainstream research

direction. Researchers have invested a lot of time and energy to

explore BAM neural networks, which provides a new research

idea for the theoretical analysis of complex networks (Ke and

Miao, 2013; Zhang et al., 2014; Qi et al., 2015; Zhang and Quan,

2015; Zhang and Yang, 2020; Zhao Y. et al., 2021; Liu et al., 2022).

In recent years, the development of many industrial

products has involved complex signal problems. The

introduction of complex signals extends the state variables

of the controlled system from the real domain to the complex

domain, which leads to an upsurge of research on complex-

valued neural networks. The state variables, connection weights,

and activation functions of complex-valued neural networks

are complex numbers, which can solve problems that cannot

be solved by real-valued neural networks, such as XOR and

symmetry detection. The complex-valued neural networks

have more advantages in network learning ability and self-

organization. At present, some interesting results have been

proposed (Liu et al., 2017; Zhang et al., 2018; Li and Mu, 2019;

You et al., 2020).

The memristor was originally predicted by Chua (1971).

HP laboratory first developed the memristor components of

nanometer size in 2008 (Strukov et al., 2008). The resistance of

the memristor will vary with the charge flow and can remain

unchanged after power failure. In addition, the memristor is

considered to be a perfect device for simulating synapses due to

its advantages of nanometer size, low power consumption, and

easy large-scale integration. There has been much interesting

research on the dynamics of memristive neural networks (Li

and Cao, 2016; Wang et al., 2017; Yang et al., 2020). Compared

with traditional artificial neural networks, memristor neural

networks can better simulate the structure and function of the

human brain.

As one of the dynamic behaviors, synchronization behavior

describes the cooperative consistency in a group, which is

manifested in the network as the cooperative and consistent

relationship after the interaction of node states. Fixed-time

synchronization is a special kind of finite-time synchronization.

The corresponding synchronization time has a certain upper

bound, which is not dependent on the initial value of the

system but only related to the system parameters and the

controller. At present, there are some research results on fixed-

time synchronization. Cao and Li (2017) studied a fixed-time

synchronization control method based on memristor and

recurrent neural networks with time delay and estimated

the settling time of fixed-time synchronization. Chen et al.

(2019) derived a new fixed-time stability theorem, and

sufficient conditions were derived to guarantee the fixed-time

synchronization of neural networks. Yang et al. (2019)

investigated the fixed-time synchronization of memristor-

based neural networks with time-delay and coupling. The

research of fixed-time stability promotes the development of

many practical applications. In some practical engineering

applications, the system is required to reach the origin in the

specified time, but the main disadvantage of fixed-time stability

is that the relationship between the system parameters and the

convergence time is not clear. Then, Sanchez-Torres et al. (2014)

proposed the definition of predefined-time stability, which could

be solved by adjusting the parameters in the process of controller

design. Therefore, the system can achieve stability before the

predefined-time Tc. Predefined-time stability is the result of

fixed-time stability optimization. At present, there are some

research results on predefined-time synchronization. Lin et al.

(2020) proposed a predefined-time stability theorem based on a

piecewise Lyapunov function, in which the Lyapunov function

should satisfy the inequality: V̇(t) ≤ −Gc
Tc
(αVp(t) + c) with

α, c, p > 0, Gc is the minimum upper bound for fixed-

time stability and Tc is a custom parameter. Aldana-Lopez

et al. (2019) studied more relaxed predefined time stability

conditions, where the Lyapunov function should satisfy the

inequality V̇(t) ≤ −Gc
Tc
(αVp(t) + βVq(t)) with α,β > 0, p > 1

and 0 < q < 1. Anguiano-Gijon et al. (2019) introduced

Gc into inequality in the form of V̇(t) ≤ − π
qTc

(V1− q
2 (t) +

V1+ q
2 ) with 0 < q < 1. The predefined-time stability

theorem proposed in this paper is more general than (Aldana-

Lopez et al., 2019; Anguiano-Gijon et al., 2019; Lin et al.,

2020). Synchronization has important applications in many

fields, such as secure communication, nonlinear control systems,

pattern recognition, and information processing (Alimi et al.,

2019; Ouyang et al., 2020). Synchronization also plays an

important role in laser systems, superconducting materials,

and conventional bus dispatching (Gkiotsalitis et al., 2020;

Wang et al., 2021). In addition, Su et al. (2020) studied the

manipulator control based on an improved recurrent neural

network. The ultimate end-effector tracking error can reach

asymptotic convergence, which is also a concrete manifestation

of synchronous control.

This paper also studies the image encryption scheme based

on MCVBAMNNs. As we all know, the research results of

brain-like neural networks have shown great power in practical

applications. Memristor-based neural networks, which are more

similar to the structure of human synapses, also show unique

functions and values in the application. The digital image is

an important way to represent information, research on image

data privacy protection based on a general memristor-based

neural network learning mode has broad application prospects.
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FIGURE 1

Circuit of memristor-based BAMNNs.

However, there are still few studies on image data privacy

protection using memristor-based artificial neural networks

and their network behavior characteristics. As an ideal tool

to simulate human neural networks, memristor-based neural

networks can be used to maximize the ability of the human

brain to recognize and classify, which shows the potential

of memristor-based neural networks in pattern recognition.

Recognition and classification of sensitive areas of digital

images and proposing appropriate privacy protection solutions

can give full play to the advantages of memory-based neural

networks in recognition and classification and have a wide range

of applications.

Motivated by the above discussions, we investigated

the fixed-time synchronization and the predefined-time

synchronization of MCVBAMNNs with leakage time-varying

delay. The innovations of this paper are presented as follows:

First, based on the appropriate fixed-time stability lemma,

the feedback controller is designed, and the fixed-time

synchronization problem of MCVBAMNNs is studied. By

comparison, the results of this paper are less conservative.

Second, a new predefined-time stability theorem is introduced,

where the predefined time is set more flexibly and in a

more general form. Thirdly, a more simple and effective

discontinuous controller is designed, and sufficient conditions

for MCVBAMNNs to achieve predefined-time synchronization

are obtained. The synchronization time does not depend

on the initial value and can be adjusted according to the

controller parameters. Finally, an image encryption and

decryption scheme based on predefined-time synchronization

is presented, and the predefined time can be used as the

secret key. Numerical simulation verifies the validity of

the theoretical results and the feasibility of the encryption

scheme.

Notations: In this study, R, C, Rn, and C
n represent the

real field, complex field, n-dimensional real space, and n-

dimensional complex space, respectively. u = R+ Ii ∈ C, where

imeets i =
√
−1.

2. Problem formulation and
preliminaries

We consider the following MCVBAMNNs as the drive

system, which is given as:
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FIGURE 2

Typical current-voltage characteristic of a memristor.











































































ẋu1i(t) =− ηui (x
u
1i(t − τ (t)))xu1i(t − τ (t))+

m
∑

j=1

auji(x
u
1i(t))f

u
j (x

u
2j(t))

+
m
∑

j=1

buji(x
u
1i(t − τ (t)))f uj (x

u
2j(t − σ (t))),

ẋu2j(t) =− ξuj (x
u
2j(t − σ (t)))xu2j(t − σ (t))+

n
∑

i=1

cuij(x
u
2j(t))g

u
i (x

u
1i(t))

+
n
∑

i=1

duij(x
u
2j(t − σ (t)))gui (x

u
1i(t − τ (t))),

(1)

where i = 1, 2, ..., n, j = 1, 2, ...m; xu1i(t), x
u
2j(t) ∈ C represent

the voltage of the capacitor ith and jth nodes at time t.

The initial values of the system (1) are xu1 (0) = ϕu
1 (s) and

xu2 (0) = ϕu
2 (s), s ∈ R; f uj (·) and gui (·): C → C are complex-

valued activation functions; τ (t) and σ (t) are the leakage time-

varying delays satisfying 0 < τ (t) < σ (t) < C (C is a

constant); ηui > 0 and ξuj > 0 are the rates of neuron

self-inhibition; auji, b
u
ji, c

u
ij, d

u
ij are the memristive connection

weights.

The parameters signification and performance of

MCVBAMNNs are described as:

ηui (x
u
1i(t − τ (t))) = 1

C1i
[

m
∑

j=1

(Maji +Mbji)signji +
1

R1i
],

ξuj (x
u
2j(t − σ (t))) = 1

C2j
[

n
∑

i=1

(Mcij +Mdij)signij +
1

R2j
],

auji(x
u
1i(t)) =

signji

C1iMaji
, buji(x

u
1i(t − τ (t))) =

signji

C1iMbji
,

cuij(x
u
2j(t)) =

signij

C2jMcij
, duij(x

u
2j(t − σ (t))) =

signij

C2jMdij
.

The memristor-based BAM neural networks model can be

implemented by very large-scale integration (VLSI) circuits as

shown in Figure 1. Taking a real-valued system as an example,

where signij = signij = 1 if i 6= j, otherwise signij = signij = −1,

x1i(·) and x2j(·) represent the state of the subsystems, fj(·) and
gi(·) are amplifiers, Maji is the connection memristor between

the amplifier fj(x2j(t)) and state x1i(t), Mbji is the connection

memristor between the amplifier fj(x2j(t−σ (t))) and state x1i(t),

Mcij is the connectionmemristor between the amplifier gi(x1i(t))

and state x2j(t), Mdij is the connection memristor between the

amplifier gi(x1i(t − τ (t))) and state x2j(t), Rij and Cij are the

resistor and capacitor.

Figure 2 illustrates the simplified current- voltage

characteristics of the memristor, we define the neuron

self-inhibition and connection weight as the following state

correlation functions:
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ηRi (x) =
{

η̂Ri , |x| ≥ Ti,

η̌Ri , |x| < Ti,
ηIi (x) =

{

η̂Ii , |x| ≥ Ti,

η̌Ii , |x| < Ti,
ξRj (x) =

{

ξ̂Rj , |x| ≥ T
′
j ,

ξ̌Rj , |x| < T
′
j ,

ξ Ij (x) =
{

ξ̂ Ij , |x| ≥ T
′
j ,

ξ̌ Ij , |x| < T
′
j ,

aRji (x) =
{

ÂR
ji , |x| ≥ ℵi,

ǍR
ji , |x| < ℵi,

aIji(x) =
{

ÂI
ji, |x| ≥ ℵi,

ǍI
ji, |x| < ℵi,

bRji (x) =
{

B̂Rji , |x| ≥ ℵ′
i,

B̌Rji , |x| < ℵ′
i,

bIji(x) =
{

B̂Iji, |x| ≥ ℵ′
i,

B̌Iji, |x| < ℵ′
i,

cRij (x) =
{

ĈRij , |x| ≥ ̟j,

ČRij , |x| < ̟j,

cIij(x) =
{

ĈIij, |x| ≥ ̟j,

ČIij, |x| < ̟j,
dRij (x) =

{

D̂R
ij , |x| ≥ ̟

′
j ,

ĎR
ij , |x| < ̟

′
j ,

dIij(x) =
{

D̂I
ij, |x| ≥ ̟

′
j ,

ĎI
ij, |x| < ̟

′
j ,

where the switching jumps Ti,T
′
j ,ℵi,ℵ

′
i,̟j,̟

′
j > 0.

System (1) is called the drive system, the response system can be described as follows:
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ẏu1i(t) =− ηui (y
u
1i(t − τ (t)))yu1i(t − τ (t))+

m
∑

j=1

auji(y
u
1i(t))f

u
j (y

u
2j(t))

+
m
∑

j=1

buji(y
u
1i(t − τ (t)))f uj (y

u
2j(t − σ (t)))+ uui (t),

ẏu2j(t) =− ξuj (y
u
2j(t − σ (t)))yu2j(t − σ (t))+

n
∑

i=1

cuij(y
u
2j(t))g

u
i (y

u
1i(t))

+
n
∑

i=1

duij(y
u
2j(t − σ (t)))gui (y

u
1i(t − τ (t)))+ vuj (t),

(2)

where i = 1, 2, ..., n, j = 1, 2, ...m; yu1i(t), y
u
2j(t) ∈ C. The initial values of the system (2) are yu1 (0) = φu

1 (s) and yu2 (0) = φu
2 (s). u

u
i (t) and

vuj (t) are denoted as controllers. The remaining parameters are similar to those of the drive system. To better understand the following

work, Figure 3 is the flow chart of the system.

Definition 1. Filippov (1999) consider dynamical systems with discontinuous right-hand side ẋ(t) = F(t, x), x(t) is a solution of the

differential system on [0,T) in Filippov’s sense, if x(t) is absolutely continuous and satisfies the differential inclusion of

ẋ(t) ∈ K[F](t, x),

where

K[F](t, x) =
⋂

δ>0

⋂

µ(N)=0

c̄o[F(B(x, δ) \ N), t],

where c̄o[·] is the convex closure hull of a set, B(x, δ) = {y : ‖y − x‖ ≤ δ} is the ball centered at x(t) with radius δ, and µ(N) is the

Lebesgue measure of set N.

Definition 2. Hu et al. (2017) the MCVBAMNNs (1) and (2) are said to achieve fixed-time synchronization if there exists a fixed-time

Tmax > 0, which is independent of the initial values but may be relevant with some parameters of MCVBAMNNs and controller, and

a settling time function T(e(0)) ≤ Tmax such that limt→T(e(0)) ‖e(t)‖2 = 0 and ‖e(t)‖2 ≡ 0 for ∀t > T(e(0)).

Definition 3. Anguiano-Gijon et al. (2019) if the settling time T(e(0)) of fixed-time stability can be predicted by adjusting the constant

Tc, it means that the drive-response systems can achieve globally predefined-time stability, where T(e(0)) ≤ Tc, ∀e(0) ∈ R
n.
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FIGURE 3

Flow chart of the system.

Remark 1. Predefined-time synchronization is a special kind of fixed-time synchronization. The problem of predefined-time

synchronization of drive-response systems can be converted into the predefined-time stability of the error systems. The purpose of

this paper is to design an appropriate controller to stabilize the error systems in the expected time by adjusting the controller parameter

Tc.
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Based on Definition 1 and the theory of differential inclusion, the drive system (1) can be written as
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ẋu1i(t) =− c̄o(ηui (x
u
1i(t − τ (t))))xu1i(t − τ (t))+

m
∑

j=1

c̄o(auji(x
u
1i(t)))f

u
j (x

u
2j(t))

+
m
∑

j=1

c̄o(buji(x
u
1i(t − τ (t))))f uj (x

u
2j(t − σ (t))),

ẋu2j(t) =− c̄o(ξuj (x
u
2j(t − σ (t))))xu2j(t − σ (t))+

n
∑

i=1

c̄o(cuij(x
u
2j(t)))g

u
i (x

u
1i(t))

+
n
∑

i=1

c̄o(duij(x
u
2j(t − σ (t))))gui (x

u
1i(t − τ (t))).

(3)

The response system (2) is represented as
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ẏu1i(t) =− c̄o(ηui (y
u
1i(t − τ (t))))yu1i(t − τ (t))+

m
∑

j=1

c̄o(auji(y
u
1i(t)))f

u
j (y

u
2j(t))

+
m
∑

j=1

c̄o(buji(y
u
1i(t − τ (t))))f uj (y

u
2j(t − σ (t)))+ uui (t),

ẏu2j(t) =− c̄o(ξuj (y
u
2j(t − σ (t))))yu2j(t − σ (t))+

n
∑

i=1

c̄o(cuij(y
u
2j(t)))g

u
i (y

u
1i(t))

+
n
∑

i=1

c̄o(duij(y
u
2j(t − σ (t))))gui (y

u
1i(t − τ (t)))+ vuj (t).

(4)

To obtain the synchronization criteria by set-valued mapping, let

η̃Ri = max{|η̂Ri |, |η̌
R
i |}, η̃Ii = max{|η̂Ii |, |η̌Ii |};

ξ̃Rj = max{|ξ̂Rj |, |ξ̌
R
j |}, ξ̃ Ij = max{|ξ̂ Ij |, |ξ̌ Ij |};

ãRji = max{|ÂR
ji |, |Ǎ

R
ji |}, ãIji = max{|ÂI

ji|, |ǍI
ji|};

b̃Rji = max{|B̂Rji |, |B̌
R
ji |}, b̃Iji = max{|B̂Iji|, |B̌Iji|};

c̃Rij = max{|ĈRij |, |Č
R
ij |}, c̃Iij = max{|ĈIij|, |ČIij|};

d̃Rij = max{|D̂R
ij |, |Ď

R
ij |}, d̃Iij = max{|D̂I

ij|, |ĎI
ij|}.

The synchronization errors are defined as eu1i(t) = yu1i(t)− xu1i(t), e
u
2j(t) = yu2j(t)− xu2j(t), we can conclude that



























ėR1i(t) =P(t)+WR
i (t)+ uRi (t),

ėI1i(t) =P̂(t)+WI
i (t)+ uIi (t),

ėR2j(t) =H(t)+ QR
j (t)+ vRj (t),

ėI2j(t) =Ĥ(t)+ QI
j (t)+ vIj (t),

(5)

where i = 1, 2, ..., n, j = 1, 2, ...,m; the initial values of error system (5) are eR1 (s) = φR
1 (s) − ϕR

1 (s), e
I
1(s) = φI

1(s) − ϕI
1(s),

eR2 (s) = φR
2 (s)− ϕR

2 (s), e
I
2(s) = φI

2(s)− ϕI
2(s). We define P(t), P̂(t), H(t), Ĥ(t),WR

i (t),W
I
i (t), Q

R
j (t), Q

I
j (t) as follows:

P(t) =− [η̃Ri y
R
1i(t − τ (t))− η̃Ii y

I
1i(t − τ (t))]+ [η̃Ri x

R
1i(t − τ (t))− η̃Ii x

I
1i(t − τ (t))], (6)

P̂(t) =− [η̃Ri y
I
1i(t − τ (t))+ η̃Ii y

R
1i(t − τ (t))]+ [η̃Ri x

I
1i(t − τ (t))+ η̃Ii x

R
1i(t − τ (t))], (7)
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H(t) =− [ξ̃Rj y
R
2j(t − σ (t))− ξ̃ Ij y

I
2j(t − σ (t))]+ [ξ̃Rj x

R
2j(t − σ (t))− ξ̃ Ij x

I
2j(t − σ (t))], (8)

Ĥ(t) =− [ξ̃Rj y
R
2j(t − σ (t))+ ξ̃ Ij y

R
2j(t − σ (t))]+ [ξ̃Rj x

I
2j(t − σ (t))+ ξ̃ Ij x

R
2j(t − σ (t))], (9)

WR
i (t) =

m
∑

j=1

{ãRji f
R
j (y

R
2j(t))− ãRji f

R
j (x

R
2j(t))+ ãIjif

I
j (x

I
2j(t))− ãIjif

I
j (y

I
2j(t))}

+
m
∑

j=1

{b̃Rji f
R
j (y

R
2j(t − σ (t)))− b̃Rji f

R
j (x

R
2j(t − σ (t)))}

+
m
∑

j=1

{b̃Ijif Ij (xI2j(t − σ (t)))− b̃Ijif
I
j (y

I
2j(t − σ (t)))},

(10)

WI
i (t) =

m
∑

j=1

{ãRji f
I
j (y

I
2j(t))− ãRji f

I
j (x

I
2j(t))+ ãIjif

R
j (y

R
2j(t))− ãIjif

R
j (x

R
2j(t))}

+
m
∑

j=1

{b̃Rji f
I
j (y

I
2j(t − σ (t)))− b̃Rji f

I
j (x

I
2j(t − σ (t)))}

+
m
∑

j=1

{b̃Ijif Rj (y
R
2j(t − σ (t)))− b̃Ijif

R
j (x

R
2j(t − σ (t)))},

(11)

QR
j (t) =

n
∑

i=1

{c̃Rijg
R
i (y

R
1i(t))− c̃Rijg

R
i (x

R
1i(t))+ c̃Iijg

I
i (x

I
1i(t))− c̃Iijg

I
i (y

I
1i(t))}

+
n
∑

i=1

{d̃Rijg
R
i (y

R
1i(t − τ (t)))− d̃Iijg

R
i (x

I
1i(t − τ (t)))}

−
n
∑

i=1

{d̃IijgIi (yI1i(t − τ (t)))− d̃Iijg
I
i (x

I
1i(t − τ (t)))},

(12)

QI
j (t) =

n
∑

i=1

{c̃IijgRi (y
R
1i(t))− c̃Iijg

R
i (x

R
1i(t))+ c̃Rijg

I
i (y

I
1i(t))− c̃Rijg

I
i (x

I
1i(t))}

+
n
∑

i=1

{d̃Rijg
I
i (y

I
1i(t − τ (t)))− d̃Rijg

I
i (x

I
1i(t − τ (t)))}

+
n
∑

i=1

{d̃IijgRi (y
R
1i(t − τ (t)))− d̃Iijg

R
i (x

R
1i(t − τ (t)))}.

(13)

Assumption 1. Suppose the activation functions satisfy |f Rj | ≤ MR
j , |f Ij | ≤ MI

j , |g
R
i | ≤ NR

i , |gIi | ≤ NI
i , forM

R
j ,M

I
j ,N

R
i ,N

I
i are positive

constants, i = 1, 2, ..., n, j = 1, 2...,m.

Lemma 1. Guo et al. (2020) the following inequality holds: |WR
i (t)| ≤ 3R

i , |WI
i (t)| ≤ 3I

i , |Q
R
j (t)| ≤ �R

i , |QI
j (t)| ≤ �I

i for

3R
i = 2

m
∑

j=1
[MR

j (ã
R
ji + b̃Rji )+MI

j (ã
I
ji + b̃Iji)]; 3I

i = 2
m
∑

j=1
[MR

j (ã
I
ji + b̃Iji)+MI

j (ã
R
ji + b̃Rji )]; �R

i = 2
n
∑

i=1
[NR

i (c̃
R
ij + d̃Rij )+NI

i (c̃
I
ij + d̃Iij)];

�I
i = 2

n
∑

i=1
[NR

i (c̃
I
ij + d̃Iij)+ NI

i (c̃
R
ij + d̃Rij )].
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Lemma 2. Hardy et al. (1952) if α1,α2, ...,αn ≥ 0, 0 < ρ ≤ 1, ζ > 1, then we have

n
∑

i=1
α

ρ
i ≥ (

n
∑

i=1
αi)

ρ ,
n
∑

i=1
α

ζ
i ≥ n1−ζ (

n
∑

i=1
αi)

ζ .

Lemma 3. Chen et al. (2020) suppose the continuous and positive definite function V(t) satisfies the following two conditions:

(i) V(t) = 0 ⇔ t = 0;

(ii) Any solution t of system V(t) satisfies

V̇(t) ≤ −aVρ (t)− bVζ (t)− cV(t),

for a, b, c > 0, 0 < ρ < 1, and ζ > 1. Then the origin of the system V(t) is fixed-time stable and the settling time is estimated by

T1
max = 1

c(1− ρ)
ln(1+ c

a
)+ 1

c(ζ − 1)
ln(1+ c

b
).

Lemma 4. Polyakov (2012) suppose the continuous and positive definite function V(t) satisfies the following two conditions:

(i) V(t) = 0 ⇔ t = 0;

(ii) Any solution t of system V(t) satisfies

D+V(t) ≤ −aVρ (t)− bVζ (t),

for a, b > 0, 0 < ρ < 1, and ζ > 1, where D+V(t) denotes the upper right-hand Dini derivative of V(t). Then the origin of the system

V(t) is fixed-time stable and the settling time is estimated by

T2
max = 1

a(1− ρ)
+ 1

b(ζ − 1)
.

Lemma 5. Hu et al. (2017) suppose the continuous and positive definite function V(t) satisfies the following two conditions:

(i) V(t) = 0 ⇔ t = 0;

(ii) Any solution t of system V(t) satisfies

V̇(t) ≤ −aVρ (t)− bVζ (t),

for a, b > 0, 0 < ρ < 1, and ζ > 1. Then the origin of the system V(t) is fixed-time stable and the settling time is estimated by

T3
max = 1

a
· (a
b
)
1−ρ
ζ−ρ (

1

1− ρ
+ 1

ζ − 1
).

Lemma 6. Parsegov et al. (2013) suppose the continuous and positive definite function V(t) satisfies the following two conditions:

(i) V(t) = 0 ⇔ t = 0;

(ii) Any solution t of system V(t) satisfies

D+V(t)) ≤ −aVρ (t))− bVζ (t),

for a, b > 0, ρ = 1− 1
2d
, and ζ = 1+ 1

2d
, where d > 1. Then the origin of the system V(t) is fixed-time stable, and the settling time is

estimated by

T4
max = πd√

ab
.

Remark 2. Ifm > 0, ln(1+m) < m. Since c
a > 0, c

b
> 0, we have ln(1+ c

a ) < c
a , ln(1+

c
b
) < c

b
, then 1

c(1−ρ)
ln(1+ c

a )+
1

c(ζ−1)
ln(1+

c
b
) < 1

a(1−ρ)
+ 1

b(ζ−1)
. Therefore, Lemma 3 can give a more accurate Tmax than Lemma 4.

Remark 3. Most of the designed controllers are discontinuous. To ensure the solution existence of the error system, the Dini derivative

is introduced to guarantee continuity at breakpoints.
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3. Main results

3.1. Fixed-time synchronization analysis

We design the following controller:











































































uRi (t) =− wisign(e
R
1i(t))− λR1i(e

R
1i(t − τ (t))− λI1i(e

I
1i(t − τ (t)))

− sign(eR1i(t))[λ2i|e
R
1i(t)| + λ3i|eR1i(t)|

α + λ4i|eR1i(t)|
β ],

uIi (t) =− kisign(e
I
1i(t))− wR

1i(e
R
1i(t − τ (t))− wI

1i(e
I
1i(t − τ (t)))

− sign(eI1i(t)))[λ2i|eI1i(t)| + λ3i|eI1i(t)|α + λ4i|eI1i(t)|β ],
vRj (t) =− pjsign(e

R
2j(t))− kR1j(e

R
2j(t − σ (t))− kI1j(e

I
2j(t − σ (t)))

− sign(eR2j(t)))[k2j|e
R
2j(t)| + k3j|eR2j(t)|

α + k4j|eR2j(t)|
β ],

vIj (t) =− qjsign(e
I
2j(t))− pR1j(e

R
2j(t − σ (t))− pI1j(e

I
2j(t − σ (t)))

− sign(eI2j(t)))[k2j|eI2j(t)| + k3j|eI2j(t)|α + k4j|eI2j(t)|β ],

(14)

where i = 1, 2, ..., n, j = 1, 2, ...,m, and the constants wi, λR1i, λI1i, ki, w
R
1i, w

I
1i, pj, k

R
1j, k

I
1j, qj, p

R
ij , p

I
1j should be determined later.

Meanwhile, λ2i, λ3i, λ4i, k2j, k3j, k4j are any positive constants, and 0 < α < 1, β > 1.

Theorem 1. If λR1i ≥ η̃Ri , λ
I
1i ≥ η̃Ii , w

R
1i ≥ η̃Ri , w

I
1i ≥ η̃Ii , k

R
1j ≥ ξ̃Ri , k

I
1j ≥ ξ̃ Ii , p

R
1j ≥ ξ̃Ri , p

I
1j ≥ ξ̃ Ii , wi ≥ 3R

i , ki ≥ 3I
i , pj ≥ �R

i ,

qj ≥ �I
i , i = 1, 2, ..., n, j = 1, 2, ...,m, then systems (1) and (2) can achieve the fixed-time synchronization under the controller (14).

Additionally, the settling time is T1
max = 1

c(1−ρ)
ln(1 + c

a ) +
1

c(ζ−1)
ln(1 + c

b
), where a = λ · 2

α+1
2 , ρ = α+1

2 , b = 2µ, ζ = 1+β
2 ,

c = 2ω, λ = min{min
i
(λ3i),min

j
(k3j)}, µ = min{min

i
(λ4i) · n

1−β
2 ,min

j
(k4j) ·m

1−β
2 }, ω = min{min

i
(λ2i),min

j
(k2j)}.

Proof 1. To prove this theorem, we construct the Lyapunov function as follows:

Vu(t) = Vu
1 (t)+ Vu

2 (t),

= VR
1 (t)+ VI

1(t)+ VR
2 (t)+ VI

2(t),

where VR
1 (t) =

1
2

n
∑

i=1
(eR1i(t))

2, VI
1(t) =

1
2

n
∑

i=1
(eI1i(t))

2, VR
2 (t) =

1
2

m
∑

j=1
(eR2j(t))

2, VI
2(t) =

1
2

m
∑

j=1
(eI2j(t))

2.

We calculate the derivative of VR
1 (t):

V̇R
1 (t) =

n
∑

i=1

eR1i(t)ė
R
1i(t),

=
n
∑

i=1

|eR1i(t)|sign(e
R
1i(t)){P(t)+WR

i (t)+ uRi (t)},

≤
n
∑

i=1

{η̃Ri |e
R
1i(t)||e

R
1i(t−τ (t))|+η̃Ii |eR1i(t)||e

I
1i(t−τ (t))|} +

n
∑

i=1

|eR1i(t)||W
R
i (t)|

+
n
∑

i=1

|eR1i(t)|sign(e
R
1i(t)){−wisign(e

R
1i(t))− λR1i(e

R
1i(t − τ (t)))− λI1i(e

I
1i(t − τ (t)))}

+
n
∑

i=1

|eR1i(t)|sign(e
R
1i(t)){−sign(eR1i(t))[λ2i|e

R
1i(t)| + λ3i|eR1i(t)|

α + λ4i|eR1i(t)|
β ]}.
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According to Assumption 1 and Lemma 1, we have

V̇R
1 (t) ≤−

n
∑

i=1

[λ2i|eR1i(t)|
2 + λ3i|eR1i(t)|

α+1+λ4i|eR1i(t)|
β+1]+

n
∑

i=1

(3R
i − wi)|eR1i(t)|

+
n
∑

i=1

{(η̃Ri − λR1i)|e
R
1i(t)||e

R
1i(t − τ (t))|} +

n
∑

i=1

{(η̃Ii − λI1i)|eR1i(t)||e
I
1i(t − τ (t))|}.

≤−
n
∑

i=1

[λ2i|eR1i(t)|
2 + λ3i|eR1i(t)|

α+1 + λ4i|eR1i(t)|
β+1],

≤−min
i
(λ2i)

n
∑

i=1

|eR1i(t)|
2 −min

i
(λ3i)

n
∑

i=1

|eR1i(t)|
α+1 −min

i
(λ4i)

n
∑

i=1

|eR1i(t)|
β+1,

≤−min
i
(λ2i)(

n
∑

i=1

|eR1i(t)|
2)−min

i
(λ3i)(

n
∑

i=1

|eR1i(t)|
2)

α+1
2 − n

1−β
2 ·min

i
(λ4i)(

n
∑

i=1

|eR1i(t)|
2)

β+1
2 ,

≤− 2min
i
(λ2i) · VR

1 (t)− 2
α+1
2 min

i
(λ3i) · (VR

1 (t))
α+1
2 − n

1−β
2 · 2

β+1
2 min

i
(λ4i) · (VR

1 (t))
β+1
2 .

The proofs of VI
1(t), V

R
2 (t), and VI

2(t) are similar with that of VR
1 (t):

V̇I
1(t) ≤− 2min

i
(λ2i) · VI

1(t)− 2
α+1
2 min

i
(λ3i) · (VI

1(t))
α+1
2

− n
1−β
2 · 2

β+1
2 min

i
(λ4i) · (VI

1(t))
β+1
2 ,

V̇R
2 (t) ≤− 2min

j
(k2j) · VR

2 (t)− 2
α+1
2 min

j
(k3j) · (VR

2 (t))
α+1
2

−m
1−β
2 · 2

β+1
2 min

j
(k4j) · (VR

2 (t))
β+1
2 ,

V̇I
2(t) ≤− 2min

j
(k2j) · VI

2(t)− 2
α+1
2 min

j
(k3j) · (VI

2(t))
α+1
2

−m
1−β
2 · 2

β+1
2 min

j
(k4j) · (VI

2(t))
β+1
2 .

According to the analysis above, we can obtain that

V̇u(t) ≤− 2 · {min
i
(λ2i)(V

R
1 (t))+min

i
(λ2i)(V

I
1(t))

+min
j
(k2j)(V

R
2 (t))+min

j
(k2j)(V

I
2(t))}

− 2
α+1
2 · {min

i
(λ3i)(V

R
1 (t))

α+1
2 +min

i
(λ3i)(V

I
1(t))

α+1
2

+min
j
(k3j)(V

R
2 (t))

α+1
2 +min

j
(k3j)(V

I
2(t))

α+1
2 }

− 2
β+1
2 · {n

1−β
2 ·min

i
(λ4i)(V

R
1 (t))

β+1
2 +n

1−β
2 ·min

i
(λ4i)(V

I
1(t))

β+1
2

+m
1−β
2 ·min

j
(k4j)(V

R
2 (t))

β+1
2 +m

1−β
2 ·min

j
(k4j)(V

I
2(t))

β+1
2 }.
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Therefore, we get

V̇u(t) ≤− 2 · {min
i
(λ2i) · [VR

1 (t)+VI
1(t)]+min

j
(k2j) · [VR

1 (t)+VI
1(t)]}

− 2
α+1
2 · {min

i
(λ3i)[V

R
1 (t)+VI

1(t)]
α+1
2 +min

j
(k3j)[V

R
2 (t)+VI

2(t)]
α+1
2 }

− 2
β+1
2 · {n

1−β
2 ·min

i
(λ4i) · [VR

1 (t)+VI
1(t)]

β+1
2 +m

1−β
2 ·min

j
(k4j) · [VR

2 (t)+VI
2(t)]

β+1
2 },

≤− 2
α+1
2 λ · [(Vu

1 (t))
1+α
2 + (Vu

2 (t))
1+α
2 ]− 2

β+1
2 µ · [(Vu

1 (t))
1+β
2 + (Vu

2 (t))
1+β
2 ]

− 2ω · [Vu
1 (t)+ Vu

2 (t)],

≤− 2
α+1
2 λ · (Vu(t))

1+α
2 −2µ · (Vu(t))

1+β
2 −2ω · Vu(t).

According to the above results and referring to Lemma 3, it can be obtained that the systems (1) and (2) have achieved fixed-time

synchronization under controller (14). Then the settling time T1
max = 1

c(1−ρ)
ln(1 + c

a ) +
1

c(ζ−1)
ln(1 + c

b
), and a = λ · 2

α+1
2 ,

ρ = α+1
2 , b = 2µ, ζ = 1+β

2 , c = 2ω, where λ = min{min
i
(λ3i),min

j
(k3j)}, µ = min{min

i
(λ4i) · n

1−β
2 ,min

j
(k4j) · m

1−β
2 },

ω = min{min
i
(λ2i),min

j
(k2j)}.

Corollary 1. If λR1i ≥ η̃Ri , λ
I
1i ≥ η̃Ii , w

R
1i ≥ η̃Ri , w

I
1i ≥ η̃Ii , k

R
1j ≥ ξ̃Ri , k

I
1j ≥ ξ̃ Ii , p

R
1j ≥ ξ̃Ri , p

I
1j ≥ ξ̃ Ii , wi ≥ 3R

i , ki ≥ 3I
i , pj ≥ �R

i ,

qj ≥ �I
i , i = 1, 2, ..., n, j = 1, 2, ...,m, then the systems (1) and (2) can achieve fixed-time synchronization under the controller (14).

Furthermore, T2
max = 1

a(1−ρ)
+ 1

b(ζ−1)
, where a = λ · 2

α+1
2 , ρ = α+1

2 , b = 2µ, ζ = 1+β
2 .

Proof 2. Similarly, it can be proved that

V̇u(t) ≤ −a(Vu(t))
1+α
2 − b(Vu(t))

1+β
2 − cVu(t),

where a = 2
α+1
2 λ, b = 2µ, c = 2ω, λ = min{min

i
(λ3i),min

j
(k3j)}, µ = min{min

i
(λ4i) · n

1−β
2 ,min

j
(k4j) · m

1−β
2 }. Since the Lyapunov

function Vu(t) is derivable, we have D+Vu(t) = V̇u(t). Therefore,

D+Vu(t) ≤− a(Vu(t))
1+α
2 − b(Vu(t))

1+β
2 − cVu(t),

≤− a(Vu(t))
1+α
2 − b(Vu(t))

1+β
2 .

According to Lemma 4, the origin of system (5) can achieve fixed-time stability.

Corollary 2. If λR1i ≥ η̃Ri , λ
I
1i ≥ η̃Ii , w

R
1i ≥ η̃Ri , w

I
1i ≥ η̃Ii , k

R
1j ≥ ξ̃Ri , k

I
1j ≥ ξ̃ Ii , p

R
1j ≥ ξ̃Ri , p

I
1j ≥ ξ̃ Ii , wi ≥ 3R

i , ki ≥ 3I
i , pj ≥ �R

i , qj ≥ �I
i ,

i = 1, 2, ..., n, j = 1, 2, ...,m. According to Lemma 5, systems (1) and (2) can achieve fixed-time synchronization under the controller

(14). Furthermore, T3
max = 1

a · ( a
b
)
1−ρ
ζ−ρ ( 1

1−ρ + 1
ζ−1 ). where a = λ · 2

α+1
2 , ρ = α+1

2 , b = 2µ, ζ = 1+β
2 , λ = min{min

i
(λ3i),min

j
(k3j)},

µ = min{min
i
(λ4i) · n

1−β
2 ,min

j
(k4j) ·m

1−β
2 }. The proof process is similar to Corollary 1, so it is omitted here.

Corollary 3. If λR1i ≥ η̃Ri , λ
I
1i ≥ η̃Ii , w

R
1i ≥ η̃Ri , w

I
1i ≥ η̃Ii , k

R
1j ≥ ξ̃Ri , k

I
1j ≥ ξ̃ Ii , p

R
1j ≥ ξ̃Ri , p

I
1j ≥ ξ̃ Ii , wi ≥ 3R

i , ki ≥ 3I
i , pj ≥ �R

i , qj ≥ �I
i ,

i = 1, 2, ..., n, j = 1, 2, ...,m. According to Lemma 6, systems (1) and (2) can achieve fixed-time synchronization under the controller

(14). Furthermore, T4
max = πd√

ab
. where a = λ·2

α+1
2 , b = 2µ, λ = min{min

i
(λ3i),min

j
(k3j)},µ = min{min

i
(λ4i)·n

1−β
2 ,min

j
(k4j)·m

1−β
2 }.

The proof process is similar to Corollary 1, so it is omitted here.

3.2. Predefined-time synchronization analysis

Theorem 2. For system (5), if there exists a continuous and positive definite functionV(e(t)) :Cn → R, Tc is a user-defined parameter,

and the following conditions hold:
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(i) V(e(t)) = 0 ⇔ e(t) = 0;
(ii) For any V(e(t)) > 0, there exist a, b, c > 0, 0 < p < 1, q > 1 satisfying

V̇(e(t)) ≤ −Gc

Tc
(aVp(e(t))+ bVq(e(t))+ cV(e(t))),

then the origin of system (5) is predefined-time stable within predefined time Tc, in which

Gc =
1

c(1− p)
ln(1+ c

a
)+ 1

c(q− 1)
ln(1+ c

b
).

Proof 3. For any V(e(t)) > 0, the corresponding analysis is shown as follows:

V̇(e(t)) ≤ −Gc

Tc
(aVp(e(t))+ bVq(e(t))+ cV(e(t))).

The setting time function is given as follows:

T(e(0)) =
∫ T(e(0))

0
dt.

Then we have

T(e(0)) =
∫ T(e(0))

0
dt,

≤
∫ V(e(0))

0

Tc

Gc

1

aVp + bVq + cV
dV ,

≤
∫ 1

0

Tc

Gc

1

aVp + bVq + cV
dV +

∫ +∞

1

Tc

Gc

1

aVp + bVq + cV
dV .

LetW = V1−p, dW = (1− p)V−pdV , V = W
1

1−p , then we have

∫ 1

0

Tc

Gc

1

aVp + bVq + cV
dV ≤

∫ 1

0

Tc

Gc

1

aVp + cV
dV ,

=
∫ 1

0

Tc

Gc

1

1− p

Vp

aVp + cV
dW,

=
∫ 1

0

Tc

Gc

1

1− p

1

a+ cW
dW,

=Tc

Gc

1

c(1− p)
ln(1+ c

a
).

Let Z = V1−q, dZ = (1− q)V−qdV , V = Z
1

1−q , then we have

∫ +∞

1

Tc

Gc

1

aVp + bVq + cV
dV ≤

∫ +∞

1

Tc

Gc

1

bVq + cV
dV ,

=
∫ 1

0

Tc

Gc

1

q− 1

Vq

bVq + cV
dZ,

=
∫ 1

0

Tc

Gc

1

q− 1

1

b+ cZ
dZ,

=Tc

Gc

1

c(q− 1)
ln(1+ c

b
).

Therefore, we have

T(e(0)) ≤Tc

Gc
(

1

c(1− p)
ln(1+ c

a
)+ 1

c(q− 1)
ln(1+ c

b
)),

≤Tc.
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In order to realize the predefined-time synchronization of systems (1) and (2), we designed the following controller:



































































































uRi (t) =− wisign(e
R
1i(t))− λR1i(e

R
1i(t − τ (t))− λI1i(e

I
1i(t − τ (t)))

− sign(eR1i(t))
Gc

Tc
[λ2i|eR1i(t)| + λ3i|eR1i(t)|

α + λ4i|eR1i(t)|
β ],

uIi (t) =− kisign(e
I
1i(t))− wR

1i(e
R
1i(t − τ (t))− wI

1i(e
I
1i(t − τ (t)))

− sign(eI1i(t)))
Gc

Tc
[λ2i|eI1i(t)| + λ3i|eI1i(t)|α + λ4i|eI1i(t)|β ],

vRj (t) =− pjsign(e
R
2j(t))− kR1j(e

R
2j(t − σ (t))− kI1j(e

I
2j(t − σ (t)))

− sign(eR2j(t)))
Gc

Tc
[k2j|eR2j(t)| + k3j|eR2j(t)|

α + k4j|eR2j(t)|
β ],

vIj (t) =− qjsign(e
I
2j(t))− pR1j(e

R
2j(t − σ (t))− pI1j(e

I
2j(t − σ (t)))

− sign(eI2j(t)))
Gc

Tc
[k2j|eI2j(t)| + k3j|eI2j(t)|α + k4j|eI2j(t)|β ].

(15)

Theorem 3. If λR1i ≥ η̃Ri , λ
I
1i ≥ η̃Ii , w

R
1i ≥ η̃Ri , w

I
1i ≥ η̃Ii , k

R
1j ≥ ξ̃Ri , k

I
1j ≥ ξ̃ Ii , p

R
1j ≥ ξ̃Ri , p

I
1j ≥ ξ̃ Ii , wi ≥ 3R

i , ki ≥ 3I
i , pj ≥ �R

i ,

qj ≥ �I
i , i = 1, 2, ..., n, j = 1, 2, ...,m, Gc = 1

c(1−ρ)
ln(1 + c

a ) +
1

c(ξ−1)
ln(1 + c

b
), systems (1) and (2) can achieve the predefined-time

synchronization within predefined time Tc and the controller (15), where a = λ · 2
α+1
2 , b = 2µ, c = 2ω, ρ = α+1

2 , ζ = 1+β
2 ,

λ = min{min
i
(λ3i),min

j
(k3j)}, µ = min{min

i
(λ4i) · n

1−β
2 ,min

j
(k4j) ·m

1−β
2 }, ω = min{min

i
(λ2i),min

j
(k2j)}.

Proof 4. To prove this theorem, we construct the Lyapunov function as follows:

Vu(t) =Vu
1 (t)+ Vu

2 (t),

=VR
1 (t)+ VI

1(t)+ VR
2 (t)+ VI

2(t),

where VR
1 (t) =

1
2

n
∑

i=1
(eR1i(t))

2, VI
1(t) =

1
2

n
∑

i=1
(eI1i(t))

2, VR
2 (t) =

1
2

m
∑

j=1
(eR2j(t))

2, VI
2(t) =

1
2

m
∑

j=1
(eI2j(t))

2.

We calculate the derivative of VR
1 (t) as follows:

V̇R
1 (t) =

n
∑

i=1

eR1i(t)ė
R
1i(t),

=
n
∑

i=1

|eR1i(t)|sign(e
R
1i(t)){P(t)+WR

i (t)+ uRi (t)},

≤
n
∑

i=1

{η̃Ri |e
R
1i(t)||e

R
1i(t − τ (t))| + η̃Ii |eI1i(t)||eI1i(t − τ (t))|} +

n
∑

i=1

|eR1i(t)||W
R
i (t)|

+
n
∑

i=1

|eR1i(t)|sign(e
R
1i(t)){−wisign(e

R
1i(t))− λR1i(e

R
1i(t − τ (t))− λI1i(e

I
1i(t − τ (t)))}

+
n
∑

i=1

|eR1i(t)|sign(e
R
1i(t)){−sign(eR1i(t))

Gc

Tc
[λ2i|eR1i(t)| + λ3i|eR1i(t)|

α + λ4i|eR1i(t)|
β ]}.
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According to Assumption 1 and Lemma 1, we have

V̇R
1 (t) ≤−

n
∑

i=1

Gc

Tc
[λ2i|eR1i(t)|

2 + λ3i|eR1i(t)|
α+1 + λ4i|eR1i(t)|

β+1]+
n
∑

i=1

(3R
i − wi)|eR1i(t)|

+
n
∑

i=1

{(η̃Ri − λR1i)|e
R
1i(t)||e

R
1i(t − τ (t))|} +

n
∑

i=1

{(η̃Ii − λI1i)|eR1i(t)||e
I
1i(t − τ (t))|}

≤ −
n
∑

i=1

Gc

Tc
[λ2i|eR1i(t)|

2 + λ3i|eR1i(t)|
α+1 + λ4i|eR1i(t)|

β+1],

≤− Gc

Tc
[min

i
(λ2i)(

m
∑

i=1

|eR1i(t)|
2)+min

i
(λ3i)(

m
∑

i=1

|eR1i(t)|
2)

α+1
2 + n

1−β
2 ·min

i
(λ4i)(

m
∑

i=1

|eR1i(t)|
2)

β+1
2 ],

≤− Gc

Tc
[2min

i
(λ2i) · VR

1 (t)+ 2
α+1
2 min

i
(λ3i) · (VR

1 (t))
α+1
2 + n

1−β
2 · 2

β+1
2 min

i
(λ4i) · (VR

1 (t))
β+1
2 ].

The proofs of VI
1(t), V

R
2 (t) and VI

2(t) are similar with that of VR
1 (t). Additionally, we have

V̇I
1(t) ≤− Gc

Tc
[2min

i
(λ2i) · VI

1(t)+ 2
α+1
2 min

i
(λ3i) · (VI

1(t))
α+1
2

+ n
1−β
2 · 2

β+1
2 min

i
(λ4i) · (VI

1(t))
β+1
2 ],

V̇R
2 (t) ≤− Gc

Tc
[2min

i
(k2j) · VR

2 (t)+ 2
α+1
2 min

i
(k3j) · (VR

2 (t))
α+1
2

+m
1−β
2 · 2

β+1
2 min

i
(k4j) · (VR

2 (t))
β+1
2 ],

V̇I
2(t) ≤− Gc

Tc
[2min

i
(k2j) · VI

2(t)+ 2
α+1
2 min

i
(k3j) · (VI

2(t))
α+1
2

+m
1−β
2 ·2

β+1
2 min

j
(k4j) · (VI

2(t))
β+1
2 ].

According to the analysis above, we can obtain that

V̇u(t) ≤− 2Gc

Tc
{min

i
(λ2i)(V

R
1 (t))+min

i
(λ2i)(V

I
1(t))

+min
j
(k2j) · (VR

2 (t))+min
j
(k2j)(V

I
2(t))}

− 2
α+1
2 Gc

Tc
{min

i
(λ3i)(V

R
1 (t))

α+1
2 +min

i
(λ3i)(V

I
1(t))

α+1
2

+min
j
(k3j)(V

I
2(t))

α+1
2 +min

j
(k3j)(V

R
2 (t))

α+1
2 }

− 2
β+1
2 Gc

Tc
{n

1−β
2 ·min

i
(λ4i)(V

R
1 (t))

β+1
2 + n

1−β
2 ·min

i
(λ4i)(V

I
1(t))

β+1
2

+m
1−β
2 ·min

j
(k4j)(V

R
2 (t))

β+1
2 +m

1−β
2 ·min

j
(k4j)(V

I
2(t))

β+1
2 },
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Therefore,

V̇u(t) ≤− 2Gc

Tc
{min

i
(λ2i)[V

R
1 (t)+ VI

1(t)]+min
j
(k2j) · [VR

1 (t)+ VI
1(t)]}

− 2
α+1
2 Gc

Tc
{min

i
(λ3i)[V

R
1 (t)+ VI

1(t)]
α+1
2 +min

j
(k3j)[V

R
2 (t)+ VI

2(t)]
α+1
2 }

− 2
β+1
2 Gc

Tc
{min

i
(λ4i) · n

1−β
2 · [VR

1 (t)+ VI
1(t)]

β+1
2 +min

i
(k4j) ·m

1−β
2 · [VR

2 (t)+ VI
2(t)]

β+1
2 },

≤− 2
α+1
2 λ · Gc

Tc
· [(Vu

1 (t))
α+1
2 + (Vu

2 (t))
α+1
2 ]− 2ω · Gc

Tc
· [Vu

1 (t)+Vu
2 (t)]

− 2
β+1
2 µ · Gc

Tc
· [(Vu

1 (t))
β+1
2 + (Vu

2 (t))
β+1
2 ],

≤− Gc

Tc
[2

α+1
2 λ · (Vu(t))

α+1
2 + 2µ · (Vu(t))

β+1
2 + 2ω · (Vu(t))],

where a = λ · 2
α+1
2 , ρ = α+1

2 , b = 2µ, ζ = 1+β
2 , c = 2ω, λ = min{min

i
(λ3i),min

j
(k3j)}, µ = min{min

i
(λ4i) · n

1−β
2 ,min

j
(k4j) ·m

1−β
2 },

ω = min{min
i
(λ2i),min

j
(k2j)}.Under Theorem 2, the drive system (1) and the response system (2) can achieve predefined-time

synchronization under the controller (15). The proof is completed.

Remark 4. In Theorems 2 and 3, the error system (5) can achieve predefined-time stability, in which Gc can be considered as the

minimum upper bound Tmax of the stability time in fixed-time stability. In addition, the theorem also provides a tuning parameter Tc

to adjust the stability time to the expected value.

4. Numerical examples

Three examples are shown in this section. Example 1 demonstrates the effects of Theorem 1, Example 2 verifies the validity of the

predefined-time synchronization in Theorems 2 and 3, and Example 3 is an application of image encryption and decryption.

Example 1. The simulation model is a two-dimensional MCVBAMNNs with time-varying delays, and it is shown as follows:



















































































ẋu1i(t) =− ηui (x
u
1i(t − τ (t)))xu1i(t − τ (t))+

2
∑

j=1

auji(x
u
1i(t))f

u
j (x

u
2j(t))

+
2
∑

j=1

buji(x
u
1i(t − τ (t)))f uj (x

u
2j(t − σ (t))),

ẋu2j(t) =− ξuj (x
u
2j(t − σ (t)))xu2j(t − σ (t))+

2
∑

i=1

cuij(x
u
2j(t))g

u
i (x

u
1i(t))

+
2
∑

i=1

duij(x
u
2j(t − σ (t)))gui (x

u
1i(t − τ (t))).

(16)
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The response system is


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






















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


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
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







































ẏu1i(t) =− ηui (y
u
1i(t − τ (t)))yu1i(t − τ (t))+

2
∑

j=1

auji(y
u
1i(t))f

u
j (y

u
2j(t))

+
2
∑

j=1

buji(y
u
1i(t − τ (t)))f uj (y

u
2j(t − σ (t)))+ uui (t),

ẏu2j(t) =− ξuj (y
u
2j(t − σ (t)))yu2j(t − σ (t))+

2
∑

i=1

cuij(y
u
2j(t))g

u
i (y

u
1i(t))

+
2
∑

i=1

duij(y
u
2j(t − σ (t)))gui (y

u
1i(t − τ (t)))+ vuj (t),

(17)

where i = 1, 2, j = 1, 2; Ti = T
′
j = ̟j = ̟

′
j = 0, ℵi = ℵ′

i = 1; ηui = ξuj = 1 + i; f uj (z) = sin(|z|), gui (z) = cos(|z| − 1);

τ (t) = t + 0.1sin(t), σ (t) = t − 0.1cos(t). The initial values of system (16) are ϕ1R(s) = (1, 2.1)T , ϕ1I(s) = (1.3,−1)T , ϕ2R(s) =
(0.4, 1.2)T , ϕ2I(s) = (1, 0.25)T . The initial values of system (17) are φ1R(s) = (0.9,−1)T , φ1I(s) = (1.1, 0.75)T , φ2R(s) = (0.5,−0.8)T ,

φ2I(s) = (−0.6, 1.4)T . The memristor-based connection weights are listed as follows:

ÂR =
(

0.8 −0.3

0.5 0.1

)

, ǍR =
(

−0.5 0.2

−0.6 −1

)

, ÂI =
(

−0.8 0.5

−0.8 −1.2

)

,

ǍI =
(

0.8 0.1

−0.1 −1.1

)

, B̂R =
(

0.3 0.2

0.7 −0.6

)

, B̌R =
(

0.4 0.2

0.3 −0.4

)

,

B̂I =
(

−0.9 0.7

−0.2 0.7

)

, B̌I =
(

−1.2 0.8

−0.4 0.9

)

, ĈR =
(

−1 0.5

0.8 −1.3

)

,

ČR =
(

−1.8 0.8

1.2 −1.5

)

, ĈI =
(

−1.1 0.2

1.1 −1.3

)

, ČI =
(

−1.3 0.5

1.0 −1.2

)

,

D̂R =
(

−1.5 0.4

0.3 −2

)

, ĎR =
(

−1.8 0.5

0.1 −1.5

)

, D̂I =
(

−1.0 0.3

0.2 −1.5

)

,

ĎI =
(

−1.2 0.6

0.5 −1.8

)

.

Some real and imaginary parts phase plots of the drive system (16) are shown in Figure 4. We choose wi = 1.5, ki = 1, pj = 1.3,

qj = 1; λR1i = λI1i = wR
1i = wI

1i = kR1j = kI1j = pR1j = pI1j = 1; λ2i = 12, k2j = 20; λ3i = λ4i = 0.4; k3j = k4j = 0.6. Errors of the drive

system (16) and the response system (17) without and with feedback controller (14) are shown in Figures 5A,B, respectively.

Table 1 shows that T1
max is much smaller than T2−4

max with the same controller parameters. In Table 1, T1
max is derived by Theorem

1 and Lemma 3, T2
max is derived by Corollary 1 and Lemma 4, T3

max is derived by Corollary 2 and Lemma 5, and T4
max is derived

by Corollary 3 and Lemma 6. Therefore, compared with Corollaries 1-3, Theorem 1 provides a more strict upper bound estimation

formula.

Example 2. According to Theorems 2-3, the settling time of the error system (5) can be adjusted by a tuning parameter Tc.
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FIGURE 4

Real part and imaginary part phase plots of the drive system (16). (A) Phase plot of real part with initial conditions xR11(0) = 1, xR12(0) = 2.1. (B)

Phase plot of imaginary part with initial conditions xI11(0) = 1.3, xI12(0) = −1. (C) Phase plot of real part with initial conditions xR21(0) = 0.4,

x
R

22(0) = 1.2. (D) Phase plot of imaginary part with initial conditions xI21(0) = 1, xI22(0) = 0.25.

FIGURE 5

Error system trajectories of the drive system (16) and response system (17). (A) Synchronization errors without control. (B) Synchronization

errors under control.
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TABLE 1 The comparisons among T
1
max

, T2
max

, T3
max

, and T
4
max

.

T
1
max T

2
max T

3
max T

4
max

1.2 11.94 11.94 9.37

We set two initial values:

(1) Initial value 1: ϕ1R(s) = (1, 2.1)T , ϕ1I(s) = (1.3,−1)T ,

ϕ2R(s) = (0.4, 1.2)T , ϕ2I(s) = (1, 0.25)T . φ1R(s) = (0.9,−1)T ,

φ1I(s) = (1.1, 0.75)T , φ2R(s) = (0.5,−0.8)T , φ2I(s) =
(−0.6, 1.4)T ;

(2) Initial value 2: ϕ1R(s) = (0.5, 2.5)T , ϕ1I(s) =
(1.3,−1.5)T , ϕ2R(s) = (2, 1.25)T , ϕ2I(s) = (1.5, 0.25)T .

φ1R(s) = (0.9,−1.5)T , φ1I(s) = (1.1,−1.2)T , φ2R(s) =
(0.5,−1.8)T , φ2I(s) = (−0.6, 1.4)T .

Figure 6 is the synchronization error diagram when

Tc = 5. Figures 6A,B show that different initial values can

achieve synchronization within a given time. Figure 7 is the

synchronization error diagram when Tc = 0.5. From Figures 6,

7, it can be seen that the actual synchronization time is changed

according to Tc. We can set the ideal synchronization time Tc in

the controller, which is that the system can achieve predefined-

time stability.

Example 3. We use the predefined-time stability and chaotic

characters of the drive system (16) and response system (17) to

achieve image encryption and decryption. The proposed image

encryption algorithm consists of pixel scrambling and diffusion.

We choose Tc = 0.2, and the other parameters are the

same as in Example 1. According to the drive system (16), our

encryption algorithm is designed as follows.

Step 1. Enter the color original image “Lena” with the size of

M × N × 3, whereM = 256,N = 256.

Step 2. According to xu11(t) of the drive system (16),

we can get the real part sequence and imaginary part

sequence xR
11(k1)

= [xR
11(1)

, xR
11(2)

, ..., xR
11(M×N/2)

],

xI
11(k2)

= [xI
11(1)

, xI
11(2)

, ..., xI
11(M×N/2)

]. Based on the

descending order of chaotic sequences xR
11(k1)

and xI
11(k2)

, the

index of the sequences ̺1 and ̺2 is obtained.

̺1 = sort(round(xR
11(k1)

,−3),′ descens′),

̺2 = sort(round(xI
11(k2)

,−3),′ descens′).

̺1 is used to scramble half of the original image, and ̺2 is used

to scramble the other half of the original image.

Step 3. Scramble the pixels of R,G,B channels and compose

new R̃, G̃, B̃ channels.

R̃ = reshape(R,M,N); G̃ = reshape(G,M,N);

B̃ = reshape(B,M,N).

Step 4. Converts xR
12(k)

and xI
12(k)

of the drive

system (16) into M × N dimension matrices z1(i, j)

and z2(i, j). Encrypt the R̃ channel as follows. For

even-row pixels,

z1(i, j) = mod(108(z1(k)− floor(z1(k))), 256);

newR(i, j) = bitxor(R̃(i, j), floor(z1(i, j)));

for odd-row pixels,

z2(i, j) = mod(108(z2(k)− floor(z2(k))), 256);

newR(i, j) = bitxor(R̃(i, j), floor(z2(i, j)));

use x21 and x22 to encrypt G̃, B̃ channels according to the above

method, respectively.

The original picture is shown in Figure 8A. We use a chaotic

sequence to scramble the pixels in the encrypted area, as shown

in Figure 8B. The final encrypted image is shown in Figure 8C.

When the drive system (16) and the response system (17) reach

predefined-time synchronization, decryption is the opposite

process of encryption, and the decrypted picture is shown in

Figure 8D.

According to MCVBAMNNs and predefined-time

synchronization, the flow charts of image encryption and

decryption are shown in Figures 9, 10. We use the controller

(15) to flexibly set the parameter Tc, then the chaotic sequence

can be selected in a controllable range, which ensures the

effectiveness of the encryption and decryption algorithm. In this

scheme, Tc = 0.2 is chosen as the secret key, and the wrong

secret key will affect the decryption result.

The histograms of the original and encrypted image are

shown in Figures 11, 12, which shows that the histograms of

the encryption image become highly disordered. In a digital

image, there is a high correlation between each pixel. Therefore,

the pixel adjacency correlation of encrypted images generated

by a reasonable encryption algorithm should be close to zero.

The horizontal correlation coefficients of the original and the

encryption image in the R are shown in Figures 13, 14. The

correlation coefficient of the encryption image becomes much

lower. Table 2 lists the correlation coefficients of the encryption

algorithm and the comparisons with others, which indicates our

algorithm has good results1.

Remark 5. Digital images can convey information intuitively

and effectively and are widely used. A considerable part of

images in daily life and work contains sensitive data and belong

to sensitive areas. If the sensitive block data is not protected,

it may cause some losses to individuals or other objects.

Therefore, the image encryption and decryption scheme based

on the predefined-time synchronization of MCVBAMNNs in

this paper has important application value for the privacy

protection of image blocks with uncertain size without losing

image availability. For example, Figure 15 is a picture containing

employee information. In order to avoid privacy disclosure,

important information such as ID numbers or mobile phone

numbers can be encrypted.

1 Code is available at: https://github.com/Liu-aidi/MCVBAMNNs.
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FIGURE 6

Synchronization errors with Tc = 5. (A) Synchronization errors with initial value 1. (B) Synchronization errors with initial value 2.

FIGURE 7

Synchronization errors with Tc = 0.5. (A) Synchronization errors with initial value 1. (B) Synchronization errors with initial value 2.

Remark 6. At present, most of the neural network dynamics

achievements are still in the theoretical stage, and the research

on relevant practical applications is not extensive enough. But

fortunately, researchers are aware of this problem and are trying

to explore its future research direction, such as its application in

human-computer interaction (Su et al., 2022).

5. Conclusion

In this paper, the fixed-time and predefined-time stability

of MCVBAMNNs with leakage time-varying delay is

studied. Based on differential inclusion and set-valued

mapping theory, an effective discontinuous controller is

designed, sufficient conditions for conservative smaller

fixed-time synchronization are obtained, and a more general

predefined-time stability theorem is proposed. By adjusting

the controller parameters, the MCVBAMNNs can achieve

synchronization within a predetermined time. On this basis,

we design an effective image encryption scheme. Through

comparative analysis, the algorithm proposed in this paper

has good results. Inspired by Feng et al. (2020), in the

future, we will consider the method of complex-valued

nonseparation and propose more general predefined-

time stability conditions, which will be an interesting and

challenging job.
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FIGURE 8

Original encryption and decryption pictures. (A) Original picture “Lena.” (B) Pixel scrambling picture. (C) The encrypted picture. (D) The

decrypted picture (This image is taken from a public database).
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FIGURE 9

Flow chart of the encryption algorithm.

FIGURE 10

Flow chart of the decryption algorithm.
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FIGURE 11

Histograms of RGB for the original picture.

TABLE 2 Comparison of correlation coe�cients of encryption “Lena.”

H V D

Original image 0.94295 0.96873 0.91310

Our algorithm –0.0057 –0.0008 –0.0009

Liu et al. (2019) –0.0087 –0.02116 –0.00381

Xu et al. (2014) 0.01190 0.01806 0.0678

Wu et al. (2015) –0.0084 0.0004 –0.0015

Chen et al. (2016) –0.0043 –0.0037 0.0196
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FIGURE 12

Histograms of RGB for the encrypted picture.

FIGURE 13

R-channel correlation coe�cients of the original image (From left to right: Horizontal Correlation Coe�cient of R: 0.95722; Vertical Correlation

Coe�cient of R: 0.9789; Diagonal Correlation Coe�cient of R: 0.92933).
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FIGURE 14

R-channel correlation coe�cients of encryption image (from left to right:Horizontal Correlation Coe�cient of R:-0.0059807; Vertical

Correlation Coe�cient of R: -0.0025902; Diagonal Correlation Coe�cient of R: 0.0014835).

FIGURE 15

Employee information diagram of a company. (Encrypted ID Number).
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