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With the rapid development of artificial intelligence technology, many

researchers have begun to focus on visual language navigation, which is

one of the most important tasks in multi-modal machine learning. The

focus of this multi-modal field is how to fuse multiple inputs, which is

crucial for the integrated feedback of intrinsic information. However, the

existing models are only implemented through simple data augmentation

or expansion, and are obviously far from being able to tap the intrinsic

relationship between modalities. In this paper, to overcome these challenges,

a novel multi-modal matching feedback self-tuning model is proposed,

which is a novel neural network called Vital Information Matching Feedback

Self-tuning Network (VIM-Net). Our VIM-Net network is mainly composed

of two matching feedback modules, a visual matching feedback module (V-

mat) and a trajectory matching feedback module (T-mat). Specifically, V-mat

matches the target information of visual recognitionwith the entity information

extracted by the command; T-mat matches the serialized trajectory feature

with the direction of movement of the command. Ablation experiments and

comparative experiments are conducted on the proposed model using the

Matterport3D simulator and the Room-to-Room (R2R) benchmark datasets,

and the final navigation e�ect is shown in detail. The results prove that the

model proposed in this paper is indeed e�ective on the task.

KEYWORDS

vision-and-language navigation, multimodal matching, self-tuning module,

collaborative learning, vital information matching networks

1. Introduction

Scholars have pointed out that the core of vision and language navigation task

depends on the degree of question answering and executive ability of the machine.

In short, the intelligent robot can understand and process visual information and

language information, and can better integrate the two types of information and

plan the best navigation action, and reach to the target result at last. To obtain

better fusion information, it requires the model to understand both the image

information, captured in the real-time camera perspective, and the natural language

instructions. Then, according to the image information, the agent will acquire

its accurate position under the environment of the real world, and follow the

action instructions from model decision based on knowledge reasoning to approach

to the destination. In this regard, for indoor navigation, Anderson et al. (2018)
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first proposed a sequence-to-sequence (Seq2Seq) neural network

learning model, which outputs one pair of action sequence from

two pairs of input sequences. Moreover, Fried et al. (2018),

Jain et al. (2019), and Zhu Y. et al. (2020) attempted some

data augmentation techniques to optimize the effect of the

R2R datasets in the model training. For outdoor navigation,

Karl et al. (2020) proposed a challenging new RL environment

called StreetNav, based on Google Street View, consisting of

natural images of real-world locations and realistic connections

between them. Nowadays, how to better perceive multi-modal

information and achieve matching and aligning of vision and

language information has been one of the research hotspots in

this field (Lianbo et al., 2021c).

Considering many scholars have proposed different multi-

modal fusion methods (Fried et al., 2018; Landi et al., 2019;

Hwang and Kim, 2021), it still can be improved. There are

two main reasons as follows: (1) The recent fusion methods

cannot accurately work on the relatively important features

of visual and textual information, including landmark objects

under the scene and landmark directions under the instructions;

(2) Facing with complex indoor environment, the internal

connections among pairs of perceptual inputs cannot reflect

a large amount of useful and helpful information, when these

connections are ignored. To this end, we propose a novel model

of the key information matching network, VIM-Net, which

employs multi-modal matching methods and navigation self-

tuning modules. In the detailed design of the model, VIM-

Net model principally consists of two matching modules, visual

matching module(V-mat) and trajectory matching module

(T-mat). Specifically, the main task of V-mat is to match

the target object information, visually captured from camera,

with entities information extracted from the instructions. The

main task of T-mat is to match the motion information

identified in the trajectory with the direction information

extracted from the instructions, and then the machine can

compare the difference between the trajectory of target object

and the actual path. If the score of the matching path

mechanism is below the threshold, it will be corrected and

forced to return to the previous position. In addition, the

traditional processing method only aims at enhancing the

matching effect by increasing the amount of datasets, but

the characteristic information of datasets itself is ignored. To

solve this problem, the VIM-Net model enhances the global

feature fusion on the basis of original visual and linguistic

information. Therefore, combined with the inspiration of

human self-positioning perception, we approach this problem

from two aspects. On the one hand, these paths generated

by the action predictor are sampled as the third type of

data information to match text instructions. On the other

hand, those parameters are retrained and adjusted by adopting

the heuristic self-tuning module to plan a more reliable

path, thereby prompting the increasing accuracy of the

specified navigation.

Overall, our model cannot only strengthen the fusion

understanding of multi-modal information, but also be

conducive to multi-modal tasks in other domains, such as visual

question answering (VQA) (Antol et al., 2015), image or video

caption generation (Das et al., 2017). Our contributions mainly

include:

(1) We proposed a new neural networkmodel, VIM-Net, which

combines image recognition information from objection

detection methods and extracts linguistic entities from

natural language processing methods, to optimize the

utilization of the datasets;

(2) The generated path and the language instruction can be

matched and aligned at the control of the self-tuning

module based on heuristic, which retrains parameters at the

more appropriate position to optimize the path planning

and improve the robustness of the network model;

(3) Validation experiments are carried out on the R2R and RUN

datasets, and the results are compared with the baseline

results. Virtually, the experimental results show the VIM-

Net model can greatly improve the navigation accuracy of

VLN tasks.

2. Motivation

In this section, we first explain that it is universal to ignore

the object matching of vision and language features. Based on the

research gaps identified, we present an outline of our proposed

approach.

2.1. Current research

As Figure 1 illustrates, perceptual vision contains a large

amount of environmental information (Huang et al., 2019),

such as various tables, decorations, room layout, etc. Changeable

natural language instructions require agents to perform

compound actions (Majumdar et al., 2020), such as “turn right

after passing the door, the dining room is on your right” and

“go straight and pass the dining room and you will arrive at the

living room”. Therefore, to reach a destination accurately, it is

of great significance for the VLN agent to discover connections

among multiple modalities. In particular, three steps should be

performed. Step 1: locate the agent and determine the next

action; step 2: identify landmarks from perceptual vision; and

step 3: choose the single action to implement the compound

action in accordance with instructions.

Additionally, the agent should be able to make

corresponding actions according to multi-modal features,

which are derived from data fusion based on the natural

language instructions and real-time vision (Qi et al., 2020).

However, previous work focused on increasing the amount

of input data and ignoring the matching between the target
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FIGURE 1

Examples of vision and language navigation (VLN) tasks are executed by VIM agent.

information and vital information within the instructions.

Given the large proportion of useless characteristics, it is highly

possible to generate unreliable paths (Ma et al., 2019). According

to the datasets, each complete track is obtained by serializing

a small track that generated trajectory far from the original

predetermined route, thus resulting in poor navigation accuracy.

2.2. Research gaps

In response to the above-mentioned situation, we found

that the detailed matching information between perceptual

vision, language instructions, and serialized trajectories is often

ignored. This phenomenon is not only in the vision-and-

language navigation, but also in other research fields, such as

dialogue navigation, outdoor scene navigation, etc. (Chen et al.,

2019; Nguyen and Daumé, 2019; Yan et al., 2019). However,

features can be extracted and fused in some cases. As shown

in Figure 2, we extracted keywords from instructions, such as

TV, sofa, movie room, etc. These keywords will be matched with

the target features extracted from the vision without considering

the useless features that account for a large proportion of

instructions, thereby avoiding unreliable paths. The first scene

can correspond to the location of the movie room. Since there is

a right-turning action, we have no way to judge the right-turning

angle well. We need to compare the confidence of the second

and third perspectives, which is more suitable for the dining

room of instructions. If the correct direction is not selected at the

beginning, we provide a self-tuning module so that the agent can

return to the previous position to retrain parameters and then

make a new choice. The rest of the conjunctions, etc., have no

corresponding goals in the vision, and the most vital keywords

occupy a relatively small proportion in the entire text, which will

not play a leading role in the entire model (Hao et al., 2020).

2.3. Proposed method overview

Based on the above, we consider that fusion matching

based on the target features of the perceptual vision and

the keywords of the language instruction can improve the

multi-modal matching ability and optimize the limitations of

increasing the amount of datasets to improve accuracy. This

method makes full use of the subtle connections between

the two modalities, grasping the impact of vital information

in the entire scene, and greatly optimizing the data input

quality of the tasks. Not only that, we also explored the

potential connection between the instructions and trajectories,

and used the self-correction module to correct deviations in

navigation. Considering this phenomenon, we propose the

VIM-Net network, a multi-modal data fusion model based on

vital information matching, to solve the problem that existing

methods cannot make full use of internal characteristics of

the datasets.

3. Related work

To improve the accuracy of visual language navigation

tasks, many scholars (Fried et al., 2018; Ma et al., 2019;

Wang et al., 2019; Majumdar et al., 2020; Zhu F. et al., 2020;

Hwang and Kim, 2021; Lianbo et al., 2021a,b) have made lots

of contribution. The Speaker–Follower model is proposed by

Fried. The model is mainly divided into two modules: Speaker

module and Follower module. The Speaker module outputs

the corresponding language label according to the path, and

the Follower module is responsible for outputting the path

according to the input text command. However, the model

proposed by the author still ignores the Vital Information of

the entire navigation task, that is, typical landmark objects or
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FIGURE 2

Examples of the keywords of instructions and the target features of vision have certain corresponding relationship.

obvious location words, and the error between the real trajectory

and the text instruction, which leads to the effect of the entire

model is still not ideal. Therefore, this paper proposes the VIM-

Net model. In the network, we propose two main modules,

the visual instruction matching module and the trajectory

instruction matching module. The detailed information under

the navigation task is deeply excavated, and this method

fundamentally solves the above-mentioned problems.

4. Model design

We introduce the VIM-Net in detail, which matches the

information after image target recognition with the features

extracted from language entities. The modal contains two

modules: the vision-instruction matching module and the

trajectory instructionmatchingmodule as illustrated in Figure 3.

In the vision-instruction matching module, we use the Yolo

algorithm to extract the object features after target recognition

and the features processed by the entity extraction component

of instructions, compare them and input them into the action

prediction module to guide the generation of navigation actions

(Redmon et al., 2016).

To further improve the overall integrity of the navigation, we

introduce a self-correcting trajectory module that matches the

path and the instruction. In this module, we refer to the feedback

ideas of Ke et al. (2019), improve the relevant evaluation score

indicators, and increase the robustness of the entire system.

4.1. The vision and instruction matching
module

In view of the fact that traditional processing methods only

increase the matching effect by increasing the volume of data,

replicating the datasets, or simply complicate the datasets (delete

and modify the datasets or add other types of data), these

methods still ignore the characteristics of the data set itself.

Therefore, our visual instruction matching module is used to

determine whether the agent has reached the landmark of the

predetermined trajectory, which is the key matching part of the

two types of information (Vasudevan et al., 2021). The image

information obtained by the concrete vision is matched with the

entity extracted from the language input. In the original visual

and language information, the matching of entity information

in the data stream is focused on, thereby improving the overall

multi-modal matching ability (Zhao et al., 2021).

For panoramic images, the orientation features based on

the pre-trained Reset-152 along with the agent, will be input

into the visual features of the convolutional neural network

(CNN). The instruction embedding datasets for each mode

is input as the joint multi-modal embedding module so that

embedding features can be generated based on intermodal data

exchange. We propose to input the perceptual visual features

processed by Yolo and the instruction keywords extracted by the

entity extraction component to the visual instruction matching

module, and set the controller of the scoring module as:

9t(st , ht−1)∈(0, 1) (1)
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FIGURE 3

Schema of the proposed architecture for VLN. The input instruction is vision, instruction, and trajectory. The VIM-Net consists of a Vital

Information match module, a cross-model guide module, and a self-tuning module.

where the value is 1, it means that the agent has reached the

aimed landmark, and 0 means that it has not. The controller is

trained to make decisions at variable time steps by 9t , which

is s an Adaptive Computation Time (ACT) LSTM. The hidden

state of the controller is represented by ht−1. In the Visual

and instruction matching work, 9t uses the variable number of

intermediate navigation steps to identify the landmarks.

4.2. Track and instruction matching
module

The inspiration for the trajectory instruction matching

comes from the fact that when people find their way, they will

confirm whether they have not deviated from the trajectory

when they reach a landmark or need to turn. Some scholars

have made bold attempts before. MT module is used as external

memory by Gordon and others to remember clearly the traversal

path of the agent from the newest visited landmark (Vasudevan

et al., 2021). Then, the MT module is reinitialized once the

time that the agent is nearest or on the iconic location,

where the most recently visited landmark information is stored

after the memory MT have been reinitialized. In this way

of re-initialization, the relevant direction indication is better

located and matched with the help of the trajectory instruction

matching module.

As Figure 4 shows, writing module is set up to write down

the traversed path into the memory and compute it in the

simulation system. The path from the most recently visited

key points to the current location is tracked, rasterized, and

written down into the memory image. In this image, the red

line represents the path, and the blue square marks the starting

point. To ensure space in all direction be stored, the center of

the memory image is always saved into the writing module. If

the image size is exceeded from a new rasterized pixel of the

coordinates, the proportion of the stored image is increased until

the new pixel can hold the image.

By recording the characteristics of the trajectory and

inputting the corresponding instructions to the trajectory

instruction matching module, the controller of the scoring

module is set as:

ϕt(mt , ht−1)∈(0, 1) (2)

where the value is 1, it means the aimed landmark has been

reached, and otherwise, it is 0. The controller is trained to make

decisions at variable time steps by ϕt , which is an Adaptive

Computation Time (ACT) LSTM. The hidden state of the

controller is represented by ht−1. In the Visual and instruction

matching work, ϕt uses the variable number of intermediate

navigation steps to identify the landmarks.

4.3. Action prediction module

The action at time T is defined as the weighted average

of 9t and ϕt . For different parts of the trajectory, the

input of the action predictor mainly depends on two inputs

λ9t + ϕt . For example, when the next Vital Information is

not visible, the prediction should rely on ϕt ; when the Vital

Information is clearly identifiable, both inputs are input to

the predictor. After the final data analysis, we determined

that when λ= 0.75, the overall network effect is optimal. The

learned matching score will adaptively decide which predictions

are trustworthy and how many are passed in each step. This

adaptive fusion can be understood as a calibration system of two

complementary subsystems for motion prediction. Whether to

perform corrective action requires time and space to adjudicate.

In this case, the input of the action predictor is enriched, more

accurate navigation actions are trained, and then the navigation

trajectory with less error is serialized.
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FIGURE 4

Examples of navigation trajectory. The path is rasterized and written into the memory image.

FIGURE 5

Scheme of the proposed architecture for Yolo.

4.4. Review of the target detection
component

As algorithms for object detection have made important

advances, the R-CNN algorithm and one-stage algorithms have

become popular. The R-CNN algorithm bases on a region

proposal (Fast R-CNN and Faster R-CNN). They are two-stage

and generate region proposals using heuristic methods or CNN

networks, and then perform classification and regression on

the region proposals (Girshick, 2015; Mao et al., 2019). The

other one-stage algorithms predict the categories and positions

of different targets using a CNN network merely. In terms
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of accuracy, the first algorithm has more advantages than the

second algorithm, and in terms of speed, the second algorithm is

better.

As illustrated in Figure 5, we use the Yolo algorithm,

which is detected by a CNN network. It is a single-pipe

strategy, and its training and prediction are both end-to-end,

so the Yolo algorithm is relatively simple and fast. Then,

since Yolo convolves the entire picture, it has a larger field

of view in the detection target, and it is not easy to misjudge

the background.

4.5. Review of entity abstraction
component

To further consider the degree of matching between

the key target information and the instruction information,

we introduced entity abstract components to process the

characteristic information under the instruction information.

We adopt a similar approach to Suhr et al. (2018), replacing

phrases in the sentences, which refer to previously unseen

entities with variables. E.g., “Walk from kitchen to sofa” turns

into “Walk from X1 to Y1”. Here, X1 and Y1 are the feature

points that match the perceived visual information. We use

entity abstract components to extract different types of subjects

(streets, restaurants, etc.) and number them in the order of

occurrence of sentences (Paz-Argaman and Tsarfaty, 2019). As

illustrated in Figure 6, the number is reset after each instruction

is completed. Hence, the model contains only a small number

of Vital Information, such that the matching efficiency of the

overall model is significantly improved (Iyer et al., 2017). We

use an encoder–decoder model with global attention, where the

anonymized utterance is encoded using a bidirectional LSTM

network.

ci =
k∑

j=1

αi,j · sj (3)

αi,j =
exp(hTi Fsj)∑k
j=1 exp(h

T
i Fsj)

(4)

hi,mi = f (hi−1,mi−1, ci−1) (5)

αi,j is the attention weights which are the results of an inner

product between the decoder hidden state for the current time

step hi and the hidden representation of the source token sj. F

indicates linear transformation. The next hidden state hi and cell

state mi are computed by the decoder LSTM cell f based on the

previous hidden and cell states hi−1,mi−1 and the context vector

of the previous time step ci−1.

4.6. Learning detail

In our model, the student-forcing method is followed under

the training of supervised manner. In every step the motion

prediction module is trained by the signal attached to motion

with direction of the next landmark from monitor. For loss

function, we select cross-entropy loss function to evaluate the

effect of action module and the matching module after training.

Moreover, cross-entropy loss function is normally applied to

FIGURE 6

Examples of instruction for navigation. We use entity abstract components to extract di�erent types of subjects (streets, restaurants, etc.) and

number them in the order of occurrence of sentences.
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classification tasks. The total loss is from the sum of all modules:

Lossall = Lossvision−matching + Losstrack−matching + Lossaction

(6)

The loss of the two matching modules only takes effect

at the landmarks of the landmarks, and these landmarks are

more than the road nodes for calculating the motion loss and

trajectory error loss. Therefore, we first train the matching

networks separately for the matching task, and then integrate

them with other components into the overall training. We use

Lossall to train the entire network.

5. Experiments

Our experiments focus on (1) determining the parameter

configuration, including the training cycle of the entire neural

network and the value λ in the formula val = λ9t + ϕt in

the VIM-Net model; (2) multiple ablation research to further

explain our model; (3) applying our model to other datasets to

evaluate our model.

5.1. Experimental settings

5.1.1. Datasets

The Room-to-Room(R2R) vision-and-language navigation

datasets are used as experimental evaluation (Anderson et al.,

2018). First, a human-generated navigation instruction which

describes the path to the destination can be provided by the

agent at one certain location. Then, multiple discrete actions,

including turning, moving, etc., will be followed and carried

out to navigate to the global location. Finally, the agent execute

“stop” instruction to come to an end. Some robotic navigation

settings, it should be noted, are different from the normal. On the

one hand, the agent is not provided with the global images, but

have to figure out whether it reaches to the goal or not from the

text description and environmental information. On the other

hand, the Matter3D navigation maps, where each path consists

of 5–7 discrete viewpoints and its physical length approaches to

10 m, are applied into this system. The Matterport3D Simulator

is a large-scale visual reinforcement learning (RL) simulation

environment for developing intelligent robots based on the

Matterport3D datasets. It allows concrete robots to virtually

“move” across the scene by adopting poses consistent with the

panoramic viewpoint. For each scene, the simulator contains

a weighted undirected graph over the panoramic viewpoint.

The presence of an edge thus represents a robot navigable

transition between two viewpoints. And from one viewpoint

to another, movement follows any edge in the navigation

graph. The simulator does not define or constrain the agent’s

goals, reward functions, or any other context. Moreover, there

are 21.5k artificial instructions in total, three of which are

given to each path, about 29 words per instruction averagely.

The datasets are split into training, validation, and test set.

Especially, the validation set is split into two parts: (1) routes

sampled from environmental perception with the camera during

the training(seen); (2) environments information that has not

been seen during the training(unseen). All the test set routes

come from new environment except the environment from the

training and validation set.

The input of the Run task consists of three parts. One

is a very detailed map, which is divided into many blocks.

The other is a clear starting point. The third is a navigation

sequence. The navigation sequence contains many navigation

instructions, which will be carried out one by one in order.

The agent will reach the preset destination according to the

guidance of these instructions. The Run task will output the

entire navigation route, including the coordinates of fixed

points on the map. The Run datasets are designed and

collected for run tasks. It collects three densely populated

areas in downtown Manhattan, covering an area of 0.5 square

kilometers, including 2,515 instructions and corresponding

routes. These natural language navigation instructions are

aligned with OpenStreetMap (OSM) based coordinate matching

(Paz-Argaman and Tsarfaty, 2019).

5.1.2. Evaluation metrics

Our main evaluation metrics are navigation bias, success

rate, navigation path length, success rate at any point, and

weighted success rate for reverse path length. The NE result is

expressed as the average distance between the agent’s final arrival

point and the target location. SR represents the percentage of

the agent’s final position that is less than 3 m from the target

position. The result of SPL is expressed as the total length of the

predicted path. It is definitely optimal when it is equal to the

length of the reference path. OSR is expressed as ameasure of the

frequency with which any node in the path is within 3 m of the

target, allowing the agent to overtake the target without penalty,

which is represented by the last node of the reference path. The

success of SPL weighting takes into account the success rate and

the path length. Although it objectively evaluates the execution

effect of intelligent robots to a large extent, it does not consider

the similarity between the intermediate nodes of the predicted

path and the reference path. This poses a problem, even though

it shows a high score, the predicted path does not really follow

the verbal instructions, it just hits the correct goal. The formula

for calculating SPL is as follows:

SPL =
1

N

N∑

i=1

Si
Li

max(Pi, Li)
(7)

where N represents the count of episodes, Si is the success

indicator under the binary of the episode (whether it is successful
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FIGURE 7

Comparison of performance on the di�erent condition: (A)

Validation seen. (B) Validation unseen. (C) Test unseen.

or not), Pi and Li represent the actual path length and theoretical

shortest path distance under the episode.

Because visual language navigation is a very challenging

task, it is not possible to rely on a single indicator to measure

the quality of the overall task. It must be ensured that the

corresponding actions can bemade according to the instructions

throughout the navigation process instead of only observing

the starting and ending points and evaluating the quality of

the model in general terms. When we analyzed the results, we

fully considered this situation, and tested different indicators

respectively, and strived to objectively evaluate our models in

different dimensions.

5.1.3. Implementation details

The experiments in this paper use the provided server

Nvidia GTX TitanXP GPU, the development environment is

the operating system Ubuntu 16.04, and the mainstream deep

learning framework used is the Pytorch framework.We generate

dynamic filters with 512 channels using a linear layer with

dropout (p = 0.5). In our attention module, q and K have 128

channels and we apply a ReLU non-linearity after the linear

transformation. For our action selection, we apply dropout

with p = 0.5 to the policy hidden state before feeding it to

the linear layer. We use the vision feature vectors from the

convolutional layers in the way of ResNet training on the

ImageNet classification datasets. But the problem is the ReNet

cannot be updated because these features are changeless after the

final training. For better optimizations, BERT is used to initialize

word-embedding vectors in the process of experiment. Also,

dynamic filters with 512 channels with a linear layer combined

with dropout (p= 0.5) are generated.

5.2. Experimental parameter
configuration

As shown in Figure 7 and Table 1, We compared the changes

in the accuracy rate of different training cycles, and found

that when the Epoch is 30, the basic model has completed

the convergence, and the fluctuation of various indicators is

not obvious. Although not all indicators can reach the peak

when the Epoch is 30, considering the training efficiency of the

entire model, the overall training can be ended when there is

no significant improvement. In view of the reason why only

an integer number of cycles are selected for training, the main

reason is that each instruction needs to be trained due to the

constraints of the datasets. The computing resources are very

large, and it is difficult to make accurate judgments. Compared

with the existing models, it is found that most models will

converge in a short period to avoid over fitting.

We compared different results and plotted images to further

observe the changes in the results of different training epochs.

As shown in Figure 8 and Table 2, When λ was equal to 0.75 in

the formula val = λ9t + ϕt in the VIM-net model, the effect of

the entire model was optimal. Observing the changes of the two

variables 9t and ϕt in the formula, it is found that ϕt represents

the score of the T-mat module, and its values are generally

divided into high-grade and low-grade. The high-grade is about

0.8 and above, and the low-grade is about 0.3 and below. The
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TABLE 1 The evaluation index results table.

Epoch
Validation seen Validation unseen Test unseen

SR↑ NE↓ OSR↑ SPL↑ SR↑ NE↓ OSR↑ SPL↑ SR↑ NE↓ OSR↑ SPL↑

0 0.13 - 0.15 0.12 0.11 - 0.13 0.10 0.11 - 0.13 0.11

10 0.39 4.12 0.44 0.36 0.30 6.91 0.35 0.25 0.30 8.36 0.35 0.25

20 0.60 3.79 0.65 0.58 0.39 6.09 0.48 0.33 0.39 7.14 0.45 0.32

30 0.68 3.23 0.77 0.64 0.45 5.63 0.57 0.39 0.44 5.76 0.53 0.38

40 0.69 3.19 0.78 0.64 0.45 5.57 0.57 0.39 0.44 5.70 0.53 0.39

50 0.69 3.15 0.77 0.64 0.46 5.40 0.57 0.38 0.44 5.55 0.54 0.38

60 0.68 3.15 0.78 0.65 0.46 5.40 0.56 0.37 0.45 5.56 0.54 0.38

When the Epoch is 30, each index has reached a relatively high level.

FIGURE 8

Comparison of performance on the di�erent weight of scoring

module. The best result is approximately obtained when the is

equal to 0.75.

TABLE 2 Comparison of the test unseen set.

The weight λ
Test unseen

SR↑ NE↓ OSR↑ SPL↑

0.4 0.30 6.57 0.35 0.28

0.5 0.35 6.39 0.41 0.33

0.6 0.39 6.15 0.46 0.36

0.7 0.42 5.87 0.55 0.37

0.75 0.44 5.76 0.53 0.39

0.8 0.41 5.89 0.48 0.37

0.9 0.36 6.32 0.39 0.35

When the value of λ is 0.75, each index has reached a relatively high level.

main influencing factor is whether the planned path is consistent

with the direction in the instruction. The value of 9t fluctuates

more obviously, indicating that the V-mat module compares

whether there are targets consistent with the command in the

current field of view. Since each command does not necessarily

have only one target, the9t score is 1 when all targets are found,

that is, the overall score is low, and the influence value is weaker

after multiplying the coefficient λ.

It is very important to consider the overall value of the path

with high confidence. After a lot of experiments, it is found that

if the value of Val is selected higher, the training period of the

entire network will be longer, and the growth of each index will

not be significant. However, paths with too low confidence have

little improvement on the original network, which is not enough

to support the needs of the VIM-Net network. Therefore, after

comparative experiments, it is found that the value of about 1 has

well-coordinated the balance between accuracy and efficiency.

5.3. Ablation study

We test the impact of our implementation choices on VLN

in our ablation study and the results are presented in Tables 3, 4.

First, we compared the VIM-Net model with a model that uses

a simple replication data set to expand the current data set to

determine the impact of the Vital Information matching module

on the entire network. Then, we introduced the importance

of using the trajectory self-tuning module to correct the entire

navigation task. Finally, we performed ablation experiments on

the RUN datasets and compared them with CGAEW model

(Paz-Argaman and Tsarfaty, 2019) and the experimental results

are shown in the Table 4.

5.3.1. V-mat module

As the results show, the performance in datasets processing

well outperforms traditional VLN data augmentation methods.

This is because the model can more accurately determine

the intrinsic connection between the perceptual visual and

textual instructions under the input datasets. Our V-mat visual

matching module improves the success rate by 3% compared to

the baseline model using the pure replication datasets. Not only
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TABLE 3 The ablation study of our proposed architecture on the R2R validation set.

Method Num V-mat T-mat Self-tuning
Validation seen

SR↑ NE↓ OSR↑ SPL↑

Speaker-Follower 0.63 3.4 0.71 -

VIM-Net

1
√

0.67 3.16 0.74 0.59

2
√

0.64 3.26 0.76 0.62

3
√

0.66 3.61 0.71 0.55

4
√ √ √

0.68 3.23 0.77 0.64

This is the result of ablation experiment. The effect of all VIM-Net is better than that of single module.

TABLE 4 The ablation study of our proposed architecture on the R2R validation set and our baseline model is the Speaker-Q14 Follower model.

Model Validation Unseen Test Seen

SR↑ NE↓ OSR↑ SPL↑ SR↑ NE↓ OSR↑ SPL↑

Speaker-Follower 0.38 6.68 0.42 - 0.36 6.69 0.42 0.28

T-mat 0.44 6.03 0.54 0.38 0.43 5.97 0.45 0.34

V-mat 0.43 5.34 0.50 0.36 0.41 5.59 0.54 0.37

Self-tuning 0.41 6.79 0.56 0.32 0.39 6.81 0.46 0.31

VIM-Net 0.45 5.63 0.57 0.39 0.44 5.76 0.53 0.39

that, we observed the indicators of SR and OSR and found that

the improvement of the two is obviously different. After analysis,

it can be roughly concluded that the original model can also

match some information of the command to calibrate the path

during the navigation process, but for the end point. Obviously,

the accuracy of SR cannot reach our model, which explains that

the improvement of SR is obvious when the improvement of

OSR is not obvious.

5.3.2. T-mat module

The improvement effect of the T-mat module on the entire

task is not particularly obvious. Although there is a small

improvement, it does not have a good improvement for a

certain indicator. After our analysis, it is found that this is

because this module aims to discover whether the planned

trajectory is consistent with the navigation instructions, and

focuses on whether the direction conversion is reasonable.

Compared with the T-mat model, which inherently matches

key target information, our T-mat trajectory matching module

focusesmore onwhether the connection betweenmulti-segment

instructions is correct, so the accuracy is increased by 3%.

Compared with all the indicators, we found that SPL has

the largest improvement. This indicator is reflected in the

ratio of the success rate and the path length, which better

judges the module’s overall grasp of the planning process, and

ensures that the agent can be planned from a macro perspective

path quality.

5.3.3. Self-tuning module

Our method is significantly better than the self-monitoring

agent using greedy decoding. When the progress marker can

use the features of each navigable direction previously accessed,

but the trajectory self-tuning module is not available, the

performance will not increase significantly. However, the use of

the gated attention mechanism is good for extracting the overlap

between the position of the landmark under the text instruction

and the real trajectory, which means that the network can use

this information to improve action selection. Compared with the

baseline model that uses pure soft attention to compare the error

of the entire trajectory, our method can achieve a moderate gain,

which reflects the purpose of intelligent navigation.

Through the above analysis, compared with the original

Speaker–Follower model, our three modules are indeed of great

help in improving the accuracy of the original task from different

angles, although looking at a module alone may sacrifice some

indicators, but the comprehensive consideration of VIM-Net

undoubtedly achieves the desired effect. Not only that, we also

compare the VIM-Net model with some existing models, and

the results are shown in Table 5.

5.3.4. Comparison with other models

As shown in Table 5, We found that the proposed VIM-

Net model performs well, not only in the Speaker–Follower

model but also when we migrate its V-mat and T-mat modules

to the Regretful model, although not all the indicators have

all increased by a large margin, but it can be guaranteed that
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TABLE 5 The display table of results from other models.

Model
Validation unseen Test seen Test seen

SR NE OSR SPL SR NE OSR SPL SR NE OSR SPL

Random 0.16 9.45 0.21 - 0.16 9.23 0.22 - 0.13 9.77 0.18 0.12

Student-forcing 0.39 6.01 0.53 - 0.22 7.81 0.28 - 0.20 7.85 0.27 0.18

RPA 0.43 5.56 0.53 - 0.25 7.65 0.32 - 0.25 7.53 0.33 0.23

DynamicConv-agent 0.53 4.68 0.66 0.46 0.32 6.65 0.44 0.27 0.31 7.14 0.42 0.27

Seq2Seq 0.53 4.68 0.66 0.46 0.32 6.65 0.44 0.27 0.31 7.14 0.42 0.27

Speaker-follower 0.63 3.40 0.71 - 0.38 6.68 0.42 - 0.36 6.69 0.42 0.28

VIM-Net 0.68 3.23 0.77 0.64 0.45 5.63 0.57 0.39 0.43 5.76 0.53 0.38

Regetful 0.68 3.31 0.77 0.63 0.50 5.32 0.59 0.41 0.48 5.69 0.56 0.40

Regetful+VIM-Net 0.70 3.20 0.79 0.65 0.50 5.10 0.61 0.42 0.49 5.53 0.55 0.41

some indicators have steadily increased, and no indicators have

fallen significantly. We also compared the Random model, the

Student-Forcing model and the RPA model. After comparing

different models and integrating different modules, we found

that the modules we proposed are basically applicable to all

models to varying degrees, which indeed affirms our work.

Comparing the indicators of the modified Seq2Seq network still

cannot reach the VIM-Net network that integrates advanced

algorithms, the main reason is that the general model based on

the encoder-decoder network cannot more accurately find the

overall network input. Therefore, the latter multi-modal fusion

module based on dynamic filter cannot realize the alignment and

fusion between modalities. However, the research significance of

the Seq2Seq network is reflected in the proposal of a general

and easy-to-transfer framework to solve many multi-modal

tasks, which is convenient for the development of related

topics later.

5.3.5. Results of the RUN datasets

We follow the evaluation method of Paz-Argaman and

Tsarfaty (2019). For the model to be evaluated, we measure

whether the navigation process is successful when the Euclidean

distance between the agent’s location and the destination

is within 5 tile, and the agent should also face the right

direction. For each instruction, we will extract the corresponding

entity from the map and move it. As shown in Table 6,

from the experimental results, the result of our T-mat is

better than that of CGEAW, because our T-mat focuses

on the connection between instruction sequences, which can

improve the navigation accuracy. Self tuning module will

ensure the confidence of each navigation path. Although

some path length indicators will be sacrificed, the overall

accuracy will be improved significantly. Compared with

CGEAW model, the accuracy of VIM-Net model has been

improved by more than 30%. This shows that the important

information matching proposed by us is helpful to solve the

TABLE 6 The ablation study of our proposed architecture on the RUN

datasets and comparison with other models.

Model SR↑ (%)

CGAEW 10.45

V-mat -

T-mat 35.46

Self-tuning 28.98

VIM-Net 44.31

VIM-Net+CGAEW (attention layer) 47.60

Human 81.12

navigation problem. Considering that the RUN datasets is

built in an outdoor scenario, it shows that VIM-Net performs

well for indoor and outdoor navigation, which confirms

our work.

6. Conclusion

Conventional navigation system pays more attention to

the construction of the global scene in the map before

it works, and marking the initial position and destination

position. Generally, with the help of beam search or greedy

algorithm, the most suitable trajectory is derived, based on deep

learning visual language navigation focusing on vision and text.

Then, the next navigation behavior can be deduced, in which

vision information and text information will be independently

processed, and each unit is applied by the more mature

algorithms in the field. After these, multi-modal information

will be simply aligned and spliced to judge and decide the next

navigation behavior, under supervision learning. Undoubtedly,

this way of work procedure can efficiently save lobar and

time costs. Consequently, Our research proposes a new type

of deep neural network, VIM-Net model, as an effective tool

to deal with VLN tasks. It aims to make best use of temporal
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information and multi-modal fusion information extracted with

the joint multi-modal embedding module. Besides, VIM-Net

can increase success rate and search efficiency of the task, on

the basis of backtracking function from optimal greedy local

search algorithm. Finally, we carried out various experimental

validations on the R2R and RUN datasets and the results

demonstrated the superiority of our model.

This paper has carried out rich research on the subject

of visual language navigation. Through the analysis of

different networks and modules, a relatively optimized

experimental model is proposed, and the ideal effect is

achieved. However, there are still many places worth studying

in the task itself, and follow-up research will focus on the

following aspects.

(1) Validation on different datasets. Compared with the

mainstream Room to Room datasets, other newly proposed

datasets, including Room for Room and TouchDown in outdoor

scenes, all have great challenges. Whether the proposed model

is generalizable and general for different environments and

different tasks still needs to be considered. If there is such

a deficiency, what kind of optimization can be reasonably

adapted to all tasks. (2) Further enhance the effect of the entire

network. The network proposed in this paper still contains

many inexplicable parts. In the overall selection and parameter

adjustment, we still cannot find a general and reasonable way

to perform the required purpose. And in the selection of

many hyperparameters, we still have to waste a lot of time

and computing resources to select the most suitable value. In

the future work, the reusability and parameter sharing among

various modules of the network can be further considered. (3)

Optimize the real-time and practicality of the entire network.

The current work still spends a lot of time to compare the

accuracy of the training data set and the validation data

set, and the calculation time of the overall network is still

not negligible. Second, the training in the simulator ignores

factors such as lighting and dynamic complex scenes in the

real environment, and future work can try to reproduce it

on robots.
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