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Introduction: Pain is a crucial function for organisms. Building a “Robot Pain”

model inspired by organisms’ pain could help the robot learn self-preservation

and extend longevity. Most previous studies about robots and pain focus on

robots interacting with people by recognizing their pain expressions or scenes,

or avoiding obstacles by recognizing dangerous objects. Robots do not have

human-like pain capacity and cannot adaptively respond to danger. Inspired

by the evolutionary mechanisms of pain emergence and the Free Energy

Principle (FEP) in the brain, we summarize the neural mechanisms of pain and

construct a Brain-inspired Robot Pain Spiking Neural Network (BRP-SNN) with

spike-time-dependent-plasticity (STDP) learning rule and population coding

method.

Methods: The proposed model can quantify machine injury by detecting

the coupling relationship between multi-modality sensory information and

generating “robot pain” as an internal state.

Results: We provide a comparative analysis with the results of neuroscience

experiments, showing that our model has biological interpretability. We also

successfully tested ourmodel on two tasks with real robots—the alerting actual

injury task and the preventing potential injury task.

Discussion: Our work has two major contributions: (1) It has positive

implications for the integration of pain concepts into robotics in the intelligent

robotics field. (2) Our summary of pain’s neural mechanisms and the

implemented computational simulations provide a new perspective to explore

the nature of pain, which has significant value for future pain research in the

cognitive neuroscience field.

KEYWORDS

brain-inspired intelligent robot, robot pain, spiking neural network, free energy

principle, spike-time-dependent-plasticity

1. Introduction

Pain is vital to individual organisms’ survival and the social life between organisms

(Walters andWilliams, 2019). The International Association for the Study of Pain (IASP)

defines pain as “an unpleasant sensory and emotional experience associated with, or

resembling that associated with, actual or potential tissue damage” (Raja et al., 2020).
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Pain can alert to actual injuries and prevent potential injuries,

help organisms protect themselves (Hardcastle, 1997; Loeser

and Melzack, 1999), and synergistically trigger various cognitive

functions, such as pain memory and pain empathy (Jackson

et al., 2006; Wiech and Tracey, 2013; Asada, 2019). Designing

Robot Pain inspired by the organisms’ pain has essential

implications for the survival and longevity of robots.

Previous works related to robots and pain have focused

on how robots recognize pain signals, such as humans’ painful

expressions, and realize pain empathy for humans (Cao et al.,

2021; Werner et al., 2022). Kuehn and Haddadin (2016)

designed the robot’s neural reflex behavior for pain, which is

only a pain-induced avoidance response and not a human-

like pain capacity. Sur and Amor (2017) attempted to model

the robot’s pain capacity, but the network structure they used

is different from the biological mechanism. We explored the

neural mechanisms of pain and established a Brain-inspired

Robot Pain Spiking Neural Network (BRP-SNN) to simulate the

brain regions involving pain, using the spike-timing-dependent-

plasticity (STDP) learning rule to train the connection weights.

Our model makes the robots have human-like pain capacity and

has greater biological plausibility.

We believe that the definition of Robot Pain should be

inspired by the nature of organisms’ pain. First, the pain

mechanism in organisms has evolved over thousands of years,

and it is closely related to physical injury (Bagnato et al., 2015).

Broom proposed that pain is the neural activity at the brain level

that accompanies physical injury (Broom, 2001). This neural

activity occurs primarily in the anterior cingulate cortex (ACC;

Frankland and Teixeira, 2005). In addition, this neural activity

can be associated with injury-related cues, such as scenes of

physical injury or a dangerous object. When a similar cue

occurs, the brain will generate the same neural activity and

avoid potential injury in time (Karsdorp and Vlaeyen, 2009).

This phenomenon is called pain memory (Eich et al., 1985).

Therefore, pain is a passive response to actual physical injury

and active response to potential physical injury (Sur and Amor,

2017). We argue that the Robot Pain should be designed in

line with the neural mechanism of pain mentioned above—it

should first respond to actual machine injury and then respond

to potential machine injury.

For the cognitive process of actual physical injury, we take

inspiration from the brain’s Free Energy Principle (FEP; Friston,

2010). FEP proposes that the brain constantly makes predictions

about the outside world, and all senses will receive real sensory

information from the external world. If the predictions are

consistent with the real sensory information, the brain is in a

low-entropy state; if the predictions are inconsistent with the

real sensory information, the brain is in a high-entropy state

(Friston et al., 2006; Karl, 2012). Physical injury and other

unexpected phenomena all belong to the high-entropy state

(Peters et al., 2017), which indicates that the brain’s predictions

and sensations are inconsistent at a certain level. As the main

brain region associated with pain, the ACC has also been

confirmed to be associated with prediction error of different

levels by multiple neuroscience studies (Oliveira et al., 2008;

Castellar et al., 2010; Jessup et al., 2010). Inspired by the FEP and

ACC function, we summarize a functional connection map of

brain regions for cognizing actual physical injury and generating

pain experience. In addition, we explored the cognitive processes

for potential physical injuries. The experience of pain can be

associated with injury-related cues, such as scenes or sounds

of injury. The visual or auditory cortex of the brain fires

accordingly and establishes synaptic connections with the ACC

through associative learning. When a similar cue reappears, the

brain uses these synaptic connections to generate a rapid pain

experience and avoid potential injury (Wiech and Tracey, 2013).

We simulated the pain-related mechanisms mentioned above

with a Spiking Neural Network (SNN), and experimentally

validated our model on a real robot.

This paper proposed a Brain-inspired Robot Pain Spiking

Neural Network (BRP-SNN) model inspired by the neural

mechanisms of organisms’ pain. This model has three major

contributions: (1) We summarized a neural mechanism of pain

emergence from the perspective of pain evolution and the brain’s

Free Energy Principle (FEP). (2) We use an SNN to build a

Brain-inspired Robot Painmodel that can respond to both actual

and potential injury, and obtain a result curve similar to the

neuroscience experiment. (3) We apply the proposed model to

the robot and complete the alerting actual injury task and the

preventing potential injury task.

2. Materials and methods

2.1. The neural mechanism of pain

Most of the existing neuroscience literature describes the

neural mechanism of pain: nociceptive stimuli specifically

activate nociceptors in the skin, and nociceptive information is

transmitted through the spinal cord, thalamus, and brainstem

to the Anterior Cingulate Cortex (ACC) and other areas of the

cerebral cortex, forming a painful experience. It is a specific

pathway that has evolved over thousands of years of evolution

(Sneddon, 2019). However, this pathway is not sufficient to

support the modeling of Robot Pain.

Broom (2001) proposed that the emergence of pain was

first related to body injury during evolution. Pain is a neural

activity accompanying the body injury, and it is preserved

and internalized in the brain because of its survival benefits.

Nociceptors have also evolved (Perl and Kruger, 1996). In

further learning, corresponding brain regions (e.g., visual and

auditory cortex) will capture cues related to the injury when

the body injury actually occurs. These brain regions will be

connected to pain regions through associative learning (Schlund
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et al., 2011; Wiech and Tracey, 2013). This connection ensures a

rapid avoidance response to a potential body injury.

The first step of pain emergence is the cognition of the

actual body injury. The brain’s Free Energy Principle (FEP)

proposes that organisms are constantly maintaining the low-

entropy state, and abnormal phenomena are the high-entropy

state (Friston et al., 2006; Karl, 2012; Peters et al., 2017), such

as body injury. Entropy cannot be quantified, but Free Energy

(FE) can be approximately equal to entropy. Therefore, the

FEP can be seen as the theoretical basis for cognitive actual

body injury. Bogacz describes the details of the FEP and gives

a formula derivation (Bogacz, 2017): the brain can never directly

obtain the real state φ of the external world, but can only

constantly estimate the external world state φ̂, and the body’s

senses can receive real sensory information s about the real

external world state and use it to verify brain’s estimate. FE

in Bogacz (2017) is simplified as a negative logarithm of the

joint probability distribution of external state estimation and

real sensory information − ln p(s, φ̂), which means that the

greater the joint probability distribution, the more accurate the

estimate, the smaller the FE, and the smaller the entropy of

the organism. The FE expression is expanded with the Bayesian

formula p(s, φ̂) = p(s|φ̂)p(φ̂):

FE = − ln p(s, φ̂)

= − ln p(s|φ̂)− ln p(φ̂)
(1)

The probability distribution is replaced with a Gaussian

distribution f [s; g(.), σ ] with mean g(.) and variance σ ,

supposing σ = 1:

FE = − ln f1(s; gs(φ̂), σs)− ln f2(φ̂;µφ , σφ)

=
[s− gs(φ̂)]

2

2σs
+

[φ̂ − µφ]
2

2σφ
−

1

2
ln σs −

1

2
ln σφ

=
1

2
[s− gs(φ̂)]

2 +
1

2
[φ̂ − µφ]

2

(2)

For the final derived expression, the first item represents the

prediction error, where gs() is a generative function representing

the mapping between world states and sensory information that

needs to be learned empirically in advance. The brain actively

estimates the state of the world φ̂ and predicts the sensory

information through the generation function gs(φ̂), and the

senses receive the real sensory information s, subtracting the two

parts can produce prediction error. The second item represents

the prior error, which indicates that the brain’s estimates must

be compared with the prior knowledge µφ stored in the brain.

Prediction error and prior error together determine the value of

the FE. The FE has three main functions: 1. It can be used to

guide the brain to change its estimates. 2. It can be used to guide

the brain to perform actions. 3. As an internal variable, it can

reflect the internal state of the brain and can be used to study a

variety of cognitive functions.

The cognitive process of body injury and pain emergence

can be explained by FEP: The brain can predict the body sensory

information of all modalities [s1, s2, ..., sn] based on the current

body state φ̂. This body state can be known based on prior

knowledge stored by the brain (e.g., the previous moment’s body

state φ′ and the performed action a′). Equation (3) shows the

calculated rule of the FE in this scenario. If FE is 0, it means

that the body is in a normal state. If FE is >0, it means that the

prediction error arises and the body is in an injured state, which

leads to the pain experience.

FE = [s1 − gs1 (φ̂)]
2 + [s2 − gs2 (φ̂)]

2 + ...

+[sn − gsn (φ̂)]
2 + [φ̂ − gφ(φ

′, a′)]2
(3)

It is worth noting that the brain has many prediction

processes at different levels in addition to the above prediction

from body state to body sensation. In the case of an injection,

the prediction of whether or not be pain is essentially an event-

level prediction, which is a prediction of the pain event in the

context where the pain has evolved. This is a different level from

the prediction of cognitive body injury we described above.

Numerous neuroscientific studies have shown that pain is

associated with the Anterior Cingulate Cortex (ACC) of the

brain (Davis et al., 1997; Frankland and Teixeira, 2005; Du

et al., 2020). The ACC has also been shown to be responsible

for prediction error computation and conflict detection (Silvetti

et al., 2013; Wiech and Tracey, 2013). Silvetti et al. proposed

that the ACC contains neurons representing event prediction

and neurons representing prediction errors. They argued that

the ACC can receive feedback from the external environment,

which together with the prediction neurons leads to the firing of

the prediction error neurons (Silvetti et al., 2011). Inspired by the

FEP and ACC function, we summarize the connectivity map of

brain regions that cognize actual physical injuries and generate

pain experiences.

As shown in Figure 1. The body state neurons of ACC

constantly infer self body state and predict multi-modality

sensory information, and the corresponding prediction neurons

of ACC are activated. The senses of the body can receive the real

sensory information and the corresponding sensory neurons are

activated. When the body state is normal, the information from

the sensory neurons and the prediction neurons are consistent,

which does not cause the prediction error neurons of ACC to

fire, and the body in a low-entropy state. When the body is

injured, it definitely causes the sensory information of some

modalities to be inconsistent with the predicted information,

causing prediction error neurons to fire and the brain cognizes

that the body is injured. Then pain neurons are activated to fire

and produce pain experiences. The body in a high-entropy state.

We also investigated the neural mechanisms associated with

pain memory. Here we use vision as an example, as shown in the

gray module in Figure 1. Visual Cortex has a direct connection

to the pain-related region in the ACC (Wiech and Tracey, 2013).
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FIGURE 1

The connectivity map of brain regions of Pain. Body state neurons encode body state. Prediction neurons encode predictions of sensory

information. Pain neurons characterize whether the body is in a pain state. Sensory neurons encode received real sensory information. Visual

Cortex encodes injury-related cues.

The Visual Cortex will capture the injury-related cues when the

body injury occurs. Due to the temporal correlation, the weight

connections between the corresponding visual cortex neurons

and the pain-related neurons of the ACC will be enhanced by

association learning. The brain will use these connections to

identify potential injury and avoid it.

2.2. Brain-inspired robot pain spiking
neural network

This subsection introduces the implementation details of

the BRP-SNN inspired by the neural mechanisms of pain. We

first introduce the basic tools and methods, then introduce the

overall architecture of the BRP-SNN.

2.2.1. Neuron model and synapse learning
method

The emergence of a spiking neural network (SNN) has

facilitated the development of neuromorphic computing (Yang

et al., 2021). In recent years, SNNs have been successfully applied

to many aspects, such as meta-learning and few-shot learning

(Yang et al., 2022b,c), working memory and decision making

(Zhao et al., 2018; Yang et al., 2022a). The Leaky Integrate-and-

Fire (LIF) neuron is the most common neuron model for SNN

(Tal and Schwartz, 1997; Gerstner and Kistler, 2002), and we use

it as the basic unit of our BRP-SNN. The LIF neuron dynamics

are described by the following Equations (3) and (4):

τm
du

dt
= −[ut − urest]+ RI(t) (4)

lim
δ→0

u(tf + δ) = ureset (5)

ut is the membrane potential of the neuron at time t, urest

is the membrane potential at steady-state, R is the resistance,

I(t) is input current, and τm is the time constant. When the

membrane potential ut exceeds a certain threshold uth, the

neuron fires, and tf is the firing time. Once the neuron fired, the

membrane potential returns to its reset state ureset . In this paper,

the parameters of the LIF neuron model are: urest = ureset =

−65mV , τm = 10ms, uth = −50mV .

We use spike-timing-dependent-plasticity (STDP) as a

synapse learning rule to update synaptic weights. STDP is the

most basic learning method in the brain, which relies on the

time difference between the firing of pre-synaptic neurons and

post-synaptic neurons to train the synaptic weight (Dan and

Poo, 2004; Sjöström and Gerstner, 2010; Markram et al., 2012;

Chevtchenko and Ludermir, 2020). The weights update rule is

written as Equation (5):

1ω =







A+exp(1t
τ+

), 1t < 0

−A−exp(−1t
τ−

), 1t > 0
(6)

With 1t = ti − tj, where ti and tj are the firing

time of the pre-synaptic neuron and the post-synaptic neuron

respectively. A+ and A− are the learning rates. τ+ and τ−

are the time constants. According to this rule, the connections

will be strengthened when pre-synaptic neurons fire before

post-synaptic neurons and will be weakened when pre-synaptic

neurons fire after post-synaptic neurons. In this paper, τ+ =

τ− = 10ms, A+ = 0.5, A− = 0.1. The choice of these

parameters is based on the settings in reference (Sjöström and
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FIGURE 2

The Gaussian Receptive Field (GRF) coding method (Bohte et al.,

2002).

Gerstner, 2010). The values of τ+ and τ− are consistent with the

values in that literature. The A+ and A− reflect the strength of

LTP and LTD, respectively, and the effect of LTP is considered

more in this paper.

2.2.2. Population coding method

Population coding is a neuron coding method of SNN. The

representation information of one neuron is limited, and the

population coding is more effective and biologically plausible

(Fang and Zeng, 2021; Fang et al., 2021).

Population coding uses a neuron population to encode input

data, which can represent continuous values. In this paper, we

adopted the Gaussian receptive field (GRF) population coding

method mentioned in Bohte et al. (2002). Each dimensional

receptive field is a group of neurons, where each neuron

corresponds to a Gaussian activation function. Each input will

cause all neurons in the receptive field to fire at different times

through a different Gaussian activation function, Figure 2 shows

eight neurons per dimensional receptive field. For each input

pattern, the response time t is calculated for each neuron, and

neurons with response times >9 are coded as not triggered

because they are considered insufficiently excitable. The single

input a = {∗, ∗, ∗, 9, 2, 0, 8, ∗, ∗} was encoded by eight Gaussian

activation functions, and the black dot marking Ti indicates the

firing time of the i-th neuron involved in its encoding.

2.2.3. Model implementation

When body states are known, the prediction error generated

by the prediction process from the body state to body sensations

of all modalities can lead to pain. According to this mechanism,

the specific cognitive process of Robot Pain is as follows: the

robot continuously infers the current body state through the

previous moment state and the executed action, and predicts the

sensory information that will be received by all robot sensors.

When the prediction error occurs, it indicates body injury,

which in turn leads to Robot Pain.

As shown in Figure 3, The BRP-SNN simulates the function

and connection of the brain regions mentioned in Figure 1,

which contains the State Module, Prediction Module, Sensory

Module, Error Module, Pain Module, and Cue Module. Each

module is a neuron population. The State Module encodes

different body states. The Prediction Module represents the

predictive sensory information of different modalities. The

Sensory Module encodes the real sensory information of

different modalities. The Error Module represents prediction

error. The Pain Module represents whether Robot Pain is

produced or not. The Cue Module encodes the injury-

related cues. The blue arrows in Figure 3 indicate excitatory

connections, and the red arrows in Figure 3 indicate inhibitory

connections.

The mapping relationship between the State Module and the

Prediction Module needs to be learned empirically by collecting

robot body data. The connection weights are established through

STDP in the process of learning. After learning, the State

Module can activate the corresponding Prediction Module

through forwarding prediction. The Error Module represents

the prediction error, once any neuron in this module fires,

indicating that the prediction error arises. According to the

excitatory and inhibitory synaptic connections in the ACC

mentioned in Silvetti et al. (2011), we designed that the

Prediction Module to the Error Module is the inhibitory

connection, and the Sensory Module to the Error Module is the

excitatory connection. The dynamics of neurons in the Error

Module are described by Equation (6):

1u = −ωpvp + ωsvs(ωp,ωs > 0) (7)

1u represents an update of the membrane potential of

the neurons in the Pain Module. −ωp represents inhibitory

weights. ωs represents excitatory weights. vp is the input from

the Prediction Module. vs is the input from the Sensory Module.

When the firing pattern of the Prediction Module is consistent

with the Sensory Module, the effects of excitatory and inhibitory

on the neuron of the Error Module are counteracted, and the

Error Module does not fire, such as the B neuron in Figure 3,

indicating a normal body state. When the firing pattern of the

Prediction Module is inconsistent with the Sensory Module, the

effects of excitatory and inhibitory are not counteracted and

specific neurons in the Error Module will fire. For example, the

excitatory effect from the Sensory Module acts on A neuron,

but the inhibitory effect from the Prediction Module acts on

the other neuron. The red dashed arrow in Figure 3 indicates

an inhibitory effect that has not yet been established. A neuron

receives only excitatory effects, so it fires. The Error Module to

the Pain Module is excitatory and fully connected. When the

robot body state is known, any neuron fire of the Error Module

causes the Pain Module to fire, indicating the Robot Pain state.
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FIGURE 3

The network architecture of the BRP-SNN. The State Module can activate the corresponding Prediction Module through forwarding prediction.

The Prediction Module to the Error Module is the excitatory connection, and the Sensory Module to the Error Module is the inhibitory

connection. The Error Module represents prediction error. The Pain Module represents whether Robot Pain is produced or not. The Cue Module

encodes the injury-related cues.

The Cue Module encodes the injury-related cues, such as

a dangerous object captured by the camera. The connections

between the Cue Module and Pain Module can be established

through STDP by association learning. This BRP-SNN can

not only recognize actual machine injury and produce Robot

Pain, but also recognize injury-related cues and avoid potential

machine injury.

3. Experiment

3.1. Experiment settings

We use the Nao robot as an experimental platform and apply

the BRP-SNN to implement two tasks: the alerting actual injury

task and the preventing potential injury task.

As shown in Figure 4A, the left arm of the Nao robot

contains three joints: shoulder joint, elbow joint, and wrist joint,

and contains two links: link A and link B. In order to mimic the

robot injury process without actually damaging the robot. Our

experiments assume that the left arm is in a normal body state

when it is straight and in an injured state when it is bent. This

means that it is assumed that link A and link B are an integral

link. The elbow joint sensor (between linkA and linkB) will

not receive any action command from the robot, and the robot

FIGURE 4

The Nao robot. (A) Shows the assumed normal body state. (B)

Shows the assumed injured state.

will not process any input information from this elbow joint

sensor. Under this assumption, the bending elbow as shown

in Figure 4B is an undesirable deformation of the robot that is

similar to a human fracture.

In this experiment, we only consider two sensory modalities

of the robot: proprioception sp and vision sv, which were the

angle data of each joint of the arm and the position coordinate

data of the hand in the camera. As in Equation (8), a special case
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FIGURE 5

Collecting dataset and training by STDP. Proprioception data only includes the ShoulderPitch joint angle θ1, the ShoulderRoll joint angle θ2, and

the WristYaw joint angle θ3, and the Elbow joint is not considered. Vision data is the coordinate position (x, y) of the hand in the camera.

of Equation (3).

FE = [sv − gsv (φ̂)]
2 + [sp − gsp (φ̂)]

2 + [φ̂ − gφ(φ
′, a′)]2 (8)

The State Module encodes the body state. Lanillos and

Cheng (2018) propose that the robot should determine

body state through multi-modal sensations using the FEP,

corresponding to the FE’s function1 described in Section 2.1.

They set the body state as a variable that requires continuous

learning. The robot will actively estimate the current body state

and verify this estimate by sensory information received from

sensors, continuously updating this estimate until the prediction

error (FE) is zero, to determine the current body state. Inspired

by this, we divide our experiment into two steps: Step 1 is

to determine the robot’s initial body state using the method

proposed by Lanillos and Cheng (2018). This corresponds to the

FE’s function 1. Step 2 is to infer the body state at each moment

by the initial state and the executed actions during the task,

predict each sensation, and calculate the prediction error at each

moment, to determine whether the robot is in the injury state.

This corresponds to the FE’s function 3. Step 1 uses the State

Module, PredictionModule, SensoryModule, and ErrorModule

of BRP-SNN. Step 2 uses the State Module, Prediction Module,

Sensory Module, Error Module, and Pain Module of BPR-SNN.

The body state is a high-dimensional variable in the brain.

For computational purposes, Lanillos et al. defined body state

in the proprioception data space. This does not mean that body

state is equivalent to proprioception, but only consistent with

its data dimension and the range of values. We follow this

assumption that body states are defined in the proprioception

data space and encoded by the State Module of BRP-SNN. The

Sensory Module encodes real proprioception and vision data.

We set the initial value of the body state and continuously

make predictions to both sensor data. The prediction error

(Error Module fires) will guide the body state estimation update

using the exhaustive search algorithm until the Error Module no

longer fires. After the initial robot body state is determined, the

subsequent body states can be inferred by prior knowledge (the

body state and the executed actions at the previous moment). In

a normal situation, there is no prediction error when the current

body state makes predictions about the current sensation, the

Error Module does not fire. When the body is injured, the Error

Module fires, which in turn causes the PainModule fires, and the

robot is in a pain state.

The mapping relationship between body state and

proprioception gsp () and vision gsv () should be learned in

advance for the forwarding prediction of the State Module to

the Prediction Module. The robot collects training data through

several random movements (motor babbling) while the left

arm is straight. As shown in Figure 5. Proprioception data only

includes the ShoulderPitch joint angle θ1, the ShoulderRoll joint

angle θ2, and the WristYaw joint angle θ3, and the Elbow joint

is not considered. Vision data is the coordinate position (x, y) of

the hand in the camera, obtained by grayscale processing of the

image captured by the camera and calculating the median value

of the corresponding pixel coordinates. The body stateφ is set

in the proprioception data space, so the mapping relationship

gsp (φ) = φ. The mapping relationship gsv () needs to be learned

using STDP.

3.2. The alerting actual injury task

3.2.1. Experiment results

We designed two actual injury paradigms in the alerting

actual injury task: undesirable body deformation and motor

system injury.

In the case of undesirable body deformation, when the elbow

bending caused by a black object occurs, the robot’s prediction

will be inconsistent with the real sensory data. Then the robot
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FIGURE 6

The Alerting Actual Injury Task (the assumed undesirable body deformation). (A) Shows the normal state of the robot. (B) Shows that the elbow is

bent with a black object. (C) Shows that the robot is in the Robot Pain state and makes an alarm, and the red circle represents the predicted

position of the hand by BRP-SNN.

FIGURE 7

The Alerting Actual Injury Task (the assumed motor system injury). (A) Shows the normal state of the robot. The hand’s position in the camera

should also move downward when performing the downward action. (B) Shows hitting the arm with a black object, (C) shows that the motor

system injury occurs and the position of the hand will not move. The robot is in the Robot Pain state and makes an alarm, and the red circle

represents the predicted position of the hand by BRP-SNN.

turns into the Robot Pain state and says “OUCH!” for alarm.

Figure 6A shows the normal state of the robot. Figure 6B shows

that the elbow is bent with a black object. Figure 6C shows that

the robot is in the Robot Pain state and makes an alarm, and

the red circle represents the predicted position of the hand by

BRP-SNN.

In the case of motor system injury, we made the following

assumption: when a black object hits the robot’s arm and touches

the tactile sensor, the robot does not execute any action at

the program level, simulating motor system injury. In this

experiment, the robot constantly does random movements and

predicts the sensory information at the next moment by its

current body state and the action command (prior knowledge).

When the injury occurs, the predicted position is inconsistent

with the real sensory. Then the robot is in the Robot Pain state

and says “OUCH!” for alarm. Figure 7A shows the normal state

of the robot. The hand’s position in the camera should also move

downward when performing the downward action. Figure 7B

shows hitting the arm with a black object, Figure 7C shows that

the motor system injury occurs and the position of the hand will

not move. The robot is in a Robot Pain state andmakes an alarm,

and the red circle represents the predicted position of the hand

by BRP-SNN.

3.2.2. Model analysis

Figure 8 shows the synaptic weights between the State

Module and the neurons that characterize vision information

in the Prediction Module, indicating the mapping relationship

between the body state and the prediction of vision information.

These weights are learned by STDP training rules from the data

set collected in advance (as shown in Figure 5). The closer the

color is to yellow, the larger the weight is; and the closer the color

is to purple, the smaller the weight is.

Figure 9 represents the spike diagram ofmodules of the BRP-

SNN in the actual injury condition. The X-axis represents the

time, and the Y-axis represents the neuron index. Figure 9A

represents the firing pattern of the State Module. Figure 9B

represents the firing pattern of the Prediction Module when

predicting sensory information. Figure 9C represents the firing

pattern of the Sensory Module when receiving the real sensory

information. It is shown that the firing neuron index of the
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FIGURE 8

The synaptic weights between the State Module and the

neurons that characterize vision information in the Prediction

Module. The closer the color is to yellow, the larger the weight

is; and the closer the color is to purple, the smaller the weight is.

Prediction Module is inconsistent with the Sensory Module, so

the Error Module fries. Figure 9D shows the firing pattern of

the Error Module. Due to the excitatory connection between the

Error Module and the Pain Module, the Pain Module then fires,

indicating the Robot Pain state. In BRP-SNN, we design the time

step as 100 ms, and the robot collects sensor information per

100 ms. Figure 9 represents the firing of each module during

1,000 ms when the robot experiences actual injury. The sensor

acquires abnormal sensory information every 100 ms, which

is encoded by the Sensory Module, which causes the Error

Module to fire. The Error Module is fired 10 times in 1,000

ms.

Figure 10 shows the comparative analysis of our proposed

model with previous neuroscience studies about ACC. Silvetti

et al. (2011, 2013) proposed a neural model of the ACC–the

Reward Value and Prediction Model (RVPM) and validated it in

model-based human fMRI experiments. Figure 10A represents

the average activation intensity of the ACCmodule of the RVPM

over time. In this experiment, the cue signal is first fed into the

model, which is a square wave with a 2,000 ms duration and unit

amplitude. Then, a prediction process with a 2,000 ms duration

starts. The reward feedback signal with a 400 ms duration is

added at 1,600ms. Each experiment is 2,500ms and is performed

20 times. We simulated the same experiment steps in the BRP-

SNN. As shown in Figure 10B, body state information (robot

proprioceptive information) was first fed to the State Module

to start a prediction process with a 2,000 ms duration. Then, a

feedback signal (real visual information) of 400 ms duration is

added to the Sensory Module at 1,600 ms. The total duration

of the experiment is also 2,500 ms. We performed it 20 times

and calculated the average activation intensity of the whole

ACC. It is worth noting that each unit of RVPM represents

a continuous value, and the calculation rule for the average

activation intensity is the sum of the amplitudes of multiple

signals. However, each module of our BRP-SNN is a neuron

group with discrete spike signals, and the calculation rule for the

average activation intensity is the sum of the firing rates of all

modules in ACC every 100 ms. The different data morphology

and calculation rules result in inconsistent limits on the Y-axis in

the two figures. But, both figures reflect the same change trend of

average activation intensity: At the beginning of the prediction,

both curves increase significantly, indicating that the prediction

module is firing. At the reception of an environmental feedback

signal that is inconsistent with the prediction, both curves

increase again, indicating that the prediction error module is

firing. At the end of the prediction, both curves decrease to

0, indicating that the whole ACC is at rest state. This result

indicates that our BRP-SNNhas the same change trend as RVPM

under the same experimental conditions.

3.3. The preventing potential injury task

3.3.1. Experiment results

In both actual injury paradigms, the black object is captured

by the camera and encoded by the Cue Module, and establishes

the connection between the Cue Module and the Pain Module

by association learning. When the robot sees the black object

again, even if the actual injury has not occurred, the PainModule

also fires and then executes the avoidance behavior. Figure 11A

shows that the dangerous black object approaches the robot, and

the robot recognizes it. Figure 11B shows that the robot executes

avoidance behavior to prevent potential injury.

3.3.2. Model analysis

When the camera of the robot detects the black object, this

black object is encoded by the Cue Module. When the actual

injury occurs, the connection between the Cue Module and

the Pain Module can be established. When the robot sees the

black object again, the Cue Module fire, as shown in Figure 12A.

Then the Pain Module fire, as shown in Figure 12B, and avoid

potential injury.

4. Discussion

This paper proposes a Brain-Inspired Robot Pain model

that simulates the neural mechanism and behavioral results of

organisms’ pain. This model can alert to actual injury and avoid

potential injury, and obtain the result curves similar to previous

neuroscience experiments.

In this paper, we argue that pain is a kind of neural activity

occurring at the brain level accompanied by physical injury,

and it is a subjective reflection of the objective physical injury

event. It means that the organism has a self-body model, which

reflects the coupling relationship between the multi-modality
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FIGURE 9

The spike diagrams of the BRP-SNN in the actual injury task. The X-axis represents the time, and the Y-axis represents the neuron index.

(A) Represents the firing pattern of the State Module. (B) Represents the firing pattern of the Prediction Module when predicting sensory

information. (C) Represents the firing pattern of the Sensory Module when receiving the real sensory information. (D) Shows the firing pattern of

the Error Module.

information of the body, such as the multisensory modalities

and motor modality. Once a physical injury event occurs, the

coupling relationship will be broken, and the organism will be

in a state of increased entropy. Then the brain will perceive this

abnormal state and react to it, gradually evolving into pain. In

our work, only two sensory modalities and one motion modality

of the robot are considered. If robots have more sensors in the

future, our model can also be generalized to more modalities.

We have made certain assumptions in robot experiments,

such as taking normal elbow bending as an abnormal

deformation of robot and designing motor system injury at the

program level. That is because we cannot actually harm the

robots in the lab. The two tasks of the robot are only a validation

of our BRP-SNNmodel. We also hope to use the principle of this

model to make the robots produce ’Robot Pain’ in a real work

environment, to realize the alarm and prevention of injury in

the future.

In the training phase of the connection weights between

the State Module and the Prediction Module, we set the initial

weights to 0 and use the STDP to adjust the weights according to

the correlation of the firing times of the pre-synaptic and post-

synaptic spikes. In this paper, we mainly emphasize the effect of

LTP, and the weight values that meet the LTP condition will be

increased. We manually restricted the size of the weights to the

range [0, 5] to facilitate observation and debugging.

There are still some limitations to our work. First, our model

implements the task on a robot under the specific conditions we

designed, so its robustness has not been verified yet. In future
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FIGURE 10

The comparative analysis of our proposed model with the previous neuroscience model–RVPM. (A) Shows the average activation of the whole

ACC at the RVPM under di�erent levels of reward events. (B) Shows the average firing rate of the whole ACC module of the BRN-SNN. This

result shows that our BRP-SNN has the same change trend as RVPM under the same experimental conditions.

FIGURE 11

The preventing potential injury task. (A) Shows that the dangerous black object approaches the robot, and the robot recognizes it. (B) Shows

that the robot executes avoidance behavior to prevent potential injury.

FIGURE 12

The spike diagrams of the BRP-SNN in the potential injury task. The X-axis represents the time, and the Y-axis represents the neuron index.

(A) Represents the firing pattern of the Cue Module. (B) Represents the firing pattern of the Pain Module.
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work, we will validate the utility of our model under other

experimental conditions (e.g., robot data from other modalities).

Second, in the preventing potential injury task, the process from

the firing of the Cue Module (potential danger detection) to

triggering the firing of the Pain Module (pain state activation)

is trained by STDP through association learning. However, the

transition from the pain state activation to the execution of

the avoidance action is artificially set by us. In fact, for an

organism, the avoidance action is learned by trial and error.

In the next step, we will explore the learning process of pain-

triggered self-defensive actions and the relationship between

pain models and intrinsic rewards in the reinforcement learning

method. In addition, we plan to further investigate more neural

mechanisms and computational models of cognitive functions

related to pain, such as pain empathy. Pain empathy is an

important factor to promote harmonious coexistence among

social groups, and robots with empathic abilities will be more

moral (Asada et al., 2009; Asada, 2015). In the future, we will

explore the computational models of pain empathy and the

altruistic behavior of robots.

This paper proposes a Brain-Inspired Robot Pain Spiking

Neural Network inspired by the neural mechanism of organisms’

pain, enabling the robot to have a human-like pain capacity.

We explored the neural mechanism of pain emergence from

the perspective of pain evolution and the brain’s Free Energy

Principle, and we used SNN to simulate relevant brain regions’

functions and connections to build a Robot Pain model with the

STDP method and the population coding method. Our model is

inspired by the pain’s neural mechanisms and achieves not only

the alarming of actual machine injuries but also the prevention

of potential danger, which has positive implications for the

integration of pain concepts into the robotics field. Our work

is a meaningful step toward creating more brain-like intelligent

robots in the future.
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