
TYPE Original Research

PUBLISHED 29 September 2022

DOI 10.3389/fnbot.2022.1028656

OPEN ACCESS

EDITED BY

Guibing Zhu,

Zhejiang Ocean University, China

REVIEWED BY

Dongdong Mu,

Dalian Maritime University, China

Xin Hu,

Ludong University, China

Yancai Hu,

Shandong Jiaotong University, China

*CORRESPONDENCE

Shengnan Gao

gaoshengnan@dlmu.edu.cn

RECEIVED 26 August 2022

ACCEPTED 13 September 2022

PUBLISHED 29 September 2022

CITATION

Niu X, Gao S, Xu Z and Feng S (2022)

Distributed model-free formation

control of networked fully-actuated

autonomous surface vehicles.

Front. Neurorobot. 16:1028656.

doi: 10.3389/fnbot.2022.1028656

COPYRIGHT

© 2022 Niu, Gao, Xu and Feng. This is

an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Distributed model-free
formation control of networked
fully-actuated autonomous
surface vehicles

Xiaobing Niu1, Shengnan Gao1*, Zhibin Xu2 and Shiliang Feng1

1School of Marine Electrical Engineering, Dalian Maritime University, Dalian, China, 2China State

Shipbuilding Corporation Limited, Beijing, China

This paper presents a distributed constant bearing guidance and model-free

disturbance rejection control method for formation tracking of autonomous

surface vehicles subject to fully unknown kinetic model. First, a distributed

constant bearing guidance law is designed at the kinematic level to achieve

a consensus task. Then, by using an adaptive extended state observer (AESO)

to estimate the total uncertainties and unknown input coe�cients, a simplified

model-free kinetic controller is designed based on a dynamic surface control

(DSC) design. It is proven that the closed-loop system is input-to-state

stable The stability of the closed-loop system is established. A salient feature

of the proposed method is that a cooperative behavior can be achieved

without knowing any priori information. An application to formation control

of autonomous surface vehicles is given to show the e�cacy of the proposed

integrated distributed constant bearing guidance and model-free disturbance

rejection control.

KEYWORDS

dynamic surface control, adaptive extended state observer, autonomous surface
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1. Introduction

In recent years, there has been a surge of interest in distributed cooperative control

of autonomous surface vehicles (ASVs). It can be envisioned that multiple ASVs enable

vehicles to collaborate with each other to execute difficult missions, contributing to

improved efficiency and effectiveness over a single one (Arrichiello et al., 2006; Cui et al.,

2010; Peng et al., 2011, 2013, 2020, 2021a,b,c; Wang and Han, 2016; Li et al., 2018; Chen

et al., 2020; Guo et al., 2020; Liu et al., 2020a,b, 2022; Zhang et al., 2020; Zhu et al., 2021,

2022; Gu et al., 2022a,b,c,d; Hu et al., 2022a,b; Rout et al., 2022). Recently, distributed

control methods have been widely studied (see references, Cao and Ren, 2010; Wang

et al., 2010; Zhang et al., 2011, 2012; Cui et al., 2012; Zhang and Lewis, 2012; Hong

et al., 2013; Peng et al., 2014; Jiang et al., 2021). In Cao and Ren (2010), a distributed

control method is proposed to deal with the formation control problem. In Jiang et al.

(2021), a distributed model-free control method is designed using a data-driven fuzzy

predictor and extended state observers for ASVs to achieve cooperative target enclosing.

A distributed adaptive control method is presented to achieve the cooperative tracking
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with unknown dynamics in Zhang and Lewis (2012). In Cui

et al. (2012), a distributed synchronized tracking control method

is designed based on an adaptive neural network for ASVs. In

Wang et al. (2010), a distributed control approach is designed to

deal with the asymptotic tracking under disturbances generated

by the exosystem. A distributed leader-follower control method

is proposed using the output regulation theory and internal

model principle in Hong et al. (2013). In Peng et al. (2014), a

distributed adaptive control method is presented by using the

state information of neighboring ASVs only. In Zhang et al.

(2011), a distributed control method is presented by using

the observer to achieve cooperative tracking. In Zhang et al.

(2012), an adaptive distributed control technique is designed

based on neural network to deal with the cooperative tracking

problems. Its key advantage is that the group objective can

be achieved via local information exchanges. Consensus-based

distributed formation control schemes are presented in Ren

(2007), Ren and Sorensen (2008), and Hu (2012). In Ren (2007),

a consensus-based distributed control method is proposed to

deal with the formation control problem. In Ren and Sorensen

(2008), a consensus-based approach is designed to achieve

the distributed formation control. In Hu (2012), a distributed

consensus-based control method is designed to achieve global

asymptotic consensus tracking.

As for autonomous surface vehicle systems, the modeling

process is time-consuming and a large number of experiments is

required for identifying model parameters. On the other hand,

robustness against model uncertainty and ocean disturbances

is critical for high-performance control of ASVs (Fossen, 2002;

Skjetne et al., 2005; Tee and Ge, 2006; Li et al., 2008; Dai

et al., 2012; Chen et al., 2013; How et al., 2013). To deal

with this problem, adaptive backstepping and DSC techniques

has been widely suggested; see the references (Fossen, 2002;

Skjetne et al., 2005; Tee and Ge, 2006; Li et al., 2008; Dai

et al., 2012; Chen et al., 2013; How et al., 2013). In Tee

and Ge (2006), a stable tracking control method is proposed

using backstepping and Lyapunov synthesis for multiple marine

vehicles under the unmeasurable states. In Chen et al. (2013), a

variable control structure based on backstepping and Lyapunov

synthesis is designed for the positioning of marine vessels with

the parametric uncertainties and ocean disturbances. In How

et al. (2013), an adaptive approximation technique is designed

using the backstepping to estimate the uncertainties. In Dai

et al. (2012), an adaptive neural networks control method is

designed based on the backstepping and Lyapunov synthesis

with uncertain environment. In Skjetne et al. (2005), an adaptive

recursive control method is designed using the backstepping

and Lyapunov synthesis for marine vehicles with the unknown

model parameters. Although the adaptive backstepping and

DSC are recursive and systematic design methods, it does not

offer the freedom to choose the parameter adaptive laws (Krstić

et al., 1995). Besides, the identification process depends on

the tracking error dynamics, and the transient performance

cannot be guaranteed (Cao and Hovakimyan, 2007; Yucelen and

Haddad, 2013).

Motivated by the above observations, this article presents

a distributed constant bearing guidance and model-free

disturbance rejection control method for formation tracking

of ASVs subject to fully unknown kinetic model. Specifically,

a distributed constant bearing guidance law is designed at

the kinematic level to achieve a consensus task. Then, an

AESO is constructed for estimating the model uncertainty and

unknown ocean disturbances, which can achieve the uncertainty

and disturbance estimation. Next, a controller module is

developed by using a DSC technique. Simulation results are

provided to show the efficacy of the proposed modular design

integrated distributed constant bearing guidance andmodel-free

disturbance rejection control method. The main contribution of

the proposed control method are stated as follows. Firstly, the

proposed design results in the decoupled estimation and control,

where the estimation loop is faster than the control loop, yielding

the improved transient performance. This contributes to the

certainty equivalence control of multi-vehicle systems. Secondly,

the security level of ASVs is enhanced by using an AESO to

identify the total uncertainties. Finally, the salient feature of the

proposed method is that a cooperative behavior can be achieved

without knowing any priori information.

The rest of this paper is organized as follows: The

problem formulation is presented in Section 2. Section

3 presents the distributed constant bearing guidance and

model-free disturbance rejection control method. Section 4

provides simulation results to illustrate the designed model-free

disturbance rejection control method for distributed formation

tracking. Section 5 concludes this paper.

2. Problem formulation

A three degree-of-freedom (DOF) dynamical model for

ASVs in a horizontal plane as shown in Figure 1 can be expressed

with kinematics (Fossen, 2002; Skjetne et al., 2005).

η̇i = R(ψi)νi, (1)

ν̇i = M−1
i fi(νi)+M−1

i τi +M−1
i τwi(t), (2)

where

R(ψi) =







cosψi − sinψi 0

sinψi cosψi 0

0 0 1






; (3)

ηi = [xi, yi,ψi]
T ∈ R

3 represents the earth-fixed position

and heading; νi = [ui, vi, ri]
T ∈ R

3 includes the body-fixed

surge and sway velocities, and the yaw rate; Mi = MT
i ∈

R
3×3,Ci(νi) ∈ R

3×3,Di(νi) ∈ R
3×3 denote the inertia matrix,

coriolis/centripetal matrix, and damping matrix, respectively;

τi = [τui, τvi, τri]
T ∈ R

3 denotes the control input; τwi(t) =
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FIGURE 1

The plane motion diagram of the ASV.

[τwui(t), τwvi(t), τwri(t)]
T ∈ R

3 represents the disturbance

vector caused by the wind, waves, and ocean currents.

Since the robot dynamics (1) contain unknown dynamics

induced by model uncertainty and ocean disturbances, we

rewrite the robot kinetics (1) as follows.

η̇i = R(ψi)νi, (4)

ν̇i = 3iτi + si, (5)

where

si = M−1
i fi(νi)+M−1

i τwi(t),3i = M−1
i . (6)

The control objective is to design a cooperative control law τi

for ASVs with dynamics (1) to track a reference trajectory η0(t)

such that

lim
t→∞

‖ηi(t)− η0(t)‖ ≤ δi, (7)

for some small constant δi.

We use the following assumption.

Assumption 1: The reference signals η0(t), η̇0(t), and η̈0(t)

are bounded.

3. Cooperative tracking

In this section, a modular design approach is presented to

develop the cooperative formation controllers for ASVs. First,

by using the designed AESO to estimate the total uncertainties

and fully unknown input coefficients, a simplified model-free

dynamic kinematic controller is designed with the aid of a

dynamic surface control.

3.1. Controller design

Step 1. At first, a cooperative tracking error is defined as

zi1 =RTi

{

∑

j∈Ni

aij(ηi − ηj)+ ai0(ηi − η0)
}

, (8)

where RTi = RT(ψi), and aij and ai0 are determined by the

communication graph, if the ith ASV obtains the information of

the jth, aij = 1; otherwise, aij = 0. The definition of ai0 is similar

to aij.

Assumption 2: The augmented graph contains a spanning

tree with the root node being the leader node n0.

Then, define a global formation tracking error ǫi as

ǫi = ηi − η0. (9)

Define L as the Laplacian matrix of the graph andA0 as the

leader adjacency matrix, which leads to

z1 = R(H⊗ I3)ǫ. (10)

where H = L + A0, z1 = [zTi1, ..., z
T
iN ]

T , ǫ = [ǫT1 , ..., ǫ
T
N ]

T ,

andR = diag{RT1 , ...,RTN}. Define aid = di+ai0, then, it follows

from (1) that the time derivative of zi1 in (8) is obtained

żi1 =− riSzi1 + aidνi −
∑

j∈Ni

aijR
T
i Rjνj − ai0R

T
i η̇0, (11)

where

S =







0 −1 0

1 0 0

0 0 0






. (12)

A distributed constant-bearing guidance law αi1 is proposed

as follows

αi1 = 1

aid

{

− kiη
zi1

√

z2i1 +12
+

∑

j∈Ni

aijR
T
i Rjνj + ai0R

T
i η̇0

}

,

(13)

where 1 is positive constant, and kiη =
diag{kiη1, kiη2, kiη3} ∈ R

3×3 with kiη1 ∈ R, kiη2 ∈ R,

and kiη3 ∈ R being positive constants.

Let us suppose here that αi1 are unknown, and let it pass

through a first-order filter as follows

γiν̇id = αi1 − νid, νid(0) = αi1(0), (14)

where γi ∈ R.

Then, the derivative of qi is obtained as

q̇i = −qi

γi
− α̇i1. (15)
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where qi = αi1 − νid.
Now using (15), we can conclude that

qi(t) = qi(0)e
− t
γi −

∫ t

0
e
− 1
γi
(t−τ )

α̇i1(τ )dτ . (16)

We can obtain that the bound of ‖qi(t)‖ satisfies the

following inequality

‖qi(t)‖ ≤‖qi(0)‖e
− t
γi + α∗i1γi,

where α∗i1 is a positive constant.
Step 2: To start with, define the velocity tracking error zi2 as

zi2 = νi − νid. (17)

Take the time derivative of zi2 along (4) is

żi2 = 3iτi + si − ν̇id. (18)

For the robot kinetics (4), an AESO is designed as



















˙̂νi = 3̂τi + ŝi − kiν (ν̂i − νi),
˙̂si = −kis(ν̂i − νi),
˙̂σi = −Ŵiσ (ŝi − σ̂i),
˙̂
3i = −Ŵi3τ (ŝi − σ̂i),

(19)

where σ = si + 3iτi − 3̂iτi, kiν = diag{kiν1, kiν2, kiν3} ∈
R
3×3, kis = diag{kis1, kis2, kis3} ∈ R

3×3, and kiν1 ∈ R, kiν2 ∈
R, kiν3 ∈ R, kis1 ∈ R, kis2 ∈ R, and kis3 ∈ R are positive

constants. ν̂i, ŝi, σ̂i, and 3̂i are the estimates of νi, si, σi, and 3i,

respectively.

Assumption 3: For unknown functions si and σi, there are

s∗i ∈ ℜ+ and σ∗i ∈ ℜ+, such that ||ṡi|| ≤ s∗i and ||σ̇i|| ≤ σ∗i .
Let the parameter estimation be 3̃i = 3̂i − 3i, and the

prediction error be ν̃i = ν̂i − νi. Define s̃i = ŝi − si and

σ̃i = σ̂i−σi. It can be obtained σ̂i−3̂iτi = −s̃i−3̃iτi+ai1 with

ai being the reconstruct error. Then, the error dynamics can be

expressed as



















˙̃νi = −kiν ν̃i + s̃i,
˙̃si = −kisν̃i − ṡi,
˙̃σi = −Ŵiσ (ŝi − σ̂i)− σ̇i,
˙̃
3i = −Ŵi3τ (ŝi − σ̂i)− 3̇i.

(20)

To stabilize zi2, a model-free disturbance rejection control

law is proposed as follows

τi =
−kiτ zi2 + ν̇id − ŝi

3̂i

, (21)

where kiτ = diag{kiτ1, kiτ2, kiτ3} ∈ R
3×3, and kiτ1 ∈ R

+,
kiτ2 ∈ R

+, and kiτ3 ∈ R
+.

Substituting (21) into (18) yields

Mi
˙̂zi2 =− kiτ ẑi2 − ̺iν̃i, (22)

where ̺i is a positive constant.

The following lemma presents the stability of AESO error

subsystem (20).

Lemma 1: Under Assumption 2, the AESO error subsystem

(20), viewed as a system with the states being ν̃i, s̃i, σ̃i, and 3̃i,

the inputs being ṡi, σ̇i, and 3̇i is ISS.

Proof : Construct the Lyapunov function as

Vσ i =
1

2
(σ̃Ti Ŵ

−1
σ i σ̃i + 3̃

T
i Ŵ

−1
3i 3̃i), (23)

and the time derivatives of Vσ i is

V̇σ i =σ̃iŴ−1
σ i (−Ŵσ i(ŝi − σ̂i)− σ̇i)+ 3̃iŴ

−1
3i (−Ŵ3i(ŝi − σ̂i))

=σ̃i(ŝi − σ̂i)− Ŵ−1
σ i σ̃iσ̇i + 3̂iτi(ŝi − σ̂i)

≤− σ̃ 2i − 2σ̃i3̃iτi − 3̃2
i τ

2
i − 3̃iτiai1 + Ŵ−1

σ i σ̃iσ
∗
i

≤− ||ǫi||2 + ||ιi||||ǫi||, (24)

where ǫi = σ̃i + 3̃iτi and ιi = max{ai1,Ŵ−1
σ i σ

∗
i }.

Since

||ǫi|| ≥ ||ιi||/θi, (25)

renders

V̇σ i ≤ −(1− θi)||ǫi||2 (26)

with θi ∈ (0, 1). Therefore, it can conclude that the error ǫi

is bounded.

It follows from (20) that the dynamics of the ν̃i and s̃i can be

rewritten as

˙̃χi = Aχ iχ̃i − ṡχ i, (27)

where χ̃i = [ν̃i, s̃i]
T , ṡχ i = [0, ṡi]

T , and

Aχ i =
[

−kiτ 1

−kis 0

]

, (28)

with Aχ i being Hurwitz. There exists a unique positive

definite matrix Pχ i, such that

AT
χ iPχ i + PTχ iAχ i = −I. (29)

Construct the Lyapunov function for system (27) as

Vχ i =
1

2
χ̃Ti Pχ iχ̃i. (30)

The dynamics of the Vχ i is

V̇χ i = χ̃Ti (A
T
χ iPχ i + PTχ iAχ i)χ̃i + χ̃Ti Pχ i(−ṡχ i)

≤ −||χ̃i||2 + ||χ̃i||||Pχ i||||ṡχ i|| (31)

Since

||χ̃i|| ≥ (||Pχ i||||ṡχ i||)/ai2, (32)
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renders

V̇χ i ≤ −(1− ai2)||χ̃i||2 (33)

with ai2 ∈ (0, 1). It is concluded that the error subsystem

(20) is ISS. There exists classKL function βi1 such that

‖χi(t)‖ ≤ max{βi1(|| ˜χ(0)||, t), κsii1(||ṡχ i||)}, (34)

with the gain function (Wang et al., 2006) given by

κ
si
i1(s) =

√

λmax(Pχ i)

λmin(Pχ i)

||Pχ i||s
ai2

.

Recalling (11), (17), and (22), the error dynamics is

addressed as

{

żi1 = −riSzi1 − kiηzi1 + aid(−ν̃i + ẑi2 + qi),

Mi
˙̂zi2 = −kiτ ẑi2 − ̺iν̃i,

(35)

where qi = νid − αi1.
By using the coordinations of zi1 and ẑi2, the above

subsystem (35) is only perturbed by ν̃i and qi. Obviously, these

two variables will vanish soon as time evolve by choosing the

control parameters of predictors and filters.

Lemma 2: The error subsystem (35), viewed as a system with

the states being zi1 and ẑi2 and the inputs being ν̃i and qi, is ISS.

Proof : Construct a Lyapunov function as follows

Vc =
1

2

{

zTi1zi1 + ẑTi2Miẑi2

}

. (36)

Taking the time derivative of Vc along (35), it renders

V̇c ≤− λmin(kiη)z
T
i1zi1 + aidz

T
i1(−ν̃i + ẑi2 + qi)

− λmin(kiτ )ẑ
T
i2ẑi2 − ẑTi2̺iν̃i. (37)

Using the inequalities

|zTi1ẑi2| ≤
1

2
‖zi1‖2 +

1

2
‖ẑi2‖2 (38)

|zTi1qi| ≤
1

2
‖zi1‖2 +

1

2
q∗2i (39)

|zTi1ν̃i| ≤
1

2
‖zi1‖2 +

1

2
‖ν̃i‖2 (40)

it follows that

V̇c ≤−
(

λmin(kiη)−
3aid
2

)

‖zi1‖2 −
(

λmin(kiτ )

− λmax(̺i)+ aid
2

)

‖ẑi2‖2 +
λmax(̺i)+ aid

2
‖ν̃i‖2

+ aid
2
‖qi‖2. (41)

By selecting ci = min
{

λmin(kiη) − 3aid
2 , λmin(kiτ ) −

λmax(̺i)+aid
2

}

> 0 and Zi = [zTi1, ẑ
T
i2], one has

V̇c ≤− ci‖Zi‖2 +
λmax(̺i)+ aid

2
‖ν̃i‖2 +

aid
2
‖qi‖2

≤− ci

2
‖Zi‖2 −

{ ci

2
‖Zi‖2 −

λmax(̺i)+ aid
2

‖ν̃i‖2

− aid
2
‖qi‖2

}

. (42)

Since

‖Zi‖ ≥
√

λmax(̺i)+ aid√
ci

‖ν̃i‖ +
√
aid√
ci

‖qi‖

≥
√

(λmax(̺i)+ aid)‖ν̃i‖2 + aid‖qi‖2√
ci

, (43)

renders

V̇c ≤ − ci

2
‖Zi‖2. (44)

There exists classKL function βi2 such that

‖Zi(t)‖ ≤ max{βi2(||Zi(0)||, t), κ ν̃ii1 (‖ν̃i‖)+ κ
qi
i2 (‖qi‖)}, (45)

where the gain functions are given by







κ
ν̃i
ic (s) =

√

λmax(Pi2)
λmin(Pi2)

λmax(̺i)+aid
ci

s

κ
qi
ic (s) =

√

λmax(Pi2)
λmin(Pi2)

aid
ci
s

(46)

with Pi2 = diag{Mi, 1}. The proof is completed.

3.2. Cascade stability

Theorem: Consider the closed-loop network system

consisting of the vessels dynamics (1) (2), the AESO (19),

the distributed constant-bearing guidance law (13), and the

controller (21). If Assumptions 1–3 and ci > 0 are satisfied, all

signals in the closed-loop system are bounded, and the global

CFT error εi converges to a neighborhood around zero.

Proof : From Lemma 1, we have proved that subsystem (20)

with states being (ν̃i, s̃i) and input being ṡi is ISS. From Lemma 2,

it can be obtained that subsystem (35) with states being (zi1, ẑi2)

and inputs being ν̃i and qi is ISS. By Krstić et al. (1995), it

proves that the cascade system formed by (20) and (35) with

states being (zi1, ẑi2, ν̃i, s̃i) and the inputs being qi and ṡi is ISS.

Since qi and ṡi is bounded by q∗i and s∗i , respectively. Then, the
error signals zi1, ẑi2, ν̃i, and s̃i are all bounded. Observing that

‖zi2‖ = ‖ − ν̃i + ẑi2‖ ≤ ‖ν̃i‖ + ‖ẑi2‖, it follows that zi2
is bounded.
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Note that as t → ∞, βi1(·) and βi2(·) → 0, and it follows

from (34) and (45) that zi1 is ultimately bounded by

lim
t→∞

‖zi1‖ ≤ lim
t→∞

‖Zi‖,

≤κsii1(‖sχ i‖)+ κ
qi
i2 (‖qi‖),

≤κsii1(s
∗
i )+ κ

qi
i2 (q

∗
i ). (47)

Then, define o(H) as the minimal singular value ofH, and it

follows from Assumption 2 that

‖εi‖ ≤ ‖z1‖
o(H)

. (48)

From (47) and (48), εi is ultimately bounded as

lim
t→∞

‖εi‖ ≤ 1

o(H)

N
∑

i=1

{

κ
si
i1(s

∗
i )+ κ

qi
i2 (q

∗
i )

}

.

4. An example

Consider a networked system consisting of five ASVs, and

the communication topology is shown in Figure 2 with the ASV

2 being the leader. The parameters for each model ship are taken

from Skjetne et al. (2005). The initial states of five ASVs are set to

η1 = (0, 0, 0), η2 = (0, 12, 0), η3 = (0,−12, 0), η4 = (0, 24, 0),

and η5 = (0,−24, 0). In order to better emerge the simulation

effect, we add the desired deviations 1ij between the ASVs as

follows 112 = (12, 12, 0), 115 = (36, 0, 0), 123 = (8, 8, 0), and

134 = (8,−8, 0). The control parameters are chosen as kiη =
diag{2, 2, 2}, kiν = diag{20, 20, 20}, kis = diag{100, 100, 100},
kiτ = diag{285, 338, 27.6}, and γi1 = 0.02. Define the path

variable as ϑ , and the information of path is given in (49)















































[0.1ϑ + 20; 0; 0], ϑ < 400,

[60+ 60 sin(0.003(ϑ − 400));
60(1− cos(0.003(ϑ − 400)));
0.003(ϑ − 400)],

ϑ < (400+ π/0.003);
[−0.1(ϑ − 400− π/0.003)+ 60; 120;π],
ϑ ≥ (400+ π/0.003).

(49)

Figure 3 shows the formation trajectories of the five ASVs.

It reveals that the a triangle formation can be well established

without knowing any priori of the model parameters. Figure 4

shows the cooperative tracking error norms of zi1. It can be

seen that the cooperative tracking errors ||zi1|| converge to

a neighborhood of the origin. Figures 5–7 show the control

inputs in terms of τui, τνi, and τri, respectively. It verifies that

the control inputs are all bounded. The velocity tracking error

norms of zi2 are shown in Figure 8. It can be seen that the

velocity tracking errors ||zi2|| converge to a neighborhood of

the origin.

FIGURE 2

Communication topology.

FIGURE 3

Formation trajectories.

FIGURE 4

The cooperative tracking errors of five ASVs.

5. Conclusions

In this paper, an integrated distributed constant bearing

guidance and model-free disturbance rejection control method

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1028656
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Niu et al. 10.3389/fnbot.2022.1028656

FIGURE 5

The control inputs τui of five ASVs.

FIGURE 6

The control inputs τvi of five ASVs.

was presented for cooperative tracking of ASVs subject to fully

unknown kinetic model. At the kinematic level, a distributed

constant bearing guidance law is designed to achieve a formation

task. By using AESO to estimate the total uncertainties and

unknown input coefficients, a simplified model-free dynamic

kinematic controller is designed with the aid of a dynamic

surface control. The stability of the closed-loop cooperative

system is proven. The application to formation control of

autonomous surface vehicles is given to show the efficacy of the

proposed model-free disturbance rejection control method for

distributed formation tracking.

FIGURE 7

The control inputs τri of five ASVs.

FIGURE 8

The velocity tracking errors of the five ASVs.
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