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video dynamic target based on
3D convolutional neural
network
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The use of computers to understand video content can accurately and

quickly label various videos. Behavior recognition technology can help users

filter the video by screening the content. However, this calculation mode,

which is only sensitive to the features in a pixel neighborhood, cannot

e�ectively extract cross-frame long-range video features. In addition, the

common long-range dependency capture methods are based on pixel

pairs, which contain less semantic information and cannot accurately model

dependencies. Based on this, this paper generates semantic units with rich

semantic information in the form of neighborhood pixel aggregation and

proposes amulti-semantic long-range dependency capture algorithm to solve

this problem, which makes the established dependency relationship more

accurate. At the same time, this paper proposes an early dependency transfer

technology to speed up the reasoning speed of the multi-semantic long-

range dependency capture algorithm. By embedding the proposed algorithm

into the original convolutional neural network, and conducting su�cient

performance tests and evaluations on di�erent data sets, it is shown that

the proposed algorithm outperforms other current algorithms in terms of

recognition accuracy and achieves the optimal recognition e�ect, which can

e�ectively enhance the long-range dependency capture ability and temporal

modeling ability of the convolutional network, and improve the quality of video

feature representation.

KEYWORDS

surveillance video, target behavior, dynamic capture, convolutional neural network,
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Introduction

Surveillance video is a type of time series data composed of a large number of

continuous frames. The Strong Contextual Correlations between frames constitute the

spatiotemporal structure of the video, which is also the essence of video dynamics (Li

et al., 2018). The elements contained in the video will appear many times at different

positions in different frames and will derive long temporal and spatial dependencies

over time. However, due to the limitation that local operations (e.g., convolution

operations) cannot incorporate information from a larger region into the computation

process, these long-range dependencies require the superposition of multiple local

operations (e.g., the superposition of multiple convolution layers) to be captured
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(Hu et al., 2018). This approach has two main shortcomings:

on the one hand, this long-range dependency capture method

is inefficient; on the other hand, it is difficult to ensure that

the captured dependencies are sufficient and accurate. Due to

the development of imaging technology in capturing depth

information in real time, more and more work has begun to

study the application of depth data captured by depth cameras

to behavior recognition problems. Depth image information

is not sensitive to illumination and can provide body shape

information as well as motion-related information, which can

be used to help distinguish between similar motions generated

from a single view (Wang et al., 2018).

Huang et al. (2020) proposed behavior recognition by using

depth sequence maps, which provides additional body shape

information andmotion information. In their proposedmethod,

the depth map is projected onto three orthogonal Cartesian

planes, and a motion map (DMM) is generated by accumulating

the global motion of the entire video sequence to take advantage

of the additional information provided by the depth map.

Finally, the local features and shapes of DMM are described by

the histogram of gradient orientation, and the HOG descriptors

extracted from the depth motion maps of each projection view

(front, top, side) are combined into DMM-HOG. Qiu et al.

(2019) proposed a descriptor for describing motion information

at the depth sensor, called the oriented 4D surface normal

histogram (HON4D). The authors use a histogram to describe

the depth sequence so that it can capture the distribution of

surface normals in time, depth, and spatial coordinates.

Similar to the extended receptive field, which can greatly

improve the image recognition ability based on a convolutional

neural network, taking more pixels into account when modeling

long-range dependence will also improve the accuracy of

dependence. It was inspired by the graph convolutional network

which aggregates messages at adjacent nodes. Behaviors are

located and classified, thereby speeding up the entire detection

process. The 3D CNN is used to obtain the spatiotemporal

information of the video, and the 2D CNN is combined to

obtain the accurate spatial features. Aiming at the problem that

the capability of extracting the video spatiotemporal features

by the shallow 3D CNN is insufficient, this paper proposes

a dependency capture algorithm based on semantic units by

aggregating adjacent pixels into Semantic Units. It is named

Multi-semantic Long-range Dependencies Capturing (MLDC)

algorithm to solve the problem of long-distance dependency

of video frames. Through performance tests and resolution

experiments on Kinetics and Something-Something V1 data

sets, the algorithm is proved not only to significantly outperform

pixel-based algorithms and some mainstream 2D/3D networks

but also to introduce only a very small amount of computation.

The main innovations of this paper are:

(1) It transmits a feature graph to an MLDC algorithm,

establishes a corresponding long-range dependency for

each semantic unit until the network is finished, and

further enhances the modeling capability of the long-

range dependency.

(2) A real-time dynamic capture scheme of abnormal events

in surveillance video is proposed, and a real-time

detection system of abnormal events in surveillance video

is designed.

(3) Feature map visualization results were generated by

the MLDC algorithm. The effectiveness of the MLDC

algorithm is demonstrated by comparing the feature

maps of the original networks.

Related work

Semantic segmentation

Traditional image segmentation methods, in which

researchers use mathematical knowledge to solve image

problems at an early stage. Due to the immaturity of the early

conditions and the imperfection of the system, robust and

accurate image segmentation cannot be achieved. With the

development and progress of deep learning technology, more

and more methods based on deep learning have been proposed

to solve problems. With the rapid development of computer

technology and hardware, more and more image algorithms

apply deep learning to the field of image segmentation.

Attention mechanism is an idea borrowed from NLP (Du et al.,

2018). The method has the following advantages: 1) the network

can focus on important places and suppress unnecessary

pollution information; and 2) the feature expression capability

of the network is improved. Non-local is the first work of

attention mechanism in the field of semantic segmentation. By

calculating the relationship between each pixel in the feature

map, it generates a huge attention matrix map and aggregates

dense context information (Tran et al., 2019). The proposal

of Non-local can capture the long-distance interconnection

between feature maps, thus breaking the limitation of the local

receptive field of the convolution kernel, making the context

information of various ranges establish links, greatly improving

the segmentation accuracy of the network, but it also makes the

operation more complex (Luo and Yuille, 2019). Based on Non,

a variety of attention mechanism algorithms have emerged.

The attention mechanism method makes the accuracy of

the semantic segmentation algorithm to a higher level. With

the increase of the number of convolution kernel channels,

the reconstruction performance of the network is gradually

improved. This is because the number of convolution kernel

channels is directly related to the dimension of the feature map,

and too few channels will lead to a low dimension of the feature

map. It is difficult for the network to learn useful information

from low-dimensional features, which leads to the lack of fitting

ability of the model and the low quality of the reconstructed
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video. Thereby capturing the temporal characteristics of the

video. The feature calculation process on the j feature maps of

the i-th layer of the 3D convolution defines:

v
xyz
ij = tan bij +

∑

m

pi−1
∑

p=0

qi−1
∑

q=0

ri−1
∑

r=0

w
pqr
ij (1)

where p, q is the length and width of the 3D convolution

kernel, ri is the number of convolution kernels in the timing

dimension, and W
pqr
ij is the weight value of the convolution

kernel connected with themth feature map in the previous layer

at the position p, q, r.

Representation method based on
dependency capture

Wang et al. (2018) proposed non-local neural networks.

The non-local network effectively improves the quality of

video feature extraction by adding global information to

the feature map. Qiu et al. designed the Global to Local

Diffusion module and the Local to Global Diffusion module

to effectively transfer the dependency between the shallow

and deep layers of the network (Feichtenhofer et al., 2019).

The Corresponding Proposal Network (CPNet) proposed

by Liu et al. (2019) interprets video as a dense Point

Cloud. When modeling temporal information, the CPNet

regards semantically similar Spatio-temporal points as

Correspondence Proposals, and replaces all pixels in Non-

Local with K proposal points. By learning the temporal

information between the corresponding proposals, the CPNet

improves the efficiency of mining spatiotemporal information

(Jiang et al., 2019).

Multi-semantic long-range
dependency capture algorithm

The multi-semantic long-range dependency capture

algorithm mainly consists of three parts, namely, pixel

aggregation, correlation operation and dependency

establishment. Pixel aggregationmainly refers to the aggregation

of pixels and their surrounding pixels to form semantic units

with strong semantic information. The relevance operation

is mainly used to model the relevance between semantic

units (Zhou et al., 2018). Finally, dependency establishment

refers to determining another semantic unit that is most

relevant to each semantic unit according to the result of the

relevance operation.

FIGURE 1

(A–D) Pixel aggregation method.

Algorithm description

(1) Pixel polymerization

The goal of a graph convolutional network is to learn a

mapping that aggregates nodes and their neighbors. Similarly,

the MLDC algorithm uses this approach for pixel aggregation

(Lin et al., 2019). First, a semantic unit u is defined as a set of

pixel features:

u = {x1, x2, · · · , xn} (2)

where n denotes the number of pixels in the semantic unit u and

xi ∈ R
C denotes a pixel with C channels.

There are two important principles that need to be followed

when doing pixel aggregation:

1. The semantic unit must cover all pixels;

2. Each pixel can only be aggregated into one semantic unit.

There are many ways to satisfy the above conditions.

For example, the results of object detection (Figure 1A) or

semantic segmentation (Figure 1C) are used as the basis for

aggregation, which can only discriminate the frame of moving

objects, ignoring part of the frame content. In addition, some

clustering algorithms, such as K-means, can also meet the above

requirements (Cao et al., 2019) for example, the object identified

in (Figure 1C) can establish the target coordinates. Among these

methods, the grid-based aggregation algorithm (Figure 1D) is

the simplest but also quite effective in establishing the regional

grid screening effect.

Given a video frame f ∈ R
C×H×W , define a mesh partition

with mesh size s as a mapping χ :

χ :R
C×H×W → R

H
s ×

W
s ×s×s (3)

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1017748
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Chen 10.3389/fnbot.2022.1017748

Each semantic unit is u ∈ R
C×s×s. The pixel aggregation

methods used in the rest of this paper are all based on grid

division (Qiu et al., 2019) in order to compute the core of the

concise highlighting method.

(2) Correlation operation of semantic unit

A common way to describe correlation is to use the Dot

Product operation:

f (xi, xj) = xTi xj (4)

where xi, xj ∈ R
C is the pixel feature and C is the feature

dimension (Liu et al., 2019). Given two semantic units ui, uj, the

correlation between the two semantic units can be described as:

F(ui, uj) =

n
∑

k

f (ui(k), uj(k)) =

n
∑

k

ui(k)
Tuj(k) (5)

where ui(k) denotes the kth pixel of ui in the semantic unit.

Further, for pixel aggregation based on a grid size s, equation

(5) can be rewritten in the form:

F(ui, uj) =

s
∑

h

s
∑

w

f (ui(h,w), uj(h,w))

=

s
∑

h

s
∑

w

ui(h,w)
Tuj(h,w) (6)

where u(h,w) represents the pixel with coordinate (h,w) in the

semantic unit u (with the upper left corner of the semantic unit

as the origin; Wang et al., 2018).

(3) Dependency established

This section describes in detail the process by which

the MLDC algorithm models long-range dependencies in

a multi-semantic manner. Formally, given a video V ∈

R
T×C×H×W with T frames, whereC, H, W are the number

of A channels, the video height, and the width of the video,

respectively (Kay et al., 2017). The aggregated video tensor size

is V ∈ R
T×C×H

s ×
W
s ×s×s.

Each semantic unit u ∈ R
C×s×s finds its most relevant other

semantic unit in the video V as a dependency (Ghiasi et al.,

2021). The T video frames are two-dimensional convolution

operations of the input, that is:

ucorr = 2dConv (V , u) (7)

where ucorr ∈ R
T×1×(H+1−s)×(W+1−s) contains the

correlation value of the semantic unit u with each possible

position in the video V . Then, the dependency of u is the video

region Ru ∈ R
C×s×s with which the maximum correlation

value is generated. Ru is regarded as a dependent term of u (Li

et al., 2019).

The dependency of each semantic unit has been established.

Finally, all the dependencies are spliced into a tensor Rv ∈

R
T×C×H×W of the same size as the input, and the output of

the module is expressed as:

Vout = V + BN(Rv) (8)

where BN(�) represents the 2D Batch Normalization operation.

Module structure

Figure 2 shows in detail how to combine all the parts

included in the MLDC algorithm into a whole.

First, the pixel aggregation portion corresponds to

transforming the input tensor x ∈ R
T×C×H×W to

x ∈ R
T×C×H

s ×
W
s ×s×s. Then, in order to make full use

of the relationship between the correlation calculation and

the convolution operation obtained by the formula (3–5)

and simplify the implementation difficulty of the correlation

calculation, the input is converted to x ∈ R
T H

s
W
s ×C×s×s. The

input is represented under this tensor size as a convolution

kernel (Nunez et al., 2018) with the number of output

channels T × H × W/s2, the number of input channels C,

and the convolution size s. This convolution kernel is then

convolved with the original form of the input to obtain a tensor

corre ∈ R
T×T H

s
W
s ×(H+1−s)×(W+1−s). This tensor preserves

the relevance of each semantic unit to each region of the original

input. By executing the Max(·) function, the coordinates of

the region with the maximum correlation coefficient with each

semantic unit are obtained, and finally the original pixel value of

the coordinate region is added to its feature as the dependency

of the corresponding semantic unit (Carreira and Zisserman,

2017).

Overall network architecture

The TSN network divides each video into K equal-length

timing intervals, and samples one frame from each timing

interval to form an output sequence. The output of the

TSN network is the average value of the output of the 2D

convolutional network on each frame (Yu et al., 2021).

Given a video V, first extract the video frames of the video,

and divide the video frames into K segments {S1, S2, · · · , SK}.

Then, the modeling of the input sequence by the temporal

segmentation network is expressed as:

TSN(T1,T2, · · · ,TK ) = H(G(F(T1;W), F(T2;W), · · · ,

F(TK;W))) (9)

where (T1,T2, · · · ,TK ) is a set of input sequences and each

TK is represented as a random sample of the timing interval
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FIGURE 2

Structure of MLDC algorithm.

FIGURE 3

Overall framework of the network.

Sk. F(TK ;W) represents a convolution operation on the input

sequence, with a convolution kernel W. G(·) represents a

fusion function, which is used to fuse the decision results of

multiple sequences (the fusion method in the original text is

average fusion) to obtain an output containing the probability

distribution of the sample category (Teboulbi et al., 2021).

Finally,H(·) stands for the softmax(·) function used to transform

the output into a class probability distribution (Varol et al.,

2017). In this paper, the Cross-entropy loss function is used to

train the network. Finally, the optimization goal of the network

is as follows:

L(y,G) = −

C
∑

i=1

yi(Gi − log

C
∑

j=1

expGj) (10)

where C represents the number of categories. yi denotes a

referential function. yi = 1 when y = i and yi = 0 otherwise.

The sigmoid activation function is used to map to a value

of 0 to 1, which determines whether to retain the information.

When the threshold is larger, it means that the information is

more important, otherwise, it means that the information should

be forgotten.

All MLDC algorithms in this paper are embedded outside

the Residual Block of the backbone network. The network

architecture after the MLDC algorithm is embedded into the

TSN is shown in Figure 3.

The convolutional layer determines the output by

computing the scalar product between the neuron weights

and the region to which the input is connected (Wang and

Gupta, 2018). The rectified linear unit (ReLU) applies the
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FIGURE 4

Technical optimization process.

“sigmoid” and “elementwise” activation functions to the output

produced by the previous layer. To explore the ability of

MLDC algorithm in time series modeling, the time series

transformation module (Temporal Shift Module) and MLDC

algorithm are integrated into the traditional convolutional

neural network, which can effectively improve the time series

modeling ability of the network (Bouaafia et al., 2021).

Operation e�ciency analysis and
optimization

Conventional dimensionality reduction methods (such as

using an 1 × 1-convolution after each residual block) are

not feasible. To solve this problem, this paper proposes an

Early Dependencies Transferring (EDT) technique. Considering

the low feature dimension in the residual block, the pixel

aggregation and correlation calculation are partially moved into

the residual block (Wang et al., 2018). Then, the coordinates of

the most relevant regions of each semantic unit are transmitted

to the outside of the residual block for modeling long-range

dependencies. The flow chart of the EDT technique is shown in

Figure 4.

In the EDT technique, the input data first goes through three

convolution operations in the original residual module, namely

convolution 1 × 1, convolution 3 × 3, convolution 1 × 1, and

a residual concatenation operation. The feature map obtained

after the completion of the second convolution requires pixel

aggregation and correlation calculation operations, and the

determined dependencies are directly transferred to the results

outside the residual module (Seifeddine et al., 2020). Embed 1

EDT-optimized MLDC, which is the MLDCEDT. It introduces

only <4% additional FLOPs. Embedding10 MLDCEDTs only

improves FLOPs by an additional 14% and only slightly reduces

classification accuracy (<0.5%).

Experimental analysis

Experimental data set

(1) Kinetics-400 data set is a video data set released by

DeepMind in 2017. This is a high-quality, very popular, and very

challenging large-scale video understanding data set. Among

them, 234,619 samples were used for training and 19,761

samples were used for testing. This paper mainly uses this data

set to test the performance of the MLDC algorithm and the

digestion experiment (Cai and Vasconcelos, 2018).

(2) The Something-Something V1 dataset (Ssthv1) is a

challenging dataset for fine-grained Action Recognition. The

data set was collected and published by the TwentyBN platform

in 2020. There are 174 classes and 108,499 samples in the Ssthv1

dataset. Among them, there are 86,017 training samples, 11,522

validation samples and 10,960 test samples (Kozlov et al., 2020).

Fusion reconstruction network training phase:

Input: learning rate α , minimum batch size m, maximum

number of iterations tmax.

Process.

1. Initialize network parameters and iterations.

2. while t < tmax do.

3. Select m training videos (x1, x2, · · · , xm). Compute the

corresponding compressive measurements Yi = xi + n, i =

1, 2, · · · ,m.

4. Calculate the compression measurement base reconstruction

xi
′ of Yi.
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TABLE 1 Experimental results of embedding MLDC modules at

di�erent locations of ResNet network.

Layer Top-1 (%) Top-5 (%)

Baseline 69.5 89.7

Res2 72.7 90.1

Res3 72.5 90.2

Res4 71.6 90.6

Res5 71.9 89.5

The bold values in each column are all the numbers with the largest percentages.

5. Use Adam method to update the parameters ̟ in

the network.

6. g̟ ← a · Adam
(

̟ , g̟
)

.

7. Increase number of iterations t = t + 1.

8. end while.

Output: Trained network parameters ̟ .

Experimental results and analysis

This paper demonstrates the performance of the MLDC

algorithm on two large-scale video understanding datasets,

Kinetics-400 and Something-Something V1. Among them, on

the Kinetics dataset, a series of detailed digestion experiments

are carried out to explore the optimal structure of the MLDC

algorithm on the ResNet network (Seifeddine et al., 2022). Then,

by comparing the optimal MLDC network structure with the

current optimal algorithm, it is proved that theMLDC algorithm

proposed in this paper not only outperforms the current optimal

algorithm in recognition accuracy but also has great advantages

in the total number of parameters and computational efficiency

(Zoph et al., 2020).

Digestion experiments on knietics-400
data set

(1) Embedding position of MLDC algorithm

Table 1 shows the different results produced by embedding

the MLDC algorithm into different residual blocks.

Adding a separate MLDC algorithm can effectively improve

the network performance and enhance the network dependency

capture ability. In addition, by comparing its impact in different

layers, we can see that the MLDC algorithm will produce better

results when it is embedded in shallow layers (for example, res2,

res3). For example, embedding an MLDC algorithm into res3

results in a 2.5% performance improvement compared to the

baseline performance. However, embedding in res5 will only

result in a 1.1% performance improvement.

(2) Embedding MLDC multiple times

TABLE 2 Experimental results of executing multiple MLDC algorithms

in ResNet network.

Number Top-1 (%) Top-5 (%)

Baseline 69.9 89.0

1 MLDC 72.4 90.3

5 MLDC 73.0 91.0

10 MLDC 73.2 91.1

The bold values in each column are all the numbers with the largest percentages.

TABLE 3 Experimental results obtained using video frames of di�erent

timing lengths as input.

# Frame Top-1 (%) Top-5 (%)

5 73.2 91.1

8 74.1 91.6

10 75.7 92.2

The bold values in each column are all the numbers with the largest percentages.

By equipping the backbone network with more MLDC

algorithms, dependencies and related information can be

propagated deeper into the network, thereby enhancing the

ability of the network to model long-range dependencies and

improving network performance. 1 MLDC embeds the MLDC

algorithms with the number of 1, 2, 1 into the res3 layer, res4

layer, res5 layer respectively, and embeds the MLDC algorithms

with the number of 2, 3, 3, 2 into the 5 MLDC, 10 MLDC

respectively. The results are shown in Table 2.

(3) Use longer input sequences

This section explores the performance of the network when

longer input sequences are used. By expanding the input from

5 frames to 8 frames and 16 frames respectively, the results are

shown in Table 3.

Experiments show that the network has a very strong ability

to model long sequences, which proves the effectiveness of

MLDC algorithm in time series data modeling (Choi et al.,

2020).

(4) Comparison of computational efficiency

This section compares the computational efficiency of the

MLDC algorithm with some representative 2D algorithms (e.g.,

TSN, R (2 + 1) D) and 3D algorithms (e.g., I3D, S3D-G). The

experimental results are shown in Table 4.

Compared with other algorithms, the MLDCEDT

algorithm optimized by EDT technology has obvious

computational advantages.

Performance comparison with the current
optimal algorithm

The comparison results of the MLDC algorithm and the

current optimal algorithm are shown in Table 5.
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In 2D networks, MLDC outperforms NLResnet-50 by 1.4%,

TSM by 2%, and STM by 2%. Compared with the algorithm of

3D network, the MLDC algorithm still exceeds the recognition

accuracy of the S3D-G model by 2% and the I3D network by

3.6% even with fewer inputs. The experimental results show

that the MLDC algorithm is very competitive with the current

SOTA algorithm.

Comparison test on something-something V1
data set

In this paper, the MLDCTSM is used to represent the fusion

network ofMLDC algorithm and TSM. The experimental results

are shown in Table 6.

Compared with the TSM network, the MLDCTSM

network improves the classification accuracy by 1.4%

while keeping the total amount of network computation

TABLE 4 Experimental results of embedding MLDC modules at

di�erent locations of ResNet network.

Method FLOPs × views Top-1 (%) Top-5 (%)

TSN8f (our impl.) 33G× 10 69.8 89.4

R (2+1) D 152G× 10 74.6 91.4

S3D-G 71.4G× 10 74.4 93.7

I3D 108G× N/A 72.0 90.9

MLDC8f 49G× 10 74.2 91.5

MLDC16f 99G× 10 75.4 92.8

MLDCEDT−16f 75G× 10 75.6 92.0

The bold values in each column are all the numbers with the largest percentages.

almost unchanged (<2%). Compared with other current

major algorithms, the performance of the MLDCTSM

network significantly outperforms the 2D convolution-

based network (e.g., 15.7% over the TRM-Multiscale

network) and the 3D convolution-based network (e.g.,

0.9% over the Non-local I3D network). Therefore, it is a

high-performance and low-loss solution to improve the

timing modeling capability of the network by embedding

MLDC modules.

Analysis of reconstruction time

This paper evaluates the reconstruction time between the

contrast algorithms. Table 7 shows the time complexity (in

seconds) required by each algorithm to reconstruct the six videos

in the common data set.

The minimum temporal complexity value and the

maximum frame rate in these algorithms are marked in

bold. In the table, except for the algorithm in this paper,

other algorithms are based on iterative optimization, and

the running time of such algorithms is directly related to

the complexity of each iteration. Because each iteration

needs to search for non-local similar patches and ensure

the minimization of the weighted kernel function, it

takes 1 hour for TSN to reconstruct 8 frames from a

single compressed measurement. However, the algorithm

proposed in this paper only needs to input the compressed

measurement frame into the whole network, and the

reconstruction result can be obtained through the feed-

forward calculation of the neural network, thus realizing nearly

real-time reconstruction.

TABLE 5 Comparison of the MLDC algorithm with the current optimal algorithm.

Method Backbone network #frame FLOPs × views Top-1 (%) Top-5 (%)

TSN InceptionV3 3 3.2G× 250 72.2 90.7

ARTNet Resnet18 16 23.5G× 250 70.3 89.4

S3D-G InceptionV1 64 71.4G× 30 74.2 93.6

I3D InceptionV1 64 108G× N/A 72.4 90.2

R (2+1) D ResNet-34 32 152G× 10 74.2 91.4

TSN (our impl.) ResNet-50 8 33G× 10 69.5 89.8

C2D ResNet-50 32 N/A 71.7 89.9

NL C2D ResNet-50 32 N/A 74.2 91.2

NL I3D ResNet-50 32 N/A 74.1 91.4

TSM ResNet-50 16 65G× 30 74.6 91.6

SlowFast ResNet-50 4+32 75.6 75.4 92.3

CoST ResNet-101 8 N/A 75.7 92.7

STM Resnet-50 16 67G× 10 73.2 91.5

CPNet Resnet-101 32 N/A 75.0 92.2

(ours) MLDC Resnet-50 16 99G× 10 75.3 92.1

The bold values in each column are all the numbers with the largest percentages.
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TABLE 6 Performance comparison of MLDC on something-something V1 dataset.

Method Backbone network #FLOPs #parameters Top-1 Top-5

TSN Inception 16G 10.7M 19.7% –

TRN-multiscale BN inception 33G 18.7M 34.2% –

ECO BN inception+3D ResNet18 32G 47.5M 39.0% –

Non-local I3D with GCN ResNet-50 303G×2 62.2M 46.3% 76.1%

TSM ResNet-50 33G 24.3M 45.9% 74.2%

MLDCTSM ResNet-50 37G 24.3M 47.4% 76.6%

TABLE 7 Comparison of reconstruction time of di�erent algorithms.

Network model Rebuild time (/s) Frame rate (FPS)

TSN 183.65 0.67

TRN-Multiscale 72.18 0.89

ECO 45.85 0.58

Non-local I3D with GCN 169.37 2.78

TSM 341.28 6.86

Algorithm 25.49 10.71

Discussion

For the action analogy with obvious semantic features,

such as Basketball, Fencing, Horse Riding, etc., the network

based on multi-modal data fusion can be improved to some

extent. But for the action categories such as Skate Boarding,

ski jet, surfing, etc., when their semantic features are relatively

vague, by adding the skeleton information, the recognition

accuracy of the model has been significantly improved. The

effectiveness of the method proposed in this paper can be

confirmed by comparing the analytical experimental results in

Figure 5.

When the interval frame number is 4, the best result-98.8%

can be achieved. When the interval frame number is <12,

the accuracy of the result is maintained at more than 95%.

When the number of interval frames is 16, the accuracy is

significantly reduced.

Conclusion

Based on the video feature representation algorithm

based on dependency capture, this paper analyzes the

problems of this kind of algorithm, such as inaccurate

modeling dependency relationship, a large amount of

calculation, and insufficient utilization of neighborhood

pixel information, and proposes a multi-semantic long-

range dependency capture algorithm to enhance the

long-range dependency capture ability of the convolutional

neural network.

FIGURE 5

Comparison of test results.

(1) The multi-semantic long-range dependency capture

module is divided into three steps from the algorithm

level: pixel aggregation, semantic unit correlation

calculation, and dependency establishment. The

algorithm process of each step is described respectively.

It is proposed to form semantic units with richer

semantic information by introducing more pixels in

the dependency modeling process and to model the

dependencies between semantic units.

(2) In the experimental setting, we introduce two large-scale

data sets in the video understanding direction: Kinetics

and Something-Something V1, and introduce the

optimization strategies and reasoning methods used by

the network.

(3) The algorithm is tested on the Kinetics data set to explore

the optimal configuration of the network. The MLDC

algorithm is tested on the Something-Something V1

data set for fine motion classification, which proves that

the MLDC algorithm also has significant advantages in

temporal motion modeling.

The algorithm proposed in this paper shortens the

reconstruction time and improves the reconstruction quality,

but the number of parameters in the overall network is too

large, which requires a lot of GPU computing power. As
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a result, the algorithm proposed in this paper cannot be

directly deployed to mobile terminals, which limits the practical

application of imaging systems based on compressed sensing.

Future studies should consider using pruning operations or

redesigning lightweight modules to reduce the parameters in

the network.
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