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Learning a spatial-temporal
texture transformer network for
video inpainting

Pengsen Ma and Tao Xue*

School of Computer Science, Xi’an Polytechnic University, Xi’an, China

We study video inpainting, which aims to recover realistic textures from

damaged frames. Recent progress has been made by taking other frames as

references so that relevant textures can be transferred to damaged frames.

However, existing video inpainting approaches neglect the ability of the model

to extract information and reconstruct the content, resulting in the inability

to reconstruct the textures that should be transferred accurately. In this

paper, we propose a novel and e�ective spatial-temporal texture transformer

network (STTTN) for video inpainting. STTTN consists of six closely related

modules optimized for video inpainting tasks: feature similarity measure for

more accurate frame pre-repair, an encoderwith strong information extraction

ability, embedding module for finding a correlation, coarse low-frequency

feature transfer, refinement high-frequency feature transfer, and decoder

with accurate content reconstruction ability. Such a design encourages joint

feature learning across the input and reference frames. To demonstrate

the advancedness and e�ectiveness of the proposed model, we conduct

comprehensive ablation learning and qualitative and quantitative experiments

on multiple datasets by using standard stationary masks and more realistic

moving object masks. The excellent experimental results demonstrate the

authenticity and reliability of the STTTN.
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1. Introduction

Video inpainting involves smearing moving or stationary objects in a video frame

sequence using masks. The smeared parts are filled back based on the current frame and

the content information of other frames of the video, and the repaired video should

have the effect that the smeared positions ’disappear’. Typical applications are video

restoration (Kim et al., 2018; Chang et al., 2019a,b), watermark removal (Zou et al., 2021),

object removal (Perazzi et al., 2016; Chang et al., 2019d), etc. The closer the smeared area

is to the actual video after being repaired, the better the repair effect.

Video inpainting needs to combine time domain and spatial domain information

to process video frames. The spatial information in the current frame is searched,

followed by the appropriate frames in other frames as reference frames to search the

time domain information. Finally, the two parts of information are integrated and
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filled back into the original frame to complete the repair

of the mask position (Zeng et al., 2020; Liu et al., 2021a).

Video inpainting should first consider whether the missing

information of the current frame is ’exposed’ in other frames.

If the missing information of the current frame is found in other

frames, then the current frame should be used as a reference

frame. Valuable features should be matched, extracted, and

transmitted to the input frame as information to repair the mask

position. Although the recent appearance of deep learning has

made significant progress in the image and video inpainting

(Iizuka et al., 2017; Boßmann et al., 2019; Yu et al., 2019), a

model’s ability to capture useful information and reconstruct it

in video frames is still fragile (Chang et al., 2019a; Lee et al., 2019;

Oh et al., 2019; Xu et al., 2019).

In summary, video inpainting needs to integrate the

information acquired in time and space and effectively

transform and fill it back into the restored image. The more

complicated and challenging portion of this process is 2-fold:

What information (in time) should be extracted from the

reference frame? How can the information of the reference

frame and the current frame be effectively extracted and used

(spatially)?

We put forward the spatial-temporal texture transformer

network to solve these problems in video inpainting. STTTN

is divided into the following six parts: (1) Make the feature

similarity measure more accurate and frame pre-repair. (2) By

introducing Regional Normalization (RN) (Yu et al., 2020),

spatial pixels are divided into different regions according to a

mask, which solves the problem of the deviation of the mean and

variance, thus constructing an encode with stronger information

extraction ability. (3) To embed the information in the image,

similar to the standard transformer structure (Dosovitskiy et al.,

2020; Liu et al., 2021c), a related texture information embedding

module (RE) is introduced to embed the reference and input

frames. (4) Coarse low-frequency feature transfer (CLFT) is

used to convert low-frequency information such as contours

from reference frames to input frames. (5) Refinement high-

frequency feature transfer (RHFT) is used to transfer further

delicate texture information such as image details to the input

frame and perfect the repair mask. (6) Information such as

the feature texture, which is composed of various pieces of

information, is obtained. Similar to the encoder, we added

learnable region normalization in the decoder to help the fusion

of corrupted and uncorrupted areas and more stable modified

video frames.

These six parts help each other build a powerful space-

time transformer video restoration network. There are three

steps in the inpainting: the input frame and reference frames

before the encoder are pre-repaired, the coarse low-frequency

texture features are transferred and repaired, and finally the

high-frequency texture features related to details are further

refined and repaired. The three parts are paved from low to high,

and the complete repair process is formed layer by layer.

To verify the progressive nature of the STTTN, we carried

out a large number of qualitative and quantitative experiments.

An ablation study of four parts of the texture converter and

loss function proved the effectiveness of each part of the

components.

Our research makes the following contributions:

• A novel and effective spatio-temporal texture converter for

video restoration, which achieves significant improvements

over the state-of-the-art approaches, is proposed.

• Regional normalization (RN) introduced into the encoder

and decoder creatively stabilizes the effect of video

restoration.

• From the results of various mask experiments on multiple

datasets, STTTN achieves excellent results visually and in

terms of evaluation parameters.

2. Related studies

Video Inpainting refers to smearing some fixed areas or

moving objects in a video and filling the smeared areas back

in a generated way. It is required as far as possible to leave

no trace (that is, it is not easy to detect by the naked eye).

Image inpainting fills the missing area in a single image. In a

narrow sense, image inpainting is a subset of video inpainting.

The difference between them is that video inpainting needs to

integrate the temporal and spatial information acquired from

all video frames and effectively transform and fill it back into

the restored image. Image inpainting only needs to make use of

the spatial information outside the mask of the current picture

without considering the information of other frames because

it is only a single picture without any temporal information.

From the perspective of repair methods, video inpainting is

mainly divided into two methods. One is explicit repair, that is,

it acts directly on the image and repairs from the pixel level. The

other is implicit inpainting, that is, it acts on image coding and

inpainting from the feature level.

2.1. Explicit inpainting

Explicit inpainting is a network design pattern of ’graph to

graph’ and is directly constructed. Before the popularity of deep

learning, the main image and video inpainting methods were

diffusion-based and patch-based methods. The central idea of

diffusion-basedmethods (Ballester et al., 2001; Levin et al., 2003)

was to predict and fill holes according to the pixels around the

region to be filled. For example, the fast marchingmethod (FFM)

(Telea, 2004), and the fluid dynamics method (FDM), are classic

diffusion-based inpainting algorithms, but their limitations are

also pronounced. It is more suitable for image pinhole inpainting

with little color change and a simple scene. Patch-basedmethods
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complete the repair task by finding the most appropriate area

to fill the hole and pasting it into the place to be inpainting.

For a single image, it searches for the most suitable area outside

the hole area, that is, spatial-based inpainting. Video inpainting

considers all regions in the current frame and other frames to

select the most appropriate area to fill, which is a temporal-based

and spatial-based approach. Generally speaking, both diffusion-

based and patch-based methods are predicted or pasted to the

area to be inpainting according to the area around the hole.

They can not capture advanced semantic information. They are

repaired in a way that can’t be learned, so they are also called

Non-learning-based inpainting.

The appearance of deep learning makes up for the deficiency

of content restoration in complex and dynamic motion areas

frommultiple objects. At present, the primary display inpainting

methods based on deep learning are divided into the following

two types. The first is optical flow calculation, that is, the

’movement trend’ of pixels is calculated based on the difference

between the front frame and the back frame. This ’trend’ is

used to predict the color propagation to fill the missing mask

block (Xu et al., 2019; Lao et al., 2021). The second is 3D-

CNN/RNN, which directly stacks the frames in time series

according to the number of channels to form a large matrix

for convolution calculation (Kim et al., 2019; Wang et al.,

2019). This method is cumbersome, takes up considerable

video memory, and consumes many computing resources. In

addition, the effect worsens when encountering some frequently

switched and complex video scenes, so there is little room for

improvement.

2.2. Implicit inpainting

Traditional restoration methods often consume too much

memory and lead to a long reasoning time, and can

not effectively capture texture information in the temporal

domain and spatial domain. At the same time, a network

based on implicit inpainting is small and exquisite, with a

relatively strong effect and ample room for improvement.

The depth representation of the image is obtained using an

encoder. Then, a series of patching operations are performed

on the image representation: attention (Tang et al., 2019;

Liu et al., 2021a; Shu et al., 2021; Zou et al., 2021),

generative adversarial network (Chang et al., 2019a,d; Zou

et al., 2021), gated convolution (Yu et al., 2019), region

normalization (Suin et al., 2021), etc. This is mapped (decoder)

back to the image to generate video frames after patching

is completed.

Video inpainting needs to find high-level semantic

information in time and space; that is, it needs to capture

long-distance dependencies. In recent years, the appearance of

the transformer (Arnab et al., 2021; Chen et al., 2021; Wang

and Wang, 2022) has provided a new solution for vision

tasks. Compared with traditional CNN (Gu et al., 2022) and

RNN-based (Lin et al., 2022) methods, transformers have better

capability to understand shape and geometry and capture the

dependencies between long distances. We propose a spatial-

temporal texture transformer network (Han et al., 2020). We

learn the feature relationship between video frames and within

frames according to the semantic consistency of context to

complete hole filling, which is effective and efficient for video

inpainting.

3. Approach

First, we introduce the overall architecture design of STTTN

and then explain its five essential components in detail, namely

encoder, relevance embedding (RE), coarse low-frequency

feature transfer (CLFT), refining high-frequency feature transfer

(RHFT), and decoder. Finally, we combed the whole video

restoration process and explained themodel’s loss functionmore

clearly through pseudo-code.

3.1. Overall design

We use implicit inpainting to repair the video from

the feature level. To determine the defects of the previous

architecture and achieve a better inpainting effect, we erase

the time domain search part of the previous baseline model

(Zeng et al., 2020; Liu et al., 2021a,b) and find that the

inpainting ability is significantly reduced and even lags behind

the effect of many nonspatiotemporal video inpainting models.

This shows that most of the previous study explored how

to search the memory in the temporal domain but neglected

to examine the depth representation of the obtained images;

that is, only by introducing temporal domain search can

the model perform better, but their spatial domain search is

not as good as the original image inpainting model, which

needs stronger information extraction ability and fine content

reconstruction ability. Therefore, we built a new encoder

and decoder architecture, which makes STTTN have a more

vital ability to capture image structure and information in

the time domain. The overall architecture idea is that the

depth representation of the image is obtained by the encoder.

Then, after the image representation is repaired, the image

is mapped back to the decoder to generate the repaired

image frame.

The overall structure of the spatial-temporal texture

transformer is shown in Figure 1. This structure contains six

parts. The first part is the preprocessing of video frames

before they are input into the network. The input frames1

and reference frames1 represent the pre-repaired input frames

and reference frames, respectively. Precisely, we mask at the

position where the reference frames are consistent with input
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FIGURE 1

Overview of spatial-temporal texture transformer network (STTTN) structure.

frames and prerepair the mask to obtain reference frames1

to ensure domain consistency with input frames1. Here,

we fix the random seed to ensure that the mask position

and size of the input frame and the reference frame are

consistent, and then we randomly switch the random seed

to generate a new mask when processing the next frame.

It is more accurate to measure the feature similarity with

the domain (Yang et al., 2020), in which the prerepair

method is a fast marching method (FFM) (Telea, 2004). The

remaining five parts are an encoder with super information

extraction ability, embedding module (RE) to find a correlation,

coarse low-frequency feature transfer (CLFT), refinement of

high-frequency feature transfer (RHFT), and accurate content

decoder with reconstruction capability. Details are discussed

below.

3.2. Spatial-temporal texture transformer

3.2.1. Encoder

The traditional video processing and image inpainting

methods use feature normalization (FN) to help with network

training (Kobla et al., 1996; Wang et al., 2020), but they are

often performed on the entire frame without considering the

impact of pixels in the corrupted region on the mean/variance.

By introducing regional normalization (RN), the spatial pixels

are divided into different regions according to the mask, and

then the mean and variance are calculated in different regions.

As shown in Figure 2, we embed basic regional normalization

(RN-B) on the encoder, which normalizes the corrupted and

uncorrupted regions based on the input mask. This allows

mean and variance offsets to be more accurate, which is more
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FIGURE 2

Structure of encoder and decoder.

conducive to obtaining a deep image representation, which can

more comprehensively extract helpful information from video

frames.

The input to the encoder network consists of three frames

(input frames1, reference frames1, and reference frames). Inp,

Inp1, Ref, and Ref1 represent the input frames, input frames1,

reference frames, and reference frames1, respectively. Inp1 and

Ref1 consist of an RGB image, hole mask, and no-hole mask.

The hole mask on the RGB image is a single-channel greyscale

image, and the no-hole mask is an area other than the hole

mask area. These inputs are concatenated along the channel

axis to form a 5-channel image before being fed into the first

layer. Ref are composed of three-channel RGB images. Given

an input feature F ∈ RC×H×W and binary region mask M ∈

R1×H×W that indicates a corrupted region, for each channel,

there are two sets of learnable parameters γ and β for the affine

transformation of each region. Via the encoder, the obtained

image representation consists of three parts: Q (representative

attention information), K (attention information of memory

frame), and V (representative content information of memory

frame).

3.2.2. Relevance embedding

Different from the previous operation of obtaining q, k,

v through a linear transformer and then calculating attention

(Lee et al., 2021), we obtain Q, K, V with sufficient texture

feature information through the encoder, which makes it easier

to find the correlation between the input frame and the reference

frames in the time domain. First, we use RE to estimate the

similarity between Q and K, so as to establish the correlation

between Inf and Ref.We unfold Q and K into patches, denoted

as qi
(

i ∈
[

1,HInp ×WInp
])

and kj

(

j ∈
[

1,HRef ×WRef

])

. We

calculate their similarity by dot multiplying q and kT , where T

represents the transpose operation:

Ri,j = qi × kTj (1)

The larger Ri,j, the stronger the correlation between the

two feature blocks, and the more texture information can be

migrated, and vice versa.

With the correlation Ri,j obtained by RE, we can obtain two

parts P and W for coarse low-frequency feature transfer and

refinement of high-frequency feature transfer, respectively. The

specific calculation details are in Sections 3.2.3, 3.2.4.

3.2.3. Coarse low-frequency feature transfer

To transfer the low-frequency information of images, such

as contours from the reference frame to the input frame, we

designed the coarse low-frequency feature transfer (CLFT). The

previous attention mechanism converted Ri,j through softmax

into a weight directly and thenmultiplied the weight byV , which

is a weighted average of V :

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (2)

However, doing so may transfer a large number of textures

that are not useful for the input frame to the target frame,

resulting in blurring of the repaired area. To improve the

ability to transfer low-frequency texture features for all reference

frames. we will correlate the coarse low-frequency features in V
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over different temporal domains with input frames via CLET.

More specifically, we first calculate a coarse low-frequency

feature transfer map P in which the i-th element Pi(i ∈ [1,H ×

W]) is calculated from the relevance Ri,j:

Pi = argmax ri,j (3)

That is, each value pi in map P represents the most relevant

position index of a frame on all reference frames with the i-

th position of the input frame. The specific calculation process

obtains the index corresponding to the maximum value through

the second item of the return value of the torch.max() function.

After obtaining the most relevant position index, we extract the

low-frequency texture features that should be transferred most,

so we only need to take the position of the frame that needs to

be transferred in the patch v of the unfolded, then we can get

the texture feature map T, where each position of T contains the

high-frequency texture features of the most similar position in

the Ref, where ti represents the value of the i-th position of T:

ti = vpi (4)

We obtain a rough feature representation T for input frames,

which is then used in our refinement of high-frequency feature

transfer (RHFT).

3.2.4. Refinement high-frequency feature
transfer

High-frequency detail information is also essential for video

inpainting (Bishop et al., 2003), so we designed a refinement

of high-frequency feature transfer (RHFT). To fuse the most

suitable high-frequency texture in the temporal and spatial

domains with the input frame, a weight matrix W is calculated

from Ri,j to represent the confidence of the transferred texture

features for each position in T. The specific calculation process

for obtainingW is to obtain the maximum value of Ri,j through

the first item of the return value of the torch.max() function,

where W records the specific correlation of the most relevant

feature block.

Wi = maxRi,j (5)

To make full use of the original image information of the

input frame, we divide the features of each level into two steps.

First, the low-frequency texture features T of multiple frames in

the temporal domain are obtained by CLFT, and the feature of

the input frame is fusion. The product is then multiplied by the

weight matrix W. At this time, W is equivalent to a weighted

average of the features, which can more accurately transfer

the texture features of the reference frame. Only two feature

transfers cannot modify the input frame well, so we extract the

features of the input frame again (Only two feature transfers

cannot modify the input frame well, so we extract the features

of the input frame again (feature F extracted by the DNN, which

is a deep neural network composed of convolution and residual

connections of many layers with convolution kernel of 3*3, and

stride and padding are 1) and fuse them with high- and low-

frequency features. The above operations can be expressed as the

following formula:

Fout = F + Conv(Concat(T, F))⊙W (6)

Conv, Concat, and ⊙ represent the convolution (the

convolution operation adopted here is consistent with the

convolution operation adopted by the DNN above), the

concatenation operation, and the dot product, respectively, and

Fout is the feature of the spatiotemporal texture output of the

input frame combined with reference frames.

3.2.5. Decoder

In the deep network, each corrupted area and uncorrupted

area are increasingly difficult to distinguish, and the

corresponding mask is difficult to obtain (Yu et al., 2020).

To enhance the reconstruction ability of the image, we insert the

learnable RN (RN-L) into the decoder to automatically detect

the mask and nonmask. Regions are individually normalized,

and a global affine transformation is performed to enhance

their fusion. Finally, the repaired video frame is obtained by

outputting the newly repaired representation through the

decoder.

In summary, the STTTN can effectively transfer relevant

high- and low-frequency texture features from the reference

frames into the input frame, producing a more accurate mask

filling process. For a more precise illustration of howwe perform

video inpainting, as in Algorithm 1, we detail the pseudocode of

our entire calculation process:

Input: video X, hole H, validity V

Output: complection video Y

for l in reference frame indices do

vl = FFM(Xl ,Hl)

vl = Encoder(Xl)

kl = Encoder(FFM(Xl ,Hl),Vl)

end

for i in target frame indices do

qi = Encoder(FFM(Xi ,Hi),Vi)

P,W = RE(qi , kl)

T = CLFT(P, vl)

F = DNN(FFM(xi))

Fout = F + Conv(Concat(T, F))⊙W

Yi = Decoder(Fout)

end

Algorithm 1. Spatial-temporal texture transformer network for video

inpainting.
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3.3. Loss function

The total loss consists of the following two components:

Loverall = Lcha + 0.01Lper (7)

3.3.1. Charbonnier loss

We abandon the L1 and L2 loss functions because they both

cause the image to be too smooth and lack a sense of realism.

Instead, we use a more stable loss function: the Charbonnier loss

function (Lai et al., 2018a). It can be formulated as

Lcha =

√

∥

∥IOut − IInput
∥

∥

2
+ ǫ2 (8)

where Input means original video, Out means synthesized video,

and ǫ = 10−3 is a constant to avoid gradient disappearance and

explosion.

3.3.2. Perceptual loss

To make more effective use of texture features transferred

from reference video, make the inpainted video frames more

realistic, and maintain content invariance (Yang et al., 2020), we

construct a perceptual loss that consists of two parts:

Lper =
1

CiHiWi

∥

∥

∥
φ
vgg
i

(

IOut
)

− φ
vgg
i

(

IRef
)
∥

∥

∥

2

2
+

1

CjHjWj

∥

∥

∥
φEnc
j

(

IOut
)

− T
∥

∥

∥

2

2

(9)

The first part is no different from ordinary perceptual loss

(Johnson et al., 2016). φ
vgg
i represents the feature map of the i-

th layer of VGG-16 pretrained on ImageNet (Deng et al., 2009);

(Cj,Hj,Wj) represents the number of channels, height, and

width of the feature map of this layer; and IRef is the reference

video for all frames. T is the texture feature transferred from V

in Figure 2.

4. Experiments

4.1. Datasets and evaluation metrics

For a fair comparison of STTTN and other video inpainting

models such as previous state-of-the-art versions, we use

YouTube-VOS (Xu et al., 2018) and DAVIS (Caelles et al., 2018)

as our datasets. The train/validation/test split is consistent with

the original split. There are 3471, 474, and 508 video clips,

respectively. For DAVIS, we divided its 150 video clips into 90

training sets and 60 validation sets and then randomly selected

30 as test sets.

To test the ability of the model to cope with a variety of

practical application scenarios, we use two mask test models,

namely, stationary masks and dynamic masks. The static mask

means that the position of the fixed mask does not change, and

the dynamic mask means that a moving object as a mask forces

the mask keep the position transformation in each frame.

Various evaluation criteria are prerequisites to ensure the

superior performance of the model. We use PSNR, SSIM,

flow warping error (Lai et al., 2018b), video-based Fr’echet

inception distance (VFID) (Wang et al., 2018), floating-point

operations (FLOPs), and frames per second (FPS) as our

evaluation metrics. VFID transfers the FID evaluation from the

image to the video task, and the flow warping error measures

the temporal stability of a video between the repaired frame

and the original frame. FLOPs and FPS test the computing

resources required by the model and the fluency of the repaired

video, respectively.

4.2. Evaluation

To test the STTTN more comprehensively, we conduct

qualitative and quantitative evaluations with five current

SOTA methods: VINet (Kim et al., 2019), DFVI (Xu et al.,

2019), LGTSM (Chang et al., 2019c), CAP (Lee et al.,

2019), STTN (Zeng et al., 2020), and FGVC (Gao et al.,

2020).

TABLE 1 Quantitative results of video completion on YouTube-VOS and DAVIS datasets.

Accuracy Efficiency

YouTube-VOS DAVIS
FLOPs↓ FPS↑

Models PSNR↑ SSIM↑ VFID↓ Ewarp ↓ PSNR↑ SSIM↑ VFID↓ Ewarp ↓

VINet 29.20 0.9434 0.072 0.1490 28.96 0.9411 0.199 0.1785 - -

DFVI 29.16 0.9429 0.066 0.1509 28.81 0.9404 0.187 0.1880 - -

LGTSM 29.74 0.9504 0.070 0.1859 28.57 0.9409 0.170 0.2566 261B 18.7

CAP 31.58 0.9607 0.071 0.1470 30.28 0.9521 0.182 0.1824 211B 15.0

STTN 32.34 0.9655 0.053 0.1451 30.67 0.9560 0.149 0.1779 233B 24.3

FGVC 31.28 0.9502 - - - - - - - -

Proposed 32.68 0.9654 0.051 0.1421 31.32 0.9620 0.149 0.1738 254B 36.8

The bold red font represents the best score, and the blue font represents the second best score.
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FIGURE 3

Qualitative comparison with other methods for stationary masks.

4.2.1. Quantitative evaluation

As shown in Table 1, on the YouTube-VOS and DAVIS test

sets, our proposed STTTN is generally at the highest level, and

relatively few FLOPs and higher FPS ensure a lightweight model

and the smoothness of the video.

4.2.2. Qualitative evaluation

To demonstrate the effectiveness and generalization of

STTTN, as shown in Figures 3, 4, we conduct experiments on

dynamic masks and static masks. It can be seen that compared

with other current state-of-the-art models, regardless of whether

it is a complex or straightforward scene, STTTN achieves the

best restoration effect in terms of overall feeling and local details.

4.2.3. User study

To eliminate the tendency of individuals to subjectively

use a specific model, we selected 100 students in the school

to conduct a user survey and gave each student 12 photos (a

total of 7 comparison models, and each model selected two

video restoration examples for the testing set). The students

chose one image from the two repaired images containing

STTTN each time they thought the repair was better and

better; that is, each person made ten choices, for a total of

100 × 12 = 1, 200 voting choices. In Figure 5, the vertical axis

represents the percentage for which they believe STTTN repair

is better than the current model. The table shows that STTTN

consistently outperforms other models compared with other

inpainting effects.

4.3. Ablation studies

To verify the effectiveness of each part of STTTN, we

carried out ablation learning, which is each part of texture

transformation, and loss function, where each part of texture

transformation contains four sets of ablation learning and the

loss function contains two sets of ablation learning.
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FIGURE 4

Qualitative comparison with other methods for dynamic masks.

4.3.1. E�ects of various parts of texture transfer

As shown in Table 2, the texture transfer part is divided

into four parts for ablation learning: CLFT, RHFT, encoder,

and video frame prerepair. Base means removing these four

parts and using the transformer for video repair (similar to

a simplified version of STTN). We gradually increase these

four parts each time to see the performance of STTTN. When

CLFT and RHFT are added to the base, the PSNR increases

by 0.25 and 0.19, respectively, so that STTTN can accurately

convert the coarse low-frequency feature and refine the high-

frequency feature and replace the finely designed encoder

with ordinary Q, K, and V extraction. The improvement in

PSNR is the most obvious (0.33), indicating that this part

enables the texture converter to have more vital information

extraction ability and fine content reconstruction ability. To

explore whether it is helpful to pre-inpaint the reference frame

and the input frame, we put them in the same domain, and

the PSNR has a slight improvement of 0.03. In addition to the

ablation learning of the four parts that make up the STTTN,

we also added experiments to the experiment with regional

normalization (RN) in the encoder and decoder to judge the

impact of model performance. After adding RN, PSNR and

SSIM were improved by 0.87 and 0.012, demonstrating the

effectiveness of RN. The above ablation learning demonstrates

the importance and effectiveness of the four parts, which

complement each other and constitute a powerful texture

transformer.

4.3.2. E�ects of charbonnier loss and transferal
perceptual loss

The five columns in the first row of Figure 6 represent the

input frame with mask, use only the L1 loss function, replace

the L1 loss with Charbonnier loss (C loss), add the first part of

Perceptual Loss (P loss) based on the third column 1) based on

column 4, and add the repair effect diagram of Part 2 (P loss 2)

of Perceptual Loss. The second row is the uncropped inpainted

frames for the four cases. Combining Figure 6 and Table 3, we

can see that as we gradually complete the loss function, the
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FIGURE 5

User study results for dynamic masks.

TABLE 2 E�ects of various parts of texture transfer.

Method CLFT RHFT Encoder 1 RN PSNR↑/SSIM↑/VFID↓/Ewarp ↓

Base X 30.52 / 0.9531 / 0.168 / 0.1810

Base+CLFT X X 30.77 / 0.9561 / 0.163 / 0.1793

Base+CLFT+RHFT X X X 30.96 / 0.9580 / 0.158 / 0.1774

Base+CLFT+RHFT+Encoder X X X X 31.29 / 0.9614 / 0.150 / 0.1741

Base+CLFT+RHFT+Encoder+1 X X X X X 31.32 / 0.9620 / 0.149 / 0.1738

Base+CLFT+RHFT+Encoder+1 X X X X 30.45 / 0.9500 / 0.151 / 0.1743

FIGURE 6

E�ects of inpainting under di�erent loss functions.
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TABLE 3 Scores of STTTN under di�erent loss function combinations.

Method L1 loss Charbonnier loss Perceptual loss 1 Perceptual loss 2 PSNR↑/SSIM↑

L1 loss X 29.52 / 0.9395

C loss X 30.41 / 0.9532

C loss+P loss 1 X X 31.12 / 0.9598

C loss+P loss 1+P loss 2 X X X 31.29 / 0.9614

effect of video repair gradually improves, which proves the

effectiveness of each part of the loss function.

5. Conclusion

In this paper, we proposed a novel joint spatial-temporal

texture transformer network for video inpainting. Each

component cooperates closely, and the repair process progresses

layer by layer, making full use of the texture feature information

in time and space. The model has outstanding information

extraction and content reconstruction capabilities in details

and contours, which are essential and suitable for video repair

tasks. The excellent results of STTTN’s experiments on multiple

datasets in multiple scenarios fully demonstrate its superiority

over other methods.

However, in our exploration process, we found that STTTN

has certain defects and room for further improvement. First, the

first defect is also the region normalization defect, that is, color

casting is prone to occur. The second defect, which is also a

defect that the entire implicit inpainting architecture is prone to

have, is the inconsistency in the temporal domain (the before

and after frames have abnormal jitter effects during playback

due to large local pixel changes, and blur artifacts appear

in the video). Video tests appear periodically. We hope that

our exploration of video inpainting can help other researchers

explore further in this field and that researchers can propose

more advanced models to improve the defects we have found

thus far.
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