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With the development of technology, Moore’s law will come to an end, and

scientists are trying to find a new way out in brain-like computing. But we

still know very little about how the brain works. At the present stage of

research, brain-like models are all structured to mimic the brain in order to

achieve some of the brain’s functions, and then continue to improve the

theories and models. This article summarizes the important progress and

status of brain-like computing, summarizes the generally accepted and feasible

brain-like computing models, introduces, analyzes, and compares the more

mature brain-like computing chips, outlines the attempts and challenges of

brain-like computing applications at this stage, and looks forward to the future

development of brain-like computing. It is hoped that the summarized results

will help relevant researchers and practitioners to quickly grasp the research

progress in the field of brain-like computing and acquire the application

methods and related knowledge in this field.
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Introduction

Achieving artificial intelligence as the major goal of mankind has been at the top

of the heated debate. Since the Dartmouth Conference in 1956 (McCarthy et al., 2006),

the development of AI has gone through three waves. They can be roughly divided into

four basic ideas: symbolism, connectionism, behaviorism, and statism. These different

ideas have captured some of the characteristics of “intelligence” in different aspects, but

only partially surpassed the brain of humans in the aspect of function. In recent years,

the computer hardware base has become more perfect, and deep learning has revealed

its huge potential (Huang Y. et al., 2022; Yang et al., 2022). In 2016, AlphaGo defeated

Lee Sedol, the ninth-degree Go master, which marked that the third wave of artificial

intelligence technology revolution has reached its peak.

In particular, the realization of AI has become one of the wrestling points of national

power competition. In 2017, China released and implemented a new generation of

artificial intelligence development planning. In June 2019, the United States released the
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latest version of the National Artificial Intelligence Research and

Development Strategic Plan (Amundson et al., 1911). Europe has

also identified AI as a priority development project: in 2016,

the European Commission proposed a legislative motion on

AI; in 2018, the European Commission submitted the European

Artificial Intelligence (Delponte and Tamburrini, 2018), and

published Coordinated Plan on Artificial Intelligence with the

theme “Made in Europe with Artificial Intelligence.”

Achieving artificial intelligence requires more powerful

information processing capabilities, but relying on the current

classical computer architecture cannot meet the huge amount of

data computing. The classical computer system has encountered

two major bottlenecks in its development: the storage wall

effect due to von Neumann structure and Moore’s law will

fail in the next few years. On the one hand, traditional

processor architecture is inefficient and energy intensive. When

dealing with intelligent problems in real-time, it is impossible

to construct suitable algorithms for processing unstructured

information. In addition, the mismatch between the rate of

programs or data transferred back and forth and the rate of

the central processor processing information leads to a storage

wall effect. On the other hand, as the chip’s size assembly gets

closer to the size of a single atom, the devices are getting closer

to the limits of their respective physical miniaturization. So, the

cost of performance enhancement will become higher and the

technical implementation will become more difficult. Therefore,

researchers put their hopes on brain-like computing in order to

break through the current technical bottleneck.

Early research in brain-like computing followed the

traditional computer manufacturing process that we first

recognize how the human brain works and develop a

neuromorphic computer based on the theory. But after more

than a decade of research, mankind is almost standing still in the

field of brain science. So, the path of theory before technology

was abandoned by mainstream brain-like research. Looking

back at human development, we see that many technologies

precede theories. For example, in the case of airplanes, we can

build the physical object before conducting research to refine

the theory. Based on it, researchers adopted structural brain

analogs: using existing brain science knowledge and technology

to simulate the structure of the human brain, and then refining

the theory after success.

This article first introduces the idea behind the research

significance of brain-like computing in a general way. Then

we summarize the research history and compare the current

research progress with analysis and outlook. The article structure

is shown in Figure 1.

Progress in brain-like computing

Brain-like computers use spiking neural networks (SNNs)

instead of the von Neumann architecture of classical computers

and use micro and nano-optoelectronic devices to simulate the

characteristics of information processing of biological neurons

and synapses (Huang, 2016). Brain-like computers are not a new

idea, in 1943, before the invention of the computer, Turing and

Shannon had a debate about the imaginary “computer” (Hodges

and Turing, 1992). In 1950, Turing mentioned it in Computers

and Intelligence (Neuman, 1958). In 1958, Von Neumann

also discusses neurons, neural impulses, neural networks, and

information processing mechanisms of the brain of humans in

the Computers and the Human Brain (Yon Neumann, 1958).

However, due to the limitations of various technologies at that

time and the ideal future described by Moore’s theorem, brain-

like computing did not receive enough attention. Around 2005,

it was generally believed that Moore’s law would come to an end

around 2020. Researchers began to shift their focus to brain-like

computing. Then, the brain-like computing officially entered an

accelerated period of development.

A summary of the evolution of brain-like computing (Mead,

1989; Gu and Pan, 2015; Andreopoulos et al., 2018; Boybat et al.,

2018; Gleeson et al., 2019) is shown in Figure 2.

Brain-like computing models

There are three main aspects of brain-like computing:

simulation of neurons, information encoding of neural systems,

and learning algorithms of neural networks.

Neuron model

Neurons are the basic structural and functional units of

the human brain nervous system. The most commonly used

models in the SNN network construction are the Hodgkin–

Huxley (HH) model (Burkitt, 2006), integrate-and-fire (IF)

model (Abbott, 1999; Burkitt, 2006), leaky integrate-and-fire

(LIF) model (Gerstner and Kistler, 2002), Izhikevich model

(Izhikevich, 2003; Valadez-Godínez et al., 2020), and AdExIF

model (Brette and Gerstner, 2005), and so on.

1) HH model

The HH model is closest to biological reality in the

description of neuronal features and is widely used in the field

of computational neuroscience. It can simulate many neuronal

functions, like activation, inactivation, action potentials, and

ion channels. The HH model describes the neuronal electrical

activity in terms of ionic activity. The cell membrane contains

sodium, potassium, and leaky channels. Each ion channel has

different gating proteins. It can restrict the passage of ions, so the

permeability of each kind of ions is different in the membrane.

Because of this, neurons have abundant electrical activity. At

a mathematical level, the binding effect of gating proteins is
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FIGURE 1

The structure of the article is as follows the analysis of relevant models, the establishment of related platforms, implementation of related

applications, challenges, and prospects.

equivalent to ion channel conductance. The conductance of the

ion channel, as a dependent variable, varies with the variables

of activation and deactivation of the ion channel. The current

of the ion channel is determined by the conductance of ion

channel, the reversal potential of the ion channel, and the

membrane potential. And the total current consists of the

leakage, sodium, potassium current, and the current due to

membrane potential changes. Therefore, the HH model also

equates the cell membrane to a circuit diagram.

2) IF and LIF models

In 1907, the integrate-and-fire neuron model was proposed

by Lapicque (1907). According to the variation of neuronal

membrane potential with time in the model, it can be divided

into the IF model and the LIF model. The IF model describes the

membrane potential of neurons with input current, as shown in

Equation 1:

Cm
dV

dt
= I (1)

Cm represents the neuronal membrane capacitance, which

determines the rate of change of the membrane potential. I

represents the neuronal input current. The model is called the

leak-free IF model because the neuronal membrane potential is

only correlated with the input current. When the current input

zero, the membrane potential remains unchanged. Its discrete

form is shown in Equation 2:

V(t) = V(t − 1t)+ I(t) (2)

where 1t is the step length of discrete sampling.

In contrast, the LIF model adds the simulation of neuron

voltage leakage. When there is no current input for a certain

period of time, the membrane voltage will gradually leak to

resting potential, as shown in Equation 3 (citing Equation 1):

Cm
dV

dt
= gleak(Erest − V)+ I (3)

gleak is the leaky conductance of the neuron. Erest is the

resting potential of the neuron. Neuroscience-related studies

have shown that the binding of neurotransmitters to receptors

in the postsynaptic membrane primarily affects the electrical

conductance of postsynaptic neurons, thereby altering the

neuronal membrane potential. So, it is more biologically

reasonable to expand the input current I in Equation 1 into

excitatory and inhibitory currents described by conductance.

However, both neurons change to resting potentials directly after

activation unable to retain the previous spike.
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FIGURE 2

Brain-like computing has evolved from conceptual advancement to technical hibernation to accelerated development due to the possible end

of Moore’s law.

3) Izhikevich model

In 2003, researcher Eugene M. lzhikevich proposed the

lzhikevich model from the perspective of nonlinear dynamical

systems (Izhikevich, 2004). It can present the firing behavior of a

variety of biological neurons with an arithmetic complexity close

to that of the LIF model, as shown in Equation 4:

dV

dt
= 0.04V2 + 5V + 140− U + I (4)
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dU

dt
= a(bV − U) (5)

if V ≥ 30mV , then

{

v = c

U = U + d
(6)

In Equations 5 and 6, U is an auxiliary variable, adjusted for

the parameters a, b, c, and d, the lzhikevich model can exhibit

a discharge behavior similar to the HH model. But unlike the

HH model in which each parameter has a clear physiological

meaning (e.g., ion channels, etc.), these parameters no longer

have the corresponding properties.

4) AdEx IF model

The AdEx IF model is a modification of the lzhikevich

model. However, the AdEx IF model reduces the response speed

of the membrane voltage. This results in a gradual decrease in

the frequency of pulse delivery from neurons under constant

voltage stimulation conditions. We can think of this as a slowing

down of the response of neurons that gradually gets “tired” after

sending impulses. It is an essential feature of the AdEx IF model

that is closer to the HHmodel in terms of firing behavior results.

The comparison of the above five neuronal models is

summarized in Table 1.

Neural system information encoding

Neural information encoding consists of two processes:

feature extraction and spike sequence generation. In terms of

feature extraction, there is no mature theory or algorithm. In

terms of spike sequence generation, there are two approaches

commonly used by researchers: rate coding (Butts et al., 2007;

Panzeri et al., 2010) and temporal coding. Rate coding uses

the frequency of spike to express all the information of spike

sequences, which cannot effectively describe the fast time-

varying perceptual information. Unlike average-rate coding,

temporal coding takes into account that precisely timed spike

carries valid information. Thus, temporal coding can describe

neuronal activity more accurately. Precise spike timing plays an

important role in the processing of visual, auditory, and other

perceptual information.

1) Rate coding

Rate coding primarily utilizes a stochastic process approach

to generate a spike sequences. The response function of a

neuron suitable for Poisson coding is consist of a series of spike

functions as shown in Equation 7:

ρ(t) =
k

∑

i=1

δ(t − ti) (7)

k is the number of spikes in a given spike sequence, t

represents the arrival time of each spike, and ti denotes the time

at which each spike occurs. The unit spike signal is defined as

shown in Equation 8:

δ(t) =

{

0, if t=0

1, otherwise
(8)

The integral is in the form of
∫ +∞
−∞ δ(t) = 1. The time of

neural action potential response is equivalent to the spike release

time in a spike sequence. From the pulse function property,

the number of pulses within t1 to t2 can be calculated by n =
∫ t2
t1

ρ(t)dt. Thus, the instantaneous discharge frequency can be

defined as the expectation of the neuronal response function.

According to the statistical theory of probability, the mean value

of the neuronal response function in a short time interval is

used as an estimate of the discharge frequency (Koutrouvelis and

Canavos, 1999; Adam, 2014; Safiullina, 2016; Shanker, 2017; Allo

and Otok, 2019) as shown in Equation 9:

rM(t) =
1

M

M
∑

j=1

ρj(t) (9)

rM(t) is the number of spikes in the entire time window and ρj(t)

is the number of spike responses per neuron. Neither rM(t) nor

ρj(t) is a continuous function and only under the condition of

infinite time window, a smooth function can be obtained. The

rules of encoding are crucial for the mapping between values

and spike.

2) Temporal coding

The time-to-first-spike mechanism is generally used in time

encoding as the moment of spike issuance, as shown in

Equations 10 and 11:

Ts = T −
T

Imax
I, (10)

f (t) =

{

0, if t=Ts

1, otherwise
(11)

I represents the actual intensity of each image pixel represented

in the field of pattern recognition. Imax represents the maximum

value of each pixel intensity. T
Imax

I is a time window with a

temporal pattern to ensure the pixel intensity value can be

converted. Ts is the exact moment of the emitted spike, and

a spike sequence will only emit one spike in the time-to-first-

spike mechanism.

3) Population coding

Population coding (Leutgeb et al., 2005; Samonds et al.,

2006) is a method of representing a stimulus using the joint
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TABLE 1 Comparison of neuronal models.

Neuron models Circuit forms Advantages Defects

HH Capacitor resistor circuit Close to biological neurons, high accuracy Complex expression, complicated operation

LF Capacitance Simple operation Simple model with memory effect

LIF Capacitor resistor circuit Simulate resting state, simple operation The model is simple and ignores many

neurodynamic properties

Izhikevich \ Simulate multiple discharge modes Low computational efficiency

AdEx lF \ Simulate multiple discharge modes Reduced pulse firing frequency under constant

voltage stimulation

activity of multiple neurons. Gaussian population coding is

the most widely used model for group-skewed coding. In

the actual encoding of the SNN, the pixel intensity is set

to a real value that is determined by a set of overlapping

Gaussian receptive field neurons. The larger the pixel intensity,

the larger the value, the shorter the encoding time, and the

easier it is for the Gaussian receptive field neurons near

the front to generate a spike and form a spike sequence.

Let k Gaussian receptive field neurons be encoded then, the

centers and widths of k Gaussian functions are shown in

Equation 12:

ci = min +
max−min

k− 2
� i, k = 3, 4, 5......, n (12)

σ = β �

max−min

k− 2
, k = 3, 4, 5......, n

This type of encoding is used to encode continuous variables.

For example, the population coding method ensures higher

accuracy and realism compared to the first two coding methods

for coding sound frequencies and joint positions. Due to the

characteristics of this encoding method, it can significantly

reduce the number of neurons required for the same accuracy.

In order to improve the effectiveness of information encoding,

the researchers are also trying to introduce different mechanisms

in the encoding process (Dennis et al., 2013; Yu et al.,

2013).

Spiking neural networks and learning
algorithms

Over the past decades, researchers have drawn inspiration

from biological experimental phenomena and findings to

explore the theory of synaptic plasticity. Bi and Pope proposed

the spike-timing-dependent plasticity (STDP) mechanism and

extended it to different spike learning mechanisms (Bi and Poo,

1999; Gjorgjieva et al., 2011), which order of firing, adjusting the

strength of neuronal connections.

To solve the supervised learning problem of SNNs,

researchers have combined the STDP mechanism with other

weight adjustment methods. This mainly contains the gradient

descent and Widrow-Hoff rules. Based on gradient descent

rules (Shi et al., 1996), Gutig et al. put forward a Tempotron

learning algorithm (Gütig and Sompolinsky, 2006). The

algorithm updates the synaptic weights according to the

combined effect of the pre-synaptic and post-synaptic pulse

time difference and the error signal. Ponulak et al. proposed

the ReSuMe learning method (Florian, 2012) avoiding the

gradient descent algorithm in the gradient solving problem.

The SPAN algorithm was proposed in ref. (Mohemmed et al.,

2013). The algorithm is similar to ReSuMe, except that it uses

a spike convolution transform to convert spikes into analog

values before performing operations, which is computationally

intensive and can only be learned offline. Based on the gradient

descent, an E-Leaning rule is given by the Chronotron algorithm

(Victor and Purpura, 1997; van Rossum, 2001). It adjusts the

synapse by minimizing an error function that is defined by

the difference in the pulse sequence of the target and actual

output. In a comparison of the single-spike output of neurons

(e.g., Tempotron) and multi-spike output (e.g., ReSuMe), it

was found that the multi-spike output of neurons can greatly

improve classification accuracy and learning capacity (Gardner

and Gruning, 2014; Giitig, 2014). Therefore, the use of neurons

with multi-spike input–output mapping as computational units

is the basis for designing efficient and large learning capacity

SNNs. Although multi-spike input–output mapping can be

implemented, it is only applicable to single-layer SNNs. In the

literature (Ghosh-Dastidar and Adeli, 2009; McKennoch et al.,

2009; Sporea and Gruning, 2013; Xu et al., 2013), researchers

have tried to study algorithms applicable to multilayer SNNs.

However, the algorithms for multilayer SNNs are still limited by

the current algorithms, and the research on multilayer SNNs is

still in its initial stage.

Since the training algorithm for SNNs is less mature, some

researchers have proposed algorithms to convert traditional

ANNs into SNNs. A deep ANN-based neural network is

trained by a comparable mature ANN training algorithm, then,

transformed into an SNN by firing rate encoding (Diehl et al.,
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2015), thus avoiding the difficulty of training SNNs directly.

Based on this conversion mechanism, HRL Labs researchers

(Cao et al., 2014) converted a Convolutional Neural Network

(CNN) (Liu X. et al., 2021) to a Spiking CNN with recognition

accuracy close to that of a CNN on the commonly used object

recognition test set Neovision2 with CIFAR-10. There is another

SNN architecture called liquid statemachine (LSM) (Maass et al.,

2002), which can also avoid direct training of SNNs. As long

as the SNN is large enough, it can theoretically achieve any

complex input classification task. Since LSMs are regression

neural networks, this confers on them the ability to memorize

and can effectively handle the analysis of temporal information.

New Zealand researcher Nikola Kasabov proposed the NeuCube

system (Kasabov et al., 2016) architecture based on the basic

idea of LSM for temporal and spatial information processing.

In the training phase, NeuCube uses STDP, a halo-inspired

genetic algorithm, etc. to train the SNN. In the operation phase,

the parameters of the SNN and the output layer classification

algorithm are also dynamically changing, which gives the

NeuCube system a strong adaptive capability.

Brain-like computing chips

Darwin chip

Figure 3 shows the overall microstructure of the Darwin

Neural Processing Unit (NPU) (Ma et al., 2017). The Address-

event representation (AER) is the format that represents the

input and output spike information encoded. AER packet

contains the neuronal ID that generates the spike and the

timestamp when the spike is generated, which can represent

each spike. The NPU, driven by the input AER packets, works

in an event-triggered approach works. Spike routers translate

spikes into weighted latency information by accessing storage

and SDRAM (Stankovic and Milenkovic, 2015; Goossens et al.,

2016; Ecco and Ernst, 2017; Li et al., 2017; Garrido and Pirsch,

2020; Benchehida et al., 2022).

The execution steps of the AER connection runtime are

shown below:

Time calibration

The NPU works on an event-driven basis. When the FIFO

receives a peak, it sent an AER packet to the NPU. The

timestamp of the AER packet will be checked by the NPU. The

AER packet will enter the peak routing process, if it matches the

current time, or, it will go to the neuron state update process.

Input spike routing

Each AER packet’s input spike consists of the timestamp and

the source (presynaptic) neuron ID. It is used to find the target

(postsynaptic) neuron ID and synaptic properties, containing

weights and delays stored in the off-chip DRAM.

Synaptic delay management

Each synapse has an independently configurable delay

parameter. The parameter defines the delay from the generation

of the presynaptic neuronal spikes to the reception of the

postsynaptic neuronal spikes. Each entry of the weights and

queues has the intermediate result of the weights and is sent to

the neuron after a certain delay.

Neuron state update

Each neuron updates its state. First, the neuron receives the

biological neuronal current state being updated from the local

state memory. Then, it receives the sum of the weights of the

current step from the weights and queue. If an output spike

generates, it will be sent to the spike router as an AER packet.

Internal spike routing

It is similar to the process of input spike routing.

Darwin Chip’s NPU is an SNN-based neuromorphic co-

processor, while it still is a single-chip system, for now, the

standard communication interface defined by the AER format

allows expanding to multi-chip distributed systems (Nejad,

2020; Cui et al., 2021; Hao et al., 2021; Ding et al., 2022) with

AER bus connections in the future. NPU, as a processing element

in a network-on-a-chip (NoC) architecture200, can use the AER

format for input and output peaking to scale the SNN’s size of

the chip to potentially millions of neurons, not just thousands

of neurons.

Tianjic chip

The Tianjic team is committed to create a brain-like

computing chip that has the advantages of both traditional

computer and neuromorphic computation. To this end, the

researchers designed the unified functional core (Fcore) of the

Tianjic chip (Pei et al., 2019), which consists of four main

components as follows: axons, dendrites, soma, and router.

Figure 4 shows the architecture of the Tianjic chip.

Axon block

The Tianjic team sets a small buffer memory to record

the historical spikes in SNN (Yang Z. et al., 2020; Agebure

et al., 2021; Liu F. et al., 2021; Syed et al., 2021; Das et al.,

2022; Mao et al., 2022) mode. The buffer memory can support

reconfigurable peak collection durations and bit access via

shift operations.
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FIGURE 3

Overall microarchitecture of the Darwin Neural Processing Unit (NPU) and the process of processing AER packages and outputting them.

Dendritic blocks

Membrane potential integration of SNN mode and MACs

(multiply-and-accumulate) of ANN mode use the same

calculator together in order to reunify the level of abstraction

of SNNs and ANNs during processing. In detail, MAC units are

used to multiply and accumulate in ANN mode. In SNN mode,

there is a bypassing mechanism that can skip multiplication to

reduce energy under a time window of length one.

Soma

In SNN mode, the Soma is reconfigurable in order to have

peak resetting, deterministic, potential storage, probabilistic fire,

and threshold comparison. In ANN mode, fixed or adaptive

leakage of the potential value can reduce the leakage function

of the membrane potential.

To transmit information between neurons, a router receives

and sends information, which is responsible for the transmission

and conversion of information between cell bodies and axons.

The Design of Tianjic chip is shown in Figure 5.

In order to support parallel processing of large networks

or multiple networks, the chip equipped with a multi-core

architecture (Chai et al., 2007; Chaparro et al., 2007; Yu et al.,

2014; Grassia et al., 2018; Kiyoyama et al., 2021; Kimura

et al., 2022; Zhenghao et al., 2022) can perform seamless

communication at the same time. The FCores of the chip,

shown in Figure 6, arrange in a two-dimensional (2D) grid.

Reconfigurable routing tables of the routers of FCore have the

ability of arbitrary connection topologies.

TrueNorth

IBM started from the level of neuronal composition and

principles to build a brain-like computing chip bymimicking the

brain structure and performing neural simulation with the help

of the spike signal conduction process (Birkhoff, 1940). Starting

from neuroscience, the neuromorphic synaptic nuclei are used

as the basic building blocks of the entire network (Service, 2014;

Wang and Hua, 2016). The designers of TrueNorth consider

neurons as the main arithmetic unit. The neuron receives and

integrates the “1” or “0” pulse signal and issues instructions

based on that signal. Then output the instructions to other

neurons through the synapses at the connections between

neurons (Abramsky and Tzevelekos, 2010; Russo, 2010). It is

shown in Figure 7.

The data transmission is implemented in two stages:

first, the transmission data between core blocks are

passed along the x-direction and then along the y-

direction until it reaches the target core block. Then, the

information is transmitted within the core block, where

in the same core block it first passes through presynaptic

axons (horizontal lines), cross-aligned synapses (binary

junctions), and finally, to the input of the postsynaptic neuron

(longitudinal lines).

When a neuron on a nucleus block is excited, it first

searches local memory for the axon delay value and the

destination address, and then encodes this information into

a data packet. If the destination neuron and the source

neuron are in the same nucleus block, the local channel
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FIGURE 4

The unified functional core (Fcore) of the Tianjic chip consists of four main components: axons, dendrites, soma, and router.

in the router is used to transmit the data, otherwise, they

will use the channel in the other direction. To prevent the

limitation caused by the excessive number of nucleus blocks,

a combined decentralized structure is used at the four edges

of the network. When leaving the core block, the spike leaving

the network is marked with upward (east–west direction)

and column (north–south direction). When entering the core

block, the spikes sharing the link input are propagated to the

corresponding row or column using the marking information,

as shown in Figure 8. The global synchronization clock is

1 Khz, which ensures that the one-to-one hardware and

software corresponds exactly to the core block operating in

parallel (Hermeline, 2007).

Neurogrid

The Neurogrid chip (Benjamin et al., 2014) consists of

axonal, synaptic, dendritic, and cytosolic parts. Neurogrid

chips are available in four structures: fully dedicated (FD)

(Boahen et al., 1989; Sivilotti et al., 1990), shared axons

(SA) (Sivilotti, 1991; Mahowald, 1994; Boahen, 2000), shared

synapses (SS) (Hammerstrom, 1990; Yasunaga et al., 1990),

and shared dendrites (SD) (Merolla and Boahen, 2003; Choi

et al., 2005). The four elements that make up the chip, axon,

synapse, dendrite, and soma can be classified according to the

architecture and the implementation. As shown in Figure 9,

in the analog implementation, a switched current source, a
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FIGURE 5

Design of the Tianjic chip and its specific processing flow in ANN and SNN mode.

FIGURE 6

Arrangement format of Fcores on the Tianjic chip. (A) Reconfigurable routing tables of the routers of FCore have the ability of arbitrary

connection topologies. (B) The arrangement of Fcore on the chip.

comparator, a wire, and another wire mode are the four

elements, respectively (Mead, 1989). A vertical wire (axon)

instrumentation charge (synapse) is inserted into a horizontal

wire (dendrite), and the charge will be integrated by the

capacitance of dendrite. The generated voltage is compared

with the threshold by the comparator (cell) and the comparator

triggers an output peak if the voltage exceeds a threshold.

After that, the capacitor will be discharged (reset) and starts a

new cycle.

In the simplest all-digital implementation, the switching

current source is replaced by a bit unit. Functions of axonal and

dendritic as word and bit lines are integrated and compared,

respectively, digitally: In a loop, a binary 1 is read from

the synapse, triggered by the axon, the counter increments

(dendrite), and the counter’s (cell) output is compared with the

threshold digitally stored. During the threshold, the counter will

be reset and start a new cycle if a peak is triggered. The process

is shown in Figure 10.
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FIGURE 7

Neuromorphic synaptic apparatus spiking neural network core block.

Spikes of a neuron are sent from its array through a

transmitter, passed through a router to the parents and two

children of its neural core, and passed through a receiver to

the receivers. All these digital circuits are event driven and

their logic synthesizes vat only when a spike event occurs,

following Martin’s asynchronous circuit (Martin, 1989; Martin

and Nystrom, 2006). The chip has a transmitter and a receiver.

The receiver sends multiple peaks to one row and then, the

transmitter sends multiple peaks from the row. The address of

the common row and the unique column of these peaks will be

communicated sequentially. This design facilitates an increase in

throughput during communication.

BrainScaleS-2

The BrainScaleS team released two versions of the

BrainScaleS chip design in 2020, and here in this article, we

present the BrainScaleS-2 chip (Schemmel et al., 2003; Grübl

et al., 2020). The architecture of BrainScaleS-2 depends on a tight

interaction of analog circuit blocks and digital circuit blocks.

Due to the main intended function of the digital processor

core, it is referred to as the plasticity processing unit (PPU).

The analog core serves as the main neuromorphic component

and includes synaptic and neuronal circuits (Aamir et al., 2016,

2018), PPU interfaces, analog parameter memory, and all event-

related interface components.

There is a digital plasticity processor in the BSS-2ASIC

(Friedmann et al., 2016). This microprocessor, which is

specialized in highly parallel single instruction multiple data

(SIMD), has an additional layer of the capability of modeling.

Figure 11 shows the architecture.

The PPU is an embedded microprocessor core with the

SIMD units. The unit and simulation core are together

optimized for computing plasticity rules (Friedmann et al.,

2016). In the current architecture of BSS-2, the same simulation

core can be shared by two PPUs. This makes the neuronal

circuits to the most efficient arrangement in the center of

the simulation core. Figure 12 shows the individual functional

blocks in the ring core.
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FIGURE 8

The propagation of router data between core blocks.

Synaptic arrays

In order to make the vertical and horizontal lines that

through the subarrays as short as possible, synapses are divided

into four blocks of equal size. This reduces their parasitic

capacitance (Friedmann et al., 2016; Aamir et al., 2018). Each

synaptic array resembles a static memory block and each synapse

has 16 memory cells. Two PPUs are connected to the static

memory interface of the two adjacent synaptic arrays using a

fully parallel connection with 8 x 256 data lines.

Neuronal compartment circuits

Four rows of neuronal compartment circuits are placed at

the synaptic blocks’ edge. Each pair of dendritic input lines of

the neuronal compartment connects with 256 synapses. Neuron

chambers implement the AdEx neuron model.

Analog parameter memories

There is a row of simulation parameters storage between

each row of neurons. There are 24 simulated values and another

48 global parameters stored in these capacitive memories for

each neuron. These parameters can automatically refresh with

the reception of values from the storage block.

Digital neuron control

The digital neuron control block can be shared by two

rows of neurons, which synchronize neural events to a
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FIGURE 9

Analog silicon neurons implementation.

125-MHz digital system clock and serializes them to the digital

output bus.

Synaptic drives with short-term plasticity

Presynaptic events of the array are input by synaptic

drivers. They contain circuits that simulate the simplified

Tsodys–Markram model (Tsodyks and Markram,

1997; Schemmel et al., 2007) of short-term plasticity.

Synaptic drivers can handle single- or multi-valued

input signals.

Random event generator

The random generator is fed directly into the synaptic

array via the synaptic driver through the synaptic driver,

which greatly reduces the use of external bandwidth when

using the random model (Pfeil et al., 2015; Jordan et al.,

2019).

Correlation analog to digital converters (ADCs)

SIMD units of PPU arrange the location of the top and

bottom edges of the ring core. Analog data from the synaptic

array and given analog signals from the neurons are converted

into the digital representation required by the PPU by column-

parallel ADCs.

The Table 2 summarizes the above representative domestic

and international brain-like computing projects and chips or

hardware stations.

Brain-like computing application

Brain cognition principle

The main advantages of neuromorphic computing over

traditional methods are energy efficiency, speed of execution,

robustness to local failures, and learning ability. Currently,

neuroscientific knowledge of the human brain is only superficial

and the development of neuromorphic computing is not

guided by theory. Researchers hope to refine models and
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FIGURE 10

Schematic diagram of analog neuron with cycle counting structure.

theories by using brain-like computing for partial simulations

of brain function and structure (Casali et al., 2019; Rizza et al.,

2021).

In 2018, Rosanna Migliore et al. (2018) used a unified

data-driven modeling workflow to explore the physiological

variability of channel density in hippocampal CA1 pyramidal

cells and interneurons. In 2019, Alice Geminiani et al.

(2019) optimized extended generalized leaky integrals and

excitation (E-GLIF) neurons. In 2020, Paolo Migliore et al.

(2018) designed new recurrent spiking neural networks

(RSNNs) in the brain based on voltage-dependent learning

rules. Their model can generate theoretical predictions for

experimental validation.

Brain-like computing can help neuroscience understand the

human brain more deeply and parse its structure (Amunts

et al., 2016; Dobs et al., 2022). After understanding enough

about the operation mechanism of the human brain, we can act

directly on the human brain to improve thinking ability and

solve the currently untreatable brain diseases. What is more,

it can make the human intelligence level break through to

new heights.

Medical health

The application of brain-like computing in medical field

mainly relies on the development and application of brain–

computer interface (Mudgal et al., 2020; Huang D. et al.,

2022). It is reflected in the following four aspects: monitoring,

improvement, replacement, and enhancement.

Monitoringmeans that the brain–computer interface system

completes the real-time monitoring and measurement of the

human nervous system state (Mikołajewska and Mikołajewski,

2014; Shiotani et al., 2016; Olaronke et al., 2018; Sengupta

et al., 2020). It can help grade consciousness in patients in

a deep coma and measure the state of neural pathways in

patients with visual/auditory impairment. Improvement means

that we can provide recovery training for ADHD, stroke,

epilepsy, and other conditions (Cheng et al., 2020). After doctors

detect abnormal neuronal discharges through brain–computer

interface technology, they can apply the appropriate electrical

stimulation to the brain to suppress seizures. “replacement”

is primarily for patients who have lost some function due to

injury or disease. For example, people who have lost the ability
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FIGURE 11

BBS chip structure.

to speak or speech can express themselves through a brain–

computer interface (Ramakuri et al., 2019; Czech, 2021); groups

of people with severe motor disabilities can communicate what

they are thinking in their heads through a brain–computer

interface system. “enhancement” refers to the strengthening of

brain functions by implanting chips into the brain (Kotchetkov

et al., 2010). For example, it enhances memory and helps a

person to call mechanical devices directly.

Intelligence education

The education and development of children is an important

issue of social concern. But the research on children’s

development and psychological problems has been conducted

only through dialog and observation. Brain-like computing

research hopes to directly observe the corresponding brain

waves and decoding of brain activity.

In the “Brain Science and Brain-like Research” project

guidelines, the state mentions the use of brain-like technology

to study the mental health of children and adolescents,

including the interaction between emotional problems and

cognitive abilities and their brain mechanisms, the development

of screening tools and early warning systems for emotional

problems in children and adolescents by combining machine

learning (Dwyer et al., 2018; Yang J. et al., 2020; Du et al.,

2021; Paton and Tiffin, 2022) and other means, and encouraging

the integration of medicine and education. Eventually, we will

develop psychological intervention and regulation tools for

children and adolescents’ emotional problems, and establish

a platform for monitoring and intervening in children and

adolescents’ psychological crises based on multi-level systems,

such as schools and medical care.

Intelligent transportation

Nowadays, self-driving cars have many sensors, including

radar, infrared, camera, GPS, and so on, but the car still does

not have the ability to make the right decision like a human.

Humans only need to use vision and hearing among their senses

to ensure the safe driving of the vehicle. The human brain has

powerful synchronous and asynchronous processing capabilities

for reasonable scheduling, and human eye recognition is more

accurate than all current camera recognition.

Inspired by the way neurons in the biological retina

transmit information, Mahowald and Mead proposed in the

early 1990s an asynchronous signal transmission method called

AER (Tsodyks et al., 1998; Service, 2014). When a pixel in a pixel

array occurs an “event,” the position of this pixel is output with

the “event.” Based on this principle, the Dynamic Vision Sensor

(DVS) (Amunts et al., 2016) was developed at the University

of Zurich, Switzerland, to detect changes in the brightness of

pixels in an image. The low bandwidth of DVS gives it a natural
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FIGURE 12

Block diagram of the Analog Network Core (ANNCORE).

TABLE 2 Brain-like chip summarization and comparison.

Project &

organization

Manufacturing

process

Number of

neurons

Number of

synapses

Neuronal

models

Learning

algorithms

Advantages Defects

Darwin, Zhejiang

University

180 nm COMS 2,048 4,194,304 LIF \ Highly configurable Single chip, small scale

Tianjic, Tsinghua

University

28 nm COMS 40,000 100,000,000 LIF STDP Heterogeneous

fusion

\

TrueNorth 28 nm COMS 1,000,000 256,000,000 LIF \ Highly configurable Off-chip learning only

Neurogrid l80 nm COMS 1,048,576 hundreds of

millions

QIF \ High throughput No plasticity

BrainScaleS-2 65 nm COMS 196,608 50,331,648 AdEx IF STDP Mixed plasticity

rule

Does not demonstrate

the ability to handle

practical tasks
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advantage in the field of robot vision, and work has been done to

use it in autonomous walking vehicles and autonomous vehicles.

Dr. Shoushun Chen of Nanyang Technological University,

Singapore, developed an asynchronous sensing chip with a

temporal sensitivity of 25 nanoseconds (Schemmel et al., 2003,

2010; Scholze et al., 2012). The brain-like cochlea (Scholze et al.,

2012) is a brain-like auditory sensor based on a similar principle

that can be used for sound recognition and localization. The

results of all these studies will accelerate the implementation of

autonomous driving and ensure the safety of the autonomous

driving process.

Military applications

Brain-like chips have the technical potential for ultra-

low-power consumption, massively parallel computing, and

real-time information processing. It has unique advantages

in military application scenarios, especially in conditions

with strong constraints on performance, speed, and power

consumption. It can be used for ultra-low latency dynamic

visual recognition against military targets in the sky, and

the formation of a cognitive supercomputer to achieve

rapid processing of massive amounts of data (Czech,

2021). In addition, brain-like computing can be used for

intelligent gaming confrontation and decision-making in the

future battlefield.

The ultra-low-power consumption, ultra-low latency,

real-time high-speed dynamic visual recognition, tracking

technology, and sensor information processing technology

of the brain-like chip is a key technology at the strategic

level of national defense science and technology. Especially

the ultra-low latency real-time high-speed dynamic visual

recognition technology has an extremely important role in

the field of high-speed dynamic recognition. In 2014, the U.S.

Air Force signed a contract with IBM to make high-altitude

flying targets efficient and low powered through brain-like

computing. The U.S. Air Force Research Laboratory began

developing a brain-like supercomputer using IBM’s True

North brain-like chip in June 2017. In the following year,

the laboratory released the world’s largest neuromorphic

supercomputer, the Blue Jay. The computer can simultaneously

simulate 64 million biological neurons and 16 billion biological

synapses, and power consumption is only 40 watts, 100

times lower than traditional supercomputers. They plan

to demonstrate an airborne target recognition application

developed by the Blue Jay in 2019. By 2024, they will enable

real-time analysis of 10 times more big data than current global

Internet traffic. This turns the big data that constrain the next

generation of warplanes from a problem to a resource and

greatly shortens the development cycle of defense technology

and engineering.

Challenges

Novel observation and simultaneous
modulation techniques for brain activity
face challenges

Brain observation and regulation technology are an

important technical means to understand the input,

transmission, and output mechanism of brain information

and is also the core technical support to understand, simulate,

and enhance the brain. Although various in vivo means of

acquiring and modulating brain neural information by MRI,

optical/optical genetic imaging, and other technologies are

becoming more abundant and rapidly developed, the following

problems still exist in current research: single observation mode

and modulation means, partial observation information, lack

of knowledge of brain function, inability to synchronize brain

modulation, and observation.

The mathematical principles and
computational models of brain information
processing are not well developed

Neuroscientists have a clearer understanding of the single

neuron model, the principles of partial neural loop information

transfer, and the mechanisms of primary perceptual functions.

But the global information processing in the brain, especially the

understanding of higher cognitive functions, is still very sketchy

(Aimone, 2021). To build a computational model that can

explain the brain information processing process and perform

cognitive tasks, wemust understand themathematical principles

and brain information processing.

Immature hardware processes for brain-like
computing

The use of hardware to simulate brain-like computational

processes still faces an important challenge in terms of brain-

like architectures, devices, and chips. On the one hand, CMOS

and other traditional processes have encountered bottlenecks

in on-chip storage density and power consumption (Chauhan,

2019), while new nano-devices still have outstanding problems,

such as poor process stability and difficulty in scaling. Brain-

like materials and devices require new technologies to break

through current bottlenecks (Chen L. et al., 2021; Chen T. et al.,

2021; Wang et al., 2021; Zhang et al., 2021). On the other hand,

brain-like systems require tens of billions of neurons to work

together. However, the existing brain-like chip is difficult to

achieve large-scale interconnected integration of neurons and

efficient real-time transmission of neuronal pulse information

under the constraints of limited hardware resources and limited

energy consumption.
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The e�ciency of the existing human brain
thinking answers needs to be improved
urgently

Due to the complexity of the brain and the great difference

between brain and machine, it brings poor robustness of brain

signal acquisition, low efficiency of brain–machine interaction,

lack of brain intelligence intervention means, high requirement

of brain area intervention targets, and difficulty of fusion system

construction. Given the complementary nature of machine

intelligence and human intelligence, how to efficiently interpret

the information transmitted by the human brain, realize

the interconnection of biological intelligence and machine

intelligence, integrate their respective strengths, and create

intelligent forms with stronger performance are the main

challenges of brain-like research (Guo and Yang, 2022).

Prospects

Brain-like computing model

The study of brain-like computing models (Voutsas et al.,

2005) is an important foundation of brain-like computing,

which determines the upper limit of neuromorphic computing

from the bottom, mainly divided into neuron models, neural

network models, and their learning methods. We can look

forward to the development of brain-like computational

models in the following directions: studying the dynamic

coding mechanisms of biological neurons and neural networks,

establishing efficient spike coding theories and models with

biological rationality, multimodal coordination, and joint

representation at multiple spatial and temporal scales; studying

and exploring the coordination mechanisms of multisynaptic

plasticity, the mechanisms of cross-scale learning plasticity, and

the global plasticity mechanisms of biological neural networks;

establish efficient learning theories and algorithms for deep

SNNs to realize intelligent learning, reasoning, and decision-

making under multi-cognitive collaborative tasks of brain-

like; to study mathematical descriptions of different levels of

brain organization and continuous learning strategies under

multi-temporal neural computational scales to realize rapid

association, transfer, and storage of multimodal information.

Neuromorphic devices

The current development of artificial neuromorphic devices

mainly includes two technical routes. One is based on the

traditional mature CMOS technology of SRAM or DRAM

build (Asghar et al., 2021), and the prototype device is volatile

in terms of information storage; the other is built based on

non-volatile Flexible FLASH devices or new memory devices

and new materials (Feng et al., 2021; He et al., 2021). Non-

volatile neuromorphic devices are memristors with artificial

neuromorphic characteristics and unique nonlinear properties

that have become new basic information processing units that

mimic biological neurons and synapses (Yang et al., 2013;

Prezioso et al., 2015). In future inquiries, we need to clarify

some basic questions: in neural operations, which level is needed

to simulate the neural properties of organisms, and which

functions are primary in neuromorphic operations. These issues

are critical to the implementation of neural computing.

Neuromorphic computing chips

Artificial neural network chips have made progress in

practical applications, whereas pulsed neural network chips are

still in the exploratory application stage. Future research on

neuromorphic chips can try to study neuromorphic computing

chips from several different directions, such as architecture,

operation method, and peripheral circuit technology of

neuromorphic component arrays suitable for convolutional and

matrix operations, hardware description, mapping scheme of

neural network algorithm to new neuromorphic component

arrays, compensation algorithm and circuit compensation

method for various non-ideal factors of new neuromorphic

components, and data routing method between arrays.

Neuromorphic computing supporting
system

However, the results are not satisfactory in practical

applications. For example, the efficiency of online learning

is much lower than the speed of neural computing, and

the efficiency and accuracy of SNN learning are not as

good as traditional ANN. We can study the high-efficiency

deployment of neural network learning training algorithms,

the compensation method of learning performance loss

during the process of computing efficiency improvement,
and carry out flow verification of prototype prototypes;

we can build a large-scale brain-like computing chip
simulation platform with online learning functions and
demonstrate a variety of online brain-like chip-based

learning applications. Develop the potential of neuromorphic
computing in terms of platforms, systems, applications,

and algorithms.

At present, brain-like computing technology is still a

certain distance away from being formally put into industrial

production (Zou et al., 2021), but it will certainly be one of

the important points of contention between various countries

and enterprises in the next 10 years. So, this is an opportunity

for all researchers, and whether it can be truly applied in

production life depends on the researchers’ key research results

in certain aspects. We hope that we researchers will achieve a

technological breakthrough to bring brain-like to life as soon

as possible.
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