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Real-time route planning of
unmanned aerial vehicles based
on improved soft actor-critic
algorithm
Yuxiang Zhou*, Jiansheng Shu, Xiaolong Zheng, Hui Hao and
Huan Song

Xi’an Research Institute of High Technology, Xi’an, China

With the application and development of UAV technology and navigation

and positioning technology, higher requirements are put forward for UAV

maneuvering obstacle avoidance ability and real-time route planning. In this

paper, for the problem of real-time UAV route planning in the unknown

environment, we combine the ideas of artificial potential field method

to modify the state observation and reward function, which solves the

problem of sparse rewards of reinforcement learning algorithm, improves the

convergence speed of the algorithm, and improves the generalization of the

algorithm by step-by-step training based on the ideas of curriculum learning

and transfer learning according to the difficulty of the task. The simulation

results show that the improved SAC algorithm has fast convergence speed,

good timeliness and strong generalization, and can better complete the UAV

route planning task.

KEYWORDS

deep reinforcement learning, unmanned aerial vehicles (UAV), 2D path planning, local
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Introduction

Route planning is a special column of path planning, which aims to find the
path from the current position to the target position. The path should be as short
as possible, the smoothness should fit the flight conditions of the aircraft, and it
must be safe and collision-free (Han and Seo, 2017). Due to better mobility and
flexibility, unmanned aerial vehicles (UAV) are increasingly used to perform complex
and changeable tasks in the flight environment, such as battlefield attack tasks, and post-
disaster search and rescue tasks. The research at home and abroad mainly focuses on
the route planning of the UAV in a fixed static environment. Therefore, the ability of
the UAV to conduct real-time maneuvering obstacle avoidance after acquiring dynamic
environmental information becomes particularly important (Park and Baek, 2020).
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According to the understanding of the environment in the
planning process, path planning can be divided into global
path planning and local path planning (Li and Chou, 2018).
Traditional optimization algorithms are mostly global path
planning algorithms, such as Dijkstra (1959), A ∗ algorithm
(Hart et al., 1968), RRT ∗ algorithm (Karaman and Frazzoli,
2011), particle swarm algorithm (Shao et al., 2020) and ant
colony algorithm (Liu et al., 2017). Most of the global path
planning algorithms apply to route optimization in static
and fixed scenes, and a large amount of environmental map
information needs to be stored in advance. With the increase
of complexity and uncertainty of the environment and the
influence of noise, its reliability and applicability will be greatly
reduced (He et al., 2021).

Local path planning is to detect the moving environment
through sensors to obtain the location and geometric properties
of obstacles. This kind of planning requires the real-time
collection of environmental data, and the dynamic update of
the environmental model can be corrected at any time, which
has high robustness to environmental errors and noise, and
the planning speed is fast, so it is usually used for real-time
route planning (Gao et al., 2020). This method combines the
modeling and searching of the environment and requires the
robot system to have high-speed information processing and
computing capabilities. The artificial potential field algorithm
(Khatib, 1985) is a commonly used method in the local path
planning algorithm, and its convergence rate is fast. However,
the action of the algorithm is discrete, and the planned path
smoothness is poor. Path smoothing is usually required before
it can be used in actual flight. However, local path planning is
only for the actions performed in the current state and does not
consider the impact of the actions on the long-term returns of
the path. Therefore, although such algorithms have better real-
time performance, they often fail to achieve the global optimum
of the path.

The deep reinforcement learning algorithm is based on
the current state of the environment and takes into account
the maximum long-term payoff, so it has good real-time
performance and can achieve the overall optimal trajectory,
which is superior in solving the online trajectory planning
problem. In 2013, the DeepMind team (Mnih et al., 2013) used
the fitting function of the neural network to fit the observed
high-dimensional environmental data into the Q function, and
innovatively proposed the Deep Q-Network (DQN) model,
which solved the problem of high-dimensional continuous
state space representation, and made deep reinforcement
learning become a research hotspot in the field of artificial
intelligence. Compared with the traditional algorithm, the
reinforcement learning algorithm has better generalization,
stronger adaptability to the dynamic changing environment,
and better meets the real-time requirements of the online route
planning problem. Unlike supervised learning, reinforcement
learning automatically acquires sample data during training. In

recent years, scholars have combined reinforcement learning
with other algorithms to improve the performance of the
algorithm, and have achieved good results in offline path
planning, online path planning and multi-agent navigation.
Lei et al. (2018) used the Double DQN for dynamic path
planning with local targets and laser radar detection signals as
input. The experimental results show that the algorithm has
good generalization and can solve the problem of dimension
disaster, but because the algorithm is discrete action space,
the smoothness of the planned path is poor. Yu et al. (2020)
used a neural network to perceive the environment and extract
feature information, and combined DDPG with hierarchical
reinforcement learning for path planning. The convergence
time was significantly shortened, and the path smoothness
was significantly improved. De Jesus et al. (2021) also used
a laser radar detection signal as input, compared SAC with
DDPG, and concluded that Soft Actor-Critic (SAC) algorithm is
more efficient than Deep Deterministic Policy Gradient (DDPG)
algorithm. However, the authors did not compare the real-
time performance of the two, and the detection range of lidar
must be large enough, otherwise, the algorithm will be difficult
to converge. Grando et al. (2022) added Recurrent Neural
Network (RNN) to Twin Delayed Deep Deterministic policy
gradient (TD3) algorithm and SAC algorithm, respectively, so
that the model has a certain memory and reasoning ability,
and can better avoid obstacles by referring to the preorder
information. The experimental results prove the effectiveness of
the improved algorithm, and the improved SAC algorithm has
faster convergence speed and better effect.

Deep reinforcement learning algorithms are more widely
used than traditional reinforcement learning algorithms, and
the commonly used algorithms with better convergence effects
are based on the deformation of the Actor-Critic structure,
such as PPO (Schulman et al., 2017), TD3 (Fujimoto et al.,
2018) and SAC (Haarnoja et al., 2018) algorithm. The PPO
algorithm is an improved algorithm of the policy gradient
algorithm, which was chosen as the default reinforcement
learning algorithm by the OpenAI team due to its high
adaptability, stable convergence effect and low influence by
hyperparameters. The TD3 algorithm is based on the DDPG
algorithm and uses a double Q network for estimation, which
solves the problem of Q network overestimation and has a more
stable convergence effect. In addition, the SAC algorithm is
a maximum entropy reinforcement learning algorithm, which
enhances the exploration ability of the algorithm and makes it
easier for the algorithm to find a better action and prevent the
algorithm from falling into a local optimal solution. Therefore,
three algorithms are trained and compared in this paper.

The main work of this paper is as follows:

• Based on the UAV real-time route planning problem
and the characteristics of deep reinforcement learning
algorithm, the formulae for calculating the attractive
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potential field and repulsive potential field of the artificial
potential field algorithm are improved, the potential energy
information of the artificial potential field is input into
the neural network as part of the state information of
the agent for training, and the reward term for the
amount of potential energy change is set in the reward
function accordingly, which successfully solves the reward
sparsity problem arising in the application of reinforcement
learning algorithm, and at the same time speeds up the
convergence speed and stability of the algorithm and
improves the optimization effect.

• In order to prevent the algorithm from generating the
phenomenon that it is difficult to train because of the
difficulty of the task, this paper combines the methods
of curriculum learning and transfer learning to set up a
multi-stage training environment by difficulty coefficient
for step-by-step training, which improves the training effect
of the algorithm, and designs two testing environments to
verify the generalization and reliability of the algorithm.

Deep reinforcement learning
algorithm design

Soft actor-critic algorithm

Soft actor-critic (SAC) algorithm is a model-free random
strategy deep reinforcement learning algorithm proposed by
Haarnoja in 2018. The rest of this section provides a summary of
their work. Its structure includes 1 Actor-network and 4 Critic-
networks. The traditional reinforcement learning algorithm
only considers maximizing the cumulative reward term, while
SAC algorithm maximizes the entropy term of the cumulative
reward term and the strategy distribution at the same time. The
greater the entropy value is, the greater the randomness of the
action is. It reduces the sampling complexity and improves the
exploration ability and robustness of the algorithm, preventing
premature convergence of the algorithm and generating local
optimal solutions. The equation can be written as

π∗ = arg max
π

E(st,at)∼ρπ

[∑
t

R (st, at)︸ ︷︷ ︸
reward

+ αH H (π (· |st ))︸ ︷︷ ︸
entropy

]
. (1)

where r (·) is the Reward value items under the current state
and action, H (·) is the entropy term of strategy π, α is the
temperature coefficient. The relative importance of entropy
terms of policy distribution is determined by controlling the size
α H .

The SAC algorithm network structure is shown in
Figure 1. The parameter of Actor-network is φ. The probability
distribution πφ ( · | st) of the strategy is obtained according to
the input state st , and then the action at is output according to
the probability. The action at will be acted on the environment
to obtain st+1 and rt+1 . The experience data (st, at, rt+1, st+1)

is stored in the experience pool. The input of the Critic-
network is state st , where the parameter of V network is ψ,
and the estimated value of output state Vψ (s); The parameter of
Q-network is θ, and the output is state-action value estimation
Qθ (st, at).

The mean square error (MSE) loss function of the V-Critic
network update can be written as

JV (ψ) = Est∼D[
1
2
(
Vψ (st)− Eat∼πφ

[
Qθ

(
st, a′t

)
− log πφ

(
a′t |st

)])2
]
. (2)

where D is the experience pool.
The gradient can be written as:

∇̂ψJV(ψ) =

∇ψVψ (st)
(
Vψ (st)− Qθ

(
st, a′t

)
+ log πφ

(
a′t
∣∣ st)). (3)

The gradient here is unbiased estimation, D is the empirical
data sample in the empirical pool, and a′t is the actor-network
generated according to the current state st . The parameters of
the two Q-Critic networks updated by the random gradient
descent method are different, and the minimum values of
the two Qθ are calculated here to show the indigenous
accelerated training.

The update of the Q-Critic network is also to minimize the
MSE loss function. The equation can be written as

JQ (θ) = E(st,at)∼D
[

1
2

(
Qθ (st, at)− Q̂ (st, at)

)2
]
, (4)

Q̂ (st, at) = r (st, at)+ γEst+1∼p

[
Vψ̄ (st+1)

]
. (5)

The gradient can be calculated as

∇̂θJQ(θ) =

∇θQθ (at, st)
(
Qθ (st, at)− r (st, at)− γVψ̄ (st+1)

)
. (6)

The Actor-network is updated by minimizing KL divergence,
and the equation can be written as

Jπ(φ) =

Est∼D

[
DKL

(
.πφ ( · | st) ‖

exp (Qθ (st, · ))
Zθ (st)

)]
. (7)

where Z ( · ) function is used to normalize the distribution.
The strategy is represented as a neural network with noise

by the re-parametric technique. It can be written as

at = fφ (εt; st) . (8)
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FIGURE 1

SAC algorithm network architecture.

In the formula, εt is the noise vector, so the original objective
function can be rewritten as

Jπ(φ) =

Est∼D,t∼N
[
log πφ

(
fφ (t; st)

∣∣ st)− Qθ

(
st, fφ (t; st)

)]
. (9)

The gradient is calculated as

∇̂φJπ(φ) = ∇φ log πφ (at| st)

+
(
∇at log πφ (at| st)−∇atQ (st, at)

)
∇φfφ (εt; st). (10)

Network structure design

The input of reinforcement learning state information
requires concise and efficient, and too much useless information
in the state information may cause the reinforcement
learning algorithm to learn spurious decision correlations
and make the deep neural network overfitting, resulting in a
significant loss of performance of the algorithm. Therefore,
to make the training more efficient, the environmental
information collected by the detection device needs to
be filtered and processed to better model the correlation
between state information and cumulative returns and further
make better decisions. In general, the use of relative state
information leads to a stronger generalization of the trained
algorithm, which enables the direct migration of strategies
in similar tasks.

As shown in Figure 2, the deep reinforcement learning
algorithm used in this paper includes 33 inputs of state
information and 1 action output. Among them, the state
information input to the neural network is obtained from

the data collected by the detection device after filtering
and abstraction, including four sets of relative state
information: target relative position P′g , nearest obstacle
relative position P′o, agent relative position P′a and range
ratio L′, and one set of local potential field information
U ′f . The output of the neural network is the action chosen
by the agent in the current environmental state: turn
angle α.

The network structure of the SAC algorithm consists of 1
Actor network, 2 Q-Critic networks with the same structure, and
2 V-Critic networks with the same structure (target network,
estimation network), and the inputs and outputs of the network
are shown in Figure 3. The hidden layer structure of the Actor
network, Q-Critic network and V-Critic network are the same,

FIGURE 2

Input and output of the neural network.
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FIGURE 3

SAC algorithm network structure.

all containing 3 hidden layers, each with 512 nodes. The input
of the Actor network is st the current state of the environment
where the agent is located, and the output is the turn angle α.
The input of the Q-Critic network is st and action at , and the
output is the Q value of the current state-action pair. The input
of the V-Critic network is st , and the output is the current state
value V (st), which is the value prediction of the current state st .

Real-time route planning for
unmanned aerial vehicles based
on improved soft actor-critic
algorithm

Artificial potential field method

The artificial potential field method is a virtual force
method proposed by Khatib (1985), which is widely used to
solve the path planning problem of the unmanned system.
Its principle is to transform the motion of the unmanned
system in the environment into an abstract artificial potential
field. Among them, the attractive potential field is generated
by the target, which has an attractive effect on the unmanned
system and guides the unmanned system to reach the target
position quickly. The attractive potential field near the target
point is small, and the attractive potential field far from the
target point is large. The unmanned system moves in the
direction of the negative gradient of the potential field. In
the traditional artificial potential field method, the size of
the attractive potential field is proportional to the square of the
target distance, so that the gravity increases linearly with the
target distance. The formula is

U ′att(q) =
1
2
kattρ

(
q, qgoal

)2
. (11)

However, the traditional attractiveness formula is
insufficient. When the environmental space is large, the
gravity of the point far from the target will be much larger
than that near the target, resulting in the phenomenon that the
unmanned system is prone to hovering near the target point.
Therefore, this paper improves the original gravity formula to
make the size of the attractive potential field proportional to the
target distance. The attractive potential is calculated as

Uatt(q) =
1
2
kattρ

(
q, qgoal

)
. (12)

where katt is the gain coefficient of attractive potential field,
ρ
(
q, qgoal

)
is the Euclidean distance between the point and

the target point.
The repulsion potential field is generated by obstacles, which

has a repulsion effect on the unmanned system. The magnitude
of repulsion is the negative gradient of the repulsion potential
field. The closer the position point is to the obstacle, the larger
the repulsion potential field is. In the design of the traditional
repulsive potential field formula, within the influence range
of obstacles, the size of the repulsive potential field increases
sharply with the reduction of the obstacle distance, that is,
the size of the repulsive force increases sharply to make the
unmanned system away from the obstacles and is not easy to
adjust. The repulsion formula is

U ′rep (q) = 1
2krep

(
1

ρ(q,qobs)
−

1
ρ0

)2
, if ρ

(
q, qobs

)
≤ ρ0

0 if ρ
(
q, qobs

)
> ρ0

. (13)

where krep is the gain coefficient of the repulsion potential
field, ρ

(
q, qobs

)
is the distance between the location point and

the obstacle boundary, ρ0 is the maximum impact range of
obstacles. The repulsive potential field only affects the position
points within the maximum influence range.
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In this paper, combined with the characteristics of the
reinforcement learning algorithm, the exponential function is
used to improve the formula of the repulsion potential field,
so that the initial value and the change rate of the repulsion
potential field can be controlled. The equation can be written
as

Urep(q) ={
αrep · e−βrep(ρ(q,qobs)−ρ0), if ρ

(
q, qobs

)
≤ ρ0

0 if ρ
(
q, qobs

)
> ρ0

. (14)

where αrep is the initial amplitude adjustment factor of the
repulsion potential field, βrep is the adjustment factor of the
change rate of repulsion potential field size.

The total potential energy of a point is the sum of the
attractive potential energy of the target point at that position and
the repulsion potential energy of each obstacle at that point, and
it can be calculated as

Uall(q) = Uatt(q)+ Urep(q). (15)

State space setting based on potential
energy observation

The state space is obtained by the agent’s observation of
the environment, which is the basis for the agent’s action
selection and includes four parts. In this paper, we introduce the
potential energy information of the flight environment and use
the potential energy information as a guide to motivate the agent
to reach the goal as soon as possible.

Relative position of the agent in the
environment P′

u
The dimension of the relative position of the agent in

the environment is the same as that in the environment, and
the value range of each dimension is [0,1], which represents
the relative relationship between the agent and the known
boundary. Since the environment space is limited, the observed
value can prevent the agent movement from exceeding the
boundary. In this paper, the rectangular environment, the state
of the calculation formula is

P′u =
Pu
Mx,y

. (16)

where Pu is the position coordinate of the agent in the original
coordinate system, P′u is the position coordinate of the agent in
the aircraft coordinate system, Mx and My represent the length
and width of the environment, respectively.

Relative position relationship of the target
point P′

g
Taking the target position information in the aircraft

coordinate system x′o′y′ as input will be more conducive

to the relative relationship between algorithm learning and
target points. After the translation and rotation changes of the
coordinate system, the original position coordinates of the target
point are transformed into the coordinate system with the UAV
as the origin, the flight direction of the UAV is the y′ axis, and
the horizontal and vertical direction of the y′ axis is the x′ axis,
as shown in Figure 4. Finally, the numerical normalization is
carried out so that the value range of each dimension of P′g is
[-1,1].

The solving steps are as follows:

Ptran = Pgoal − Pu. (17)

Firstly, the origin of the original coordinate system is moved
to the center of gravity of the UAV through the coordinate
system translation transformation, and it can be calculated
as

Secondly, the angle of the UAV heading is calculated as
θu, and the angle to be rotated in the environment coordinate
system (clockwise is positive, counterclockwise is negative) is
calculated, and the position coordinates of the target point
are transformed to the vehicle coordinate system x′o′y′ by the
rotation matrix. It can be calculated as

θ=π
2 − θa

A =

[
cos θ − sin θ

sin θ cos θ

]
PTrot = A∗PTtran

. (18)

where θu is the heading angle of the aircraft and matrix A is the
rotation matrix.

Finally, the coordinate data is calculated as

P′g =
Prot√

M2
x +M2

y

(19)

FIGURE 4

Coordinate transformation diagram.
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Relative position relationship of recent
obstacles P′

g
Excessive environmental information is not conducive to

the learning of the algorithm, and there are many obstacles to
the environment. In this paper, only the coordinate position
information of the obstacle closest to the agent in the aircraft
coordinate system is input. The calculation method is the same
as P′g , and the value range of each dimension is still [-1,1].

Relative range information L′

The flight range of the UAV is constrained by the maximum
flight range Lmax. Taking the ratio of the flight range information
to the maximum flight range as the input can prevent the aircraft
from failure due to excessive flight range or long flight time and
approach the target area more quickly. It can be written as

L′ =
∑

li
Lmax

. (20)

where li is the minimum step size of the UAV flight.

Potential field information U′
f

In reinforcement learning algorithms, the dimension of
input observation cannot be too large, otherwise it will lead to
neural network learning difficult, and it is difficult to extract
useful information from input. However, it is difficult to obtain
the optimal decision results with less input information, and the
algorithm will be difficult to converge. Therefore, it is necessary
to take a suitable number of probe points

[
p1, p2, · · · , pn−1, pn

]
near the location point of the agent. The improved potential
energy calculation method is used to calculate the potential
energy value Uf of each detection point, and then the obtained
potential field information data are normalized by Formula 21
to obtain the potential energy observation data U ′f with the value
range of [0, 1], which is used as part of the input algorithm of the
observation data for training. It can be calculated as

U ′f =
Ui − Umin

Umax − Umin
(21)

The Fixed-wing UAV can only move forward, so based on
the flight direction of the UAV, the environmental potential
field information in the range is more useful for the UAV.
Taking into account the calculation speed and training effect
of the algorithm, such as Figure 5, in this range, five detection
directions are taken at equal angles, five detection points are
taken at equal intervals in each detection direction, and a
position point is added to a total of 26 potential field detection
points. In this paper, the interval distance of potential detection
points is set equal to the step size of the UAV.

Action space

The research object of this paper is the fixed-wing UAV,
so there is no backward motion in the flight process. In order

FIGURE 5

Potential field detection model.

to make the experiment consistent with the actual situation as
much as possible, the action space is designed as continuous
action, and the control quantity is the angle of the UAV at the
track point. Affected by its own aerodynamic characteristics, the
horizontal turning angle of the UAV at each track point cannot
exceed the limit of the maximum turning angle. Otherwise, it
will lead to instability of the aircraft serious consequences. As
shown in Figure 6, the actual turning angle of the aircraft is
limited by the maximum turning angle αmax.

Assuming that αmax is known, Ai is the direction vector
of track segment i on the x and y axes, and its expression
is Ai =

(
xi, yi

)
, (i = 1, 2, . . . ,N), then the relationship

between the actual turning angle α and αmax of UAV is written
as αi =

AT
i ·Ai+1∣∣∣∣Ai

∣∣∣∣·∣∣∣∣Ai+1

∣∣∣∣ .
−αmax ≤ αi ≤ αmax

(22)

Within the maximum turning angle limit, the smaller the
turning angle of the UAV is, the better the smoothness of
the flight trajectory is, but the maneuverability will deteriorate
accordingly. Therefore, considering all kinds of factors, the limit
of turning angle is

[
−15

◦

, 15
◦ ]

.

Reward function setting based on the
potential difference

The reward function setting of reinforcement learning
mainly needs to solve the problem of sparse reward, which
widely exists in practical applications. Sparse reward refers to
the agent is difficult to obtain a positive reward in the process of
exploration, resulting in low efficiency of algorithm learning and
difficult to explore the predetermined state. The reward function
is divided into three parts, and the continuous reward is set to
guide the UAV to quickly reach the target point with the change
of potential energy to solve the problem of sparse reward.

Potential energy difference reward Rpf

The UAV in this paper moves to the target point under the
combined action of target point gravity and obstacle repulsion.
Considering the safety factors, the fastest flight direction for the
UAV to reach the target is the fastest decline direction of the total
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FIGURE 6

Diagram of turning angle.

force field. Therefore, the potential energy difference reward of
the two positions before and after the agent is used as a part of
its reward function.

Firstly, according to the improved artificial potential field
formula, the position potential energy Ut before action at
execution and the position potential energy Ut+1 after action
at execution are obtained, respectively. Then, according to the
following formula, the potential energy difference reward Rpf is
obtained. It can be calculated as

Rpf = 1Ut = Ut+1 − Ut (23)

Arrival reward Rar

For the convenience of calculation, the target is set as a
circular target in this experiment, and the target radius is rg.
When the distance dg between the agent and the target center
is less than rg , i.e.,dg (t)<rg , give a positive reward R ar.

Death penalty Rde

Unmanned aerial vehicles (UAV) threat sources include
static fixed obstacles, early warning detection radar and air
defense weapons. Similar to target processing, obstacles are
treated as two-dimensional circular obstacles. The radius of
the threat circle ro is the maximum radius of the obstacle,
the maximum warning detection range of the early warning
detection radar and the maximum attack radius of the air
defense weapon. When the distance between the agent and
the center of the threat source is less than the radius of the
threat source, when the agent movement exceeds the maximum
range or when the agent movement touches the environment
boundary, a negative reward is given.

Total reward value Rall

The total reward for the UAV flight is the sum of the
potential difference reward, arrival reward and death penalty
minus baseline reward R0 (baseline), as shown in formula 24. By
adding a baseline to make each step reward positive or negative,

improve the sampling probability of excellent actions. It can be
calculated as

Rall = Rpf + Rar + Rde − R0. (24)

Training design based on course
learning

Curriculum learning

Curriculum learning (Bengio et al., 2009) is a training
strategy proposed by Bengio. It imitates the learning process
of human beings, accelerates learning by setting courses with
different degrees of difficulty, and migrates strategies from
simple problems to complex problems. This method is widely
used in computer vision and natural language processing to
improve the generalization ability and training efficiency of
various models (Wang et al., 2021).

In the design of the reinforcement learning algorithm,
parameter migration is used to migrate the model parameters
trained in the previous training environment to the current
training environment, and multi-scenario learning is carried
out according to the degree of task difficulty. The improved
algorithm is verified and compared. In this paper, the training
environment of UAV path planning is divided into several
different environments corresponding to different training
tasks. The first training environment is an open free-motion
space, which aims to make the UAV find the nearest path to the
target. The second training environment is the space containing
obstacles. In this environment, UAV gradually learns to avoid
obstacles and find the nearest path to the target.

Training parameters design

Flight parameters
In the reinforcement learning algorithm, each time interval

1tof the agent corresponds to an action, which indicates the
completion of a timestep. In this paper, we set the flight speed
V of the UAV and the time interval 1tof track search to
be constant. The UAV does a constant step of track search,
which is set to 1.

Reinforcement learning related parameters
The deep reinforcement learning algorithm built on

PyTorch was used for training optimization and testing, and the
parameters of the algorithm were set as shown in Table 1.

Relevant parameters of artificial potential field
In the attractive potential field, with the attractive potential

field gain coefficient katt = 2 and the potential energy gradient
constant, the range of potential energy reward for each cycle of
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TABLE 1 Parameter table of deep reinforcement learning algorithm.

Parameter PPO SAC TD3

Learning_rate 0.0003 0.0003 0.001

Gamma 0.99 0.99 0.99

Buffer_size NULL 10ˆ6 10ˆ6

Batch_size 64 256 100

Max_step 800 800 800

Timestep 10ˆ6 10ˆ6 10ˆ6

Episode 10000 10000 10000

the agent from the attractive potential field is [0,1]. At this time,
the reward value obtained by the agent at each timestep does
not change dramatically with the distance of the target point.
In the repulsion potential field, the influence range of obstacle
repulsion is set as ρ0 = 15, the repulsion parameter αrep = 0.2,
and βrep = 0.24. At this point, it can be seen from Figure 7 that
the potential energy of the repulsion field changes more gently
to prevent the phenomenon of sparse reward. Since the agent
step size is 1, the scope of punishment brought to the agent
within the scope of influence is about[0, 1.56], and the scope
of punishment is equivalent to that of reward.

Experiment and analysis

Experimental environment design

To verify the feasibility of the improved algorithm,
this paper generates an experimental environment with two
training environments and two testing environments through
the Gym of OpenAI.

Training environment
The first training environment is a 300 × 300 square

blank closed area. The edge of the environment is set to an

untouchable obstacle. There is no obstacle inside the square,
which can be freely passed by the agent. There is only a circular
target area with a radius of 5. The center position of the target
is randomly set in each round. The purpose of this environment
training is to make the agent learn to find the shortest path to
the target area.

As shown in Figure 8, the second training environment is a
square closed area of 300× 300. The edge of the environment is
also set to an untouchable obstacle, with four circular obstacles
with radius of 30 and a circular target with radius of 5.
The positions of four circular obstacles are (100, 100), (100,
200), (200, 200), and (200, 100), respectively. The positions of
circular targets are randomly set in each round. Based on the
first environment training, the agent is trained in the second
environment. The learning task in the environment is more
difficult than that in the first environment. The agent finally
learns to avoid obstacles correctly and find the shortest path to
the target point safely.

Testing environment

As shown in Figure 9, the first testing environment is
equipped with 4 circular obstacles and 1 circular target with
different distribution conditions from the training environment,
but with the same shape and size to verify the generalization and
feasibility of the trained algorithm. Among them, the circular
locations of the obstacles are (80,80), (220,220), (115,175) and
(175,115), and the circular location of the target is (280, 280).

The second testing environment is an unfamiliar
environment with a sudden threat source. This environment
is built based on testing environment I, including 5 black
circular obstacles and 1 red circular target, among which 4
obstacles and the target have exactly the same shape, size and
location as in testing environment I, all of which are preset
in the environment before the test, in addition to 1 emergent
obstacle that is added temporarily during the test process. After

FIGURE 7

(A) Function diagram of repulsion field. (B) Negative gradient function diagram of repulsion potential field.
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FIGURE 8

(A) Training environment I. (B) Training environment II.

FIGURE 9

(A) Testing environment I. (B) Testing environment II.

the testing experiment I can calculate the optimal flight route
of each algorithm in the unfamiliar testing environment I,
and based on this route information, the emergent obstacle is
added to the place where it can have an obstructive effect on
each route during the test process, and it is required that the
avoidance of the obstacle at this location cannot exceed the
constraint limit of the UAV. Therefore, this paper is set to a
black circular threat source area with a circle center located at
(175, 175) and a radius of 20. The role of this environment is
mainly to test the emergency obstacle avoidance capability of
each optimization algorithm in response to the emergent threat
source. The difficulty of this environment is more enhanced

than that of testing environment I, which can provide a better
verification of the online planning capability of the algorithms
and requires the UAV to have not only the ability to sense the
environment in real-time and the real-time planning capability
of the route, but also a better maneuvering capability.

Training experiment

In the training experiment, the agent trains 100,000
timesteps in each training environment. In the training round,
the environment will give a small reward value according to the
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quality of each step of the agent; at the end of each round, if
the task is completed, a greater positive reward is given, and if
the task fails, a greater punishment is given. When the agent
encounters the following situations, it means to complete a
round:

• To reach the target, when the agent reaches the target area
within the maximum number of steps (max_step), it means
to complete the task successfully.

• Beyond the range, when the number of running steps of the
agent exceeds, it indicates that the maximum range exceeds
the UAV, and the task fails.

• When the agent collides with the environmental boundary
or the preset obstacle, the UAV crashes due to collision
and the task fails.

In this paper, the average success rate and average reward
value are used to evaluate the training of the algorithm. Since the
reward value of the reinforcement learning algorithm fluctuates
greatly among the single steps, the moving average method is
used to smooth the curve in 50 rounds, and the final training
curve is output for comparison.

From the reward value and success rate change curves in
Figure 10, it can be seen that the improved PPO, SAC and
TD3 algorithms converge quickly and have better stability in the

FIGURE 10

Training environment I indicator change chart. (A) Change of reward value in training environment I. (B) Change of success rate in training
environment I.

FIGURE 11

Training environment II indicator change chart. (A) Change of reward value in training environment II. (B) Change of success rate in training
environment II.
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TABLE 2 Comparison of test data.

Algorithm Ms Mr Ma Ml Mt

PPO 0%

SAC 100% 269.26 14.10 410 0.57

TD3 100% 265.83 44.01 421 0.55

training environment I, and the differences in the reward value
and success rate obtained from convergence are not significant,
which proves that all three improved algorithms can perform the
task of seeking better in the open environment. Among them,
the stability of convergence of the improved PPO algorithm
is relatively good with the least curve fluctuation, while the
improved SAC algorithm is less stable at the very beginning.
This is because the SAC algorithm is a maximum entropy
reinforcement learning algorithm, which causes a relatively
lower success rate in the initial stage in order to increase the
exploration of the environment. However, in the long-term
sense, increasing the exploration of the environment at the
initial stage of training is more beneficial for the algorithm to
find excellent actions and make the trained model have better
performance.

As shown in Figure 11, in training environment II, the
improved SAC algorithm achieves better convergence in 10w
timesteps with minimal curve fluctuations, and its convergence
speed and stability are much better than those of the improved
PPO algorithm and the improved TD3 algorithm. Among them,
the training effect of the improved PPO algorithm is the worst,
and the reward value and success rate of its model do not change
significantly before and after training in training environment
II, the reward value is about 80, and the success rate is about
0.6. The convergence speed of the improved TD3 algorithm is

slower than that of the improved SAC algorithm, and it takes
about 20w timesteps to reach the convergence effect, and the
effect is unstable and fluctuates more, and the reward value and
success rate obtained are smaller than those of the improved
SAC algorithm is smaller. It can be concluded that the PPO
algorithm and TD3 algorithm are less reliable than the SAC
algorithm in complex and difficult environments, which is due
to the SAC algorithm focuses on the exploration of the action,
avoids the problem of overestimation of the action, and can
learn more superior experience in complex environments.

Through the experiment, it can be seen that PPO algorithm
is more suitable for simple training tasks, and the training effect
for complex tasks is poor, while SAC algorithm has the best
training effect and can better deal with such tasks.

Testing experiment

Each algorithm is trained to load the model completed
by training, and then put into the testing environment for
experiments. PPO, SAC, and TD3 algorithm were tested for
10000 times, and the test results of each algorithm in an
unfamiliar environment were counted.

Evaluation indicators
Four experimental statistical indicators were set for each

group of test experiments: average reward value, average success
rate, average path smoothness, and average path length. The
calculation methods of each indicator are as follows.

a. Average success rate Ms

The average success rate is a key index to measure the
generalization and stability of the algorithm as shown in
Equation 27. The higher the average success rate of the

FIGURE 12

UAV path map. (A) SAC algorithm. (B) TD3 algorithm.
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FIGURE 13

Step 210 2D trajectory map (test II). (A) SAC algorithm. (B) TD3 algorithm.

algorithm in a strange environment, the better the reliability
and generalization of the algorithm, and vice versa.N is the total
number of experiments. It can be calculated as

Ms =
Ns

N
× 100%. (25)

b. Average reward value Mr

The average reward obtained by the agent after reaching the
target point is used to judge whether the algorithm optimizes
the track. The higher the reward value is, the better the track
is theoretically, and vice versa. Ns is the number of successful
planning in the test results. The equation can be written as

Mr=

∑
Ri

Ns
. (26)

c. Average path smoothness Ma

The less the number of UAV maneuvers, the smaller the
turning angle, the lower the requirements for the UAV control
system, and the better the track. This index is the average value
of the sum of the absolute values of the successful round of
UAV tasks. A is the action value of each timestep of UAV in the
successful round. The equation can be written as

Ma =

∑∑n
i=1 |ai|
N

. (27)

d. Average track length Ml

TABLE 3 Comparison of metrics in testing environment II.

Algorithm Ms Mr Ma Ml Mt

TD3 0%

SAC 96.0% 268.22 14.90 413.68 0.59

Since the flight speed of the UAV is constant, the track length
of the UAV is proportional to the flight time. The average flight
time when the task is successful is counted, and then the average
track length is calculated. Among them, for the successful round
of UAV flight path length. The equation can be written as

Ml =

∑
L

Ns
. (28)

e. Average planning time Mt

This index calculates the average planning time of each
flight trajectory when the task is successful to test the real-time
performance of the algorithm. The equation can be written as

Mt =
Tend − Tstart

Ns
. (29)

Experiment with an unfamiliar fixed obstacle
environment

The optimization results of each algorithm in the testing
environment are shown in Table 2, and the UAV route is
shown in Figure 12. PPO algorithm cannot complete the task
in the testing environment. SAC algorithm and TD3 algorithm
can complete the task. The success rate of the two algorithms
is 100 %, which can better complete the task. However, the
maneuvering amplitude of SAC algorithm is smaller. It can
also be seen from the figures that the track obtained by SAC
algorithm is smoother, and the total path length is relatively
shorter. The average calculation speed of single track of the
two algorithms is only 0.02 s, which proves that the calculation
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speed of the two algorithms is equivalent and can meet the
real-time requirements of UAV online track planning. The
test results show that SAC algorithm has better effect and
stronger generalization in track planning in unfamiliar testing
environment.

From the results of training experiments and test
experiments, it can be seen that SAC algorithm has stronger
ability in convergence and generalization when dealing with
track planning problems, which can meet the real-time
requirements of online track planning.

Sudden threat environmental experiment
From testing experiment I, it can be seen that the horizontal

and vertical coordinates of the agent in both algorithms are
around 150 when the timestep of the agent is 210. Therefore, a
circular threat source with a radius of 2 km is added at (175,175)
when the agent in both algorithms is at the 210th timestep, as
shown in Figure 13.

After 10,000 test experiments in testing environment II, the
results are shown in Table 3. The improved TD3 algorithm
could not complete this experiment, while the improved SAC
algorithm still has better obstacle avoidance and real-time
maneuvering capability in the case of sudden threats. The
average success rate of the improved SAC algorithm decreases
from 100 to 96% due to the sudden appearance of close circular
obstacles, but still maintains a high success rate. To perform
obstacle avoidance, the agent has an extra 0.8 increment of
maneuver value, the metric increases from 14.1 to 14.9, and the
average trajectory length changes from 410 to 413.68, which is
equivalent to an average increase of 3-4 timesteps. The planning
time for each trajectory is 0.59, which can still meet the real-time
requirements of online route planning for UAVs.

Conclusion

In this paper, according to the real-time characteristics
of UAV navigation tasks, the deep reinforcement learning
algorithm is improved combined with the idea of the artificial
potential field algorithm. The environmental potential energy
information is introduced into the state space, and the potential

field difference is introduced into the reward function. The
convergence speed of the algorithm is accelerated under the
guidance of the potential energy information, and the problem
of sparse reward in the reinforcement learning algorithm
is solved. The complex experimental tasks are decomposed
by course learning, which reduces the difficulty of task
learning. Compared with the experimental results of PPO, SAC,
and TD3 algorithms, SAC algorithm has faster convergence
speed, better path smoothing effect and more superiority in
solving this problem.
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