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Anomaly detection is a classical problem in computer vision, namely the determination of the normal from the abnormal when datasets are highly biased toward one class (normal) due to the insufficient sample size of the other class (abnormal). We introduce a novel model that utilizes two decoders to share two encoders, respectively, forming two sets of network structures of encoder-decoder-encoder called EDE, which are used to map image distributions to predefined latent distributions and vice versa. In addition, we propose an innovative two-stage training mode. The first stage is roughly the same as the traditional autoencoder (AE) training, using the reconstruction loss of images and latent vectors for training. The second stage uses the idea of generative confrontation to send one of the two groups of reconstructed vectors into another EDE structure to generate fake images and latent vectors. This EDE structure needs to achieve two goals to distinguish the source of the data: the first is to maximize the difference between the fake image and the real image; the second is to maximize the difference between the fake latent vector and the reconstructed vector. Another EDE structure has the opposite goal. This network structure combined with special training methods not only well avoids the shortcomings of generative adversarial networks (GANs) and AEs, but also achieves state-of-the-art performance evaluated on several publicly available image datasets.
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1. Introduction

Anomaly detection is an important data mining method, which plays a very important role and significance in understanding data mining data. As early as Hawkins (1980) gave an accurate definition of outliers, that is: “Outlier data is so obviously different from most observed data that it is suspected that it is sample data generated by different mechanisms.” Various application scenarios such as health detection systems, intrusion detection systems, bank risk assessment systems, and industrial fault monitoring systems will generate a large amount of high-dimensional complex data. Different from ordinary data mining, abnormal points or abnormal objects often carry more important and valuable information. For example, intrusion detection behavior in network security (Kwon et al., 2019), cash-out fraud in electronic digital payment systems (Abdallah et al., 2016), disease identification in medical field (Schlegl et al., 2019), and dangerous behavior detection in surveillance systems (Kiran et al., 2018). In the practical application of these systems, the occurrence of abnormal data means that there may be unfavorable situations, and it is necessary to conduct reasonable analysis and research on abnormal data in time to prevent and solve problems.

Over the past few years, many approaches have been developed in the field of anomaly detection. The most commonly used techniques include proximity-based and cluster-based techniques. The proximity measure of two data objects refers to a function of the proximity between the corresponding attributes of the two data objects. Distance is the most widely used and earliest proximity measure, so there are anomaly detection methods that define anomalies by the distance of the nearest neighbors. In addition to distance, another classic proximity measure is density, which was proposed by Breunig et al. (2000) to measure the degree of anomaly with the local outlier factor (LOF) for anomaly detection. Kernel density estimation (KDE) (Rosenblatt, 1958) is a common non-parametric method for detecting outliers. Latecki et al. (2007) proposed an outlier detection method using a kernel function. The outlier detection process is performed by comparing the local density of each point with the local density of its neighbors. In addition, most traditional anomaly detection techniques belong to the category of unsupervised learning, which mainly considers the distribution characteristics of the data. This is very similar to the working principle of the clustering algorithm, so the improved clustering algorithm can also be used as a means of anomaly detection. The main idea is to identify anomalies by comparing the differences between objects and clusters. Many related scholars have researched many classical clustering-based anomaly detection methods, such as DBSCAN (Ester et al., 1996), CLARANS (Ng and Han, 1994), CHAMELEON (George et al., 1999), BIRCH (Zhang et al., 1996), STING (Wang et al., 1997), WaveCluster (Sheikholeslami et al., 1998), CLIQUE (Agrawal et al., 1998), and FindCBOLF (He et al., 2003).

Due to the curse of dimensionality, many traditional anomaly detection methods are weak in modeling complex high-dimensional distributions. With the rapid development of deep learning, many scholars have developed methods to combine it with anomaly detection. The core idea of the one-class model coincides with the purpose of anomaly detection, that is, in the training phase, the model only learns the distribution characteristics of normal data. After the training is completed, the model identifies all data that does not belong to the normal class as abnormal data. Classic examples are one class SVM (Schölkopf et al., 1999) and support vector data description (SVDD) (Tax and Duin, 2004). With the development of subsequent research, deep anomaly detection models represented by autoencoder (AE) (Zhou and Paffenroth, 2017) and generative adversarial networks (GANs) have become mainstream methods (Kwon et al., 2019), but they all have their own limitations. AE-based anomaly detection models only focus on image reconstruction and cannot identify small anomalies, resulting in poor anomaly detection results. GAN-based anomaly detection models are generally difficult to train and difficult to converge.

In this paper, we propose a new method named anomaly detection with shared AEs based on the AE architecture (Zhou and Paffenroth, 2017), whose learning is inspired by GANs. Our core idea is to perform adversarial training on the proposed EDE structure, so that it learns to amplify the reconstruction error of abnormal data, and takes into account the reconstruction error of the latent vector. Compared with the method there, the performance is improved and stability is obtained. The main contributions of this paper are as follows:


•We propose an encoding-decoding-re-encoding network structure based on a shared AE, which takes into account both the reconstruction loss of the image and the reconstruction loss of the latent vector. This enables the model to find more anomalies.

•We also propose a two-stage training method that avoids the shortcomings of AEs and GANs. The second stage of adversarial training makes the training difficulty of the model lower, and it has better anomaly detection performance.





2. Related work

We emphatically introduce various anomaly detection methods based on two deep models.


2.1. Autoencoders approaches

Deep AEs play an important role in anomaly detection methods (Zhou and Paffenroth, 2017). Classic examples are AE, variational AE (VAE) (Kingma and Welling, 2013), and deep convolutional AE (DCAE) (Masci et al., 2011). Since these models only use normal samples for training, the reconstruction error of abnormal samples is much larger than that of normal samples, so as to achieve the purpose of abnormal detection. The abnormal samples can be detected by setting the reconstruction error as the abnormal score. In addition, there have been many recent advances in the research of anomaly detection combined with AEs. Fan et al. (2020) proposed a novel hybrid unsupervised method, which first integrated a convolutional AE and Gaussian process regression to extract features and remove anomalies from noisy data. Puzzle-AE (Salehi et al., 2020) combines the idea of Puzzle-solving with the AE so that the AE will learn more meaningful features during training to avoid overfitting. Shvetsova et al. (2021) proposed a new and powerful method for image anomaly detection. It relies on classical AE methods and a re-designed training pipeline to handle complex images, as well as robust methods for computing image anomaly scores.



2.2. GAN-based anomaly detection

Generative adversarial networks (GANs) (Goodfellow et al., 2014) is a deep learning model that produces fairly good outputs through the mutual game learning of two modules including the generative model and discriminative model in the framework. The combination of GAN and anomaly detection was first proposed by Schlegl et al. (2017). They train the GAN using normal images and then use the test set for validation after training. After inputting the test image into the GAN, by comparing the difference between the test image and the reconstructed image, it can be judged whether the image is normal or abnormal, and the abnormal area can also be judged. Akcay et al. (2019) proposed a network structure called GANomaly (Rosenblatt, 1958) to improve the above research. For abnormal data, the latent space vector obtained by the GANomaly structure is quite different from the latent space vector obtained after the first encoding, so that abnormal samples can be detected. One-class novelty detection using gans with constrained latent representations (OCGAN) (Perera et al., 2019) uses a denoising AE model to reconstruct the latent space vector and has better results after limiting the latent space vector. Perceptual image anomaly detection (PIAD) (Tuluptceva et al., 2019) proposes a new proximity metric that represents the perceptual proximity between images and is robust. In addition, this paper introduces a new method of choosing weights to make hyperparameter tuning more convenient. In AnoNAGN (Chen et al., 2020), a novel decoder-encoder framework is proposed to achieve a higher stability and lower training loss by employing a non-adversarial generative network.




3. Proposed method


3.1. Problem definition

We aim to train an unsupervised anomaly detection network that is trained using only normal samples while being able to distinguish between normal and abnormal samples when testing the network. The formal definition of this problem is as follows:

We give a large training dataset 𝒟 that only contains M normal images, 𝒟 = {x1, x2, …, xM}, and a small testing dataset [image: image] containing M* both normal and abnormal images, [image: image], where yi ∈ [0, 1] denotes the image of label. In specific training, the size of the training dataset needs to be much larger than the testing dataset such that M ≫ M*.

Given a dataset, we first need to model 𝒟 to learn its manifold, and then identify abnormal samples in [image: image] as outliers during the inference phase. The model f learns the normal data distribution and minimizes the output anomaly score 𝒜(x). For any test image [image: image], if its abnormal score is too high, it may be judged as abnormal. The specific judgment criterion is based on the threshold ϕ of the abnormal score. If 𝒜(x) > ϕ, the image is judged as an abnormal image.



3.2. Network architecture

The GANomaly model (Rosenblatt, 1958) consists of four network structures, which are two encoders, one decoder and one discriminator, as shown in Figure 1. The model takes into account the differences between latent vectors and performs well in image anomaly detection, which makes many researchers improve on this model (Perera et al., 2019; Tuluptceva et al., 2019; Chen et al., 2020; Salehi et al., 2020; Shvetsova et al., 2021). The most important framework of the model is two encoders and one decoder, which are used to perform mutual transformation between the image and the latent vector, so as to identify abnormal data whose differences are amplified during the transformation process. The discriminator is used to distinguish the real image from the generated image.


[image: image]

FIGURE 1
GANomaly architecture illustrating the information flow.


In fact, the most important process in the GANomaly model is encoding, decoding, and re-encoding. Inspired by this, we propose an EDE structure, which only contains two encoders and one decoder. However, a single EDE structure needs to repeatedly adjust the relevant parameters to achieve better results, and it is difficult to meet the current needs of image anomaly detection. So we add an additional decoder to the EDE structure, and let the two decoders share the two encoders at the same time, and finally form the model of two EDE network structures, as shown in Figure 2.


[image: image]

FIGURE 2
Proposed architecture illustrating the information flow.


Two of the encoders use a similar structure, with four layers of convolutional layers. And the activation function uses LeakyReLU except for the Tanh used in the last layer. Some of the convolutional layers are followed by a batch normalization operation. The two decoders are similar in structure to the encoder except that each layer is replaced by ConvTranspose and an additional batch normalization, as shown in Figure 3.


[image: image]

FIGURE 3
The specific structure of the encoder (A) and decoder (B).




3.3. Two-phase training

We propose a novel two-stage training method to achieve good performance with the network structure. In the first stage, we train two EDE structures to reconstruct images and latent vectors. In the second stage, we train these two EDE structures in an adversarial manner, where the purpose of EDE2 is to try to fool EDE1, and the purpose of EDE1 is to distinguish whether the data is real data or reconstructed data from EDE2.


3.3.1. Phase 1: Reconstruction training

In the first stage, we need to train the EDE structure to reconstruct the input image and latent vector. First, the input image x is encoded by the encoder E1 and compressed into a latent vector z. The latent vector z is sent to the two decoders D1 and D2, respectively for decoding, and two reconstructed images x1 and x2 are obtained. Finally, we send the obtained two reconstructed images x1 and x2 to the encoder E2 for re-encoding, and get two reconstructed latent vectors z1 and z2. The training objectives of this stage are:

[image: image]

[image: image]

Where α, β are the weighting parameters adjusting the impact of individual losses to the overall objective function.



3.3.2. Phase 2: Adversarial training

In the second stage, we exploit the adversarial idea to train two EDE structures. The training goal of EDE1 is to distinguish between real data and data from EDE2. EDE2 is just the opposite and needs to deceive EDE1 as much as possible. First, the z2 obtained in the first stage is sent to the decoder D1 for decoding, and a new reconstructed image [image: image] is obtained. Similarly, we send [image: image] to the encoder E2 again to encode, and get a new latent vector [image: image]. The training objectives of this stage are:

[image: image]

The respective loss functions of the two EDE structures are:

[image: image]

[image: image]

The parameters α and β are the same as those expressed above.



3.3.3. Loss function

In our proposed structure, each EDE serves a dual purpose. EDE1 needs to minimize the reconstruction loss of x and z in phase 1. Meanwhile, EDE1 also needs to maximize the difference between x and [image: image], and the difference between latent vectors z and [image: image] in phase 2. The purpose of EDE2 in phase 1 is the same as that of EDE1, both to minimize the reconstruction error of x and z. But in phase 2, it is exactly the opposite of EDE1, which needs to minimize the difference between x and [image: image], and the difference between z and [image: image]. The dual training objective for each EDE is a combination of the above loss functions, where the proportion of each part evolves over time:

[image: image]

[image: image]

Where n denotes a training epoch. The two-phase training process is summarized in Algorithm 1.








	

	
Input:  Normal images Dataset

𝒟 = {x1, x2, …, xM}, Number epochs

N, Weighting parameters α, β

Output: Trained EDE1, EDE2

E1, E2, D1, D2 ← initialize

weights

n ← 1

repeat

for m = 1 to M do

zm ← E1(xm)

[image: image] ← D1(zm)

[image: image] ← D2(zm)

[image: image] ← [image: image]

[image: image] ← [image: image]

[image: image] ← [image: image]

[image: image] ← [image: image]

[image: image]


[image: image]


E1, E2, D1, D2 ← update weights

                 using ℒEDE1 and

                 ℒEDE2

end for

n ← n + 1

until n = N







Algorithm 1. Model training algorithm.



3.3.4. Anomaly score

During the detection phase, our model uses the following anomaly scores:

[image: image]

Where ω1 + ω2 = 1 are weight parameters, which can adjust the ratio of true positives to false positives, thereby adjusting the sensitivity. In practical applications, we can adjust these two parameters to obtain anomaly detection results with different sensitivities in one experiment. The Algorithm 2 shows the testing process of the model.








	

	
Input: Testing Dataset

[image: image],

 Threshold ϕ, Weighting

 parameters ω1, ω2

Output: Prediction label of testing

 dataset 𝒟pre = {y1pre, y2pre, …, yM*pre}

 for i = 1 to M* do

 zi ← E1(xi)

 x2i ← D2(zi)

 z2i ← E2(x2i)

[image: image] ← D1(z2i)

[image: image] ← [image: image]

[image: image]

 if [image: image] then

yipre ← 1

 else

yipre ← 0

 end if

 end for







Algorithm 2. Model testing algorithm.





4. Experiments


4.1. Datasets

In this section, we briefly introduce each dataset used for evaluation. In Figure 4, some representative examples from the considered dataset are shown.


[image: image]

FIGURE 4
Representative images from four datasets. Each column presents the same class.



4.1.1. COIL-100

The COIL-100 dataset is a dataset composed of different objects imaged at different angles in a 360° rotation. It contains 128 × 128 color images of 100 objects (each with 72 poses), and 49,152 features (red, green, and 128 × 128 pixel value in the blue channel).



4.1.2. MNIST

The MNIST dataset is very classic in the field of machine learning. It consists of 60,000 training samples and 10,000 test samples, each of which is a 28 × 28 pixel grayscale handwritten digit picture. The complexity of the MNIST dataset is more challenging than COIL-100.



4.1.3. fMNIST

fMNIST is an image dataset that replaces the MNIST handwritten digits set. It is the same size and format as the original MNIST, with 70,000 grayscale images of fashion products, and the image size is 28 × 28.



4.1.4. CIFAR-10

It is a set of color image data and is a commonly used public benchmark dataset in the fields of machine learning and computer vision. It contains 10 different categories of images, each category contains 6,000 32 × 32 × 3 color images with a total of 784 pixels. Among the many datasets for anomaly detection, CIFAR-10 is the most challenging dataset due to its content diversity and complexity.



4.1.5. CIFAR-100

This dataset is similar to CIFAR-10 and consists of 60,000 32 × 32 × 3 color images. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. There are 600 images per class. Each image comes with a “fine” label (the class to which it belongs) and a “coarse” label (the superclass to which it belongs). There are 500 training images and 100 testing images per class.




4.2. Experimental setup and evaluation methodology

To test the proposed method, we use a well-accepted anomaly detection method (Schlegl et al., 2017; Perera et al., 2019; Tuluptceva et al., 2019; Chen et al., 2020): we use a one-vs.-all protocol to treat a certain class in a multi-class dataset as a normal class, then treat all other classes as anomalous classes, and finally traverse all the classes in a loop. In the training process, we only use the normal class data to train the model. In the testing process, we mix the normal class data with the abnormal class data as the test set. At the same time, we also noticed that there are two methods of dividing the training set and the test set in the literature.


(1)Use 80% of the normal class data for training and the remaining 20% of the normal class data for testing. The abnormal class test data are randomly selected, and their number is the same as the 20% normal class data.

(2)Experiment using the training and test sets given by the dataset. The training split of the normal class is used for training and validation. Test data for all classes is used for testing.



In our experiments, we adopted two partitioning methods for different datasets according to the methods of mainstream literature.



4.3. Experimental results

We first picked several classical methods as standards, such as VAE (Kingma and Welling, 2013) and one class-support vector machine (OC-SVM) (Schölkopf et al., 1999). Meanwhile, a variety of state-of-the-art method about anomaly detection are selected for comparison with our proposed method, including AnoGAN (Schlegl et al., 2017), pixel CNN (Van den Oord et al., 2016), Deep-SVDD (Ruff et al., 2018), OCGAN (Perera et al., 2019), PIAD (Tuluptceva et al., 2019), robust deep auto-encoding gaussian process regression for unsupervised anomaly detection (DAGPR) (Fan et al., 2020), generative probabilistic novelty detection with adversarial autoencoders (GPND) (Pidhorskyi et al., 2018), Puzzle-AE (Salehi et al., 2020), AnoNAGN (Chen et al., 2020), and anomaly detection in medical imaging with deep perceptual autoencoders (ADDPA) (Shvetsova et al., 2021).

We use the first method of splitting the training and testing sets in section “4.2 Experimental setup and evaluation methodology” to conduct experiments on the MNIST, f-MNIST, and COIL-100 datasets (Perera et al., 2019; Tuluptceva et al., 2019; Chen et al., 2020). For the COIL-100 dataset, we randomly select one class as the normal class and the other classes as the abnormal class for anomaly detection, and then repeat this process 30 times (Pidhorskyi et al., 2018). For the f-MNIST and MNIST dataset, we loop each class as a normal class for anomaly detection. Table 1 shows the comparison results of our method with other methods. Our method outperforms the state-of-the-art methods by 0.7 and 0.2% on the MNIST and f-MNIST datasets, and achieves an area under curve (AUC) of 1 on the COIL-100 dataset.


TABLE 1    Average receiver operating characteristic curve (ROC) area under curve (AUC) for anomaly detection on fMNIST and COIL-100.

[image: Table 1]

For the MNIST and CIFAR-10 datasets, we use the second method in section “4.2 Experimental setup and evaluation methodology” to split the training set and the dataset. We conduct three experiments for each class of the dataset and select the average AUC values shown in Tables 2, 3.


TABLE 2    Anomaly detection results for MNIST dataset.

[image: Table 2]

 
TABLE 3    Anomaly detection results for CIFAR-10 dataset.

[image: Table 3]

Since the pictures in the MNIST dataset are single-channel grayscale images and the data dimension is not high, most models can achieve good results. But our model leads in 8 out of 10 categories and achieves a performance lead of 0.8% on average AUC.

For the CIFAR-10 dataset, the diversity and complexity of images is greatly improved, which makes most models perform poorly. However, our method still achieves a performance advantage compared with the most novel methods, which is largely due to the model taking into account the reconstruction loss of the latent space vectors. Among them, when some categories (such as cat, deer, and frog) are used as normal categories, the performance improvement of our model is obvious. The average AUC value also achieved a 2.8% lead. Figure 5 shows the ROC curves of the model when detecting two types of anomalies.


[image: image]

FIGURE 5
The ROC curve of the model in the plane and deer categories in CIFAR-10.


In addition, in order to prove the effectiveness of the proposed model for anomaly detection tasks in complex images, we also conducted experimental verification on CIFAR-100. We randomly select 10 of the 20 superclasses in CIFAR-100, and randomly select one subclass from these 10 superclasses as normal class, and the other four subclasses as abnormal class for experiment. Since the subclasses within a superclass all have varying degrees of similarity, this is a great challenge for most anomaly detection models. Table 4 shows the AUC values and the average AUC values of various models tested in the CIFAR-100 dataset. The performance of most models in this data set has declined, but our model is more robust and still takes the lead in five categories, including difficult categories (such as clock and bee), and the average AUC value achieved a 3.4% lead.


TABLE 4    Anomaly detection results for CIFAR-100 dataset.

[image: Table 4]

To investigate the effectiveness of each additional component of the proposed work, we performed an ablation study using the MNIST dataset. Specifically, we consider four cases. In the first case, we only consider AEs. In the second case, we use a set of EDE structures without adversarial training. In the third case, we use two sets of EDE structures without adversarial training. In the last scenario, we use the proposed full model. The average AUCs for each class of MNIST datasets are listed in Table 5.


TABLE 5    Ablation study for proposed model performed on MNIST.

[image: Table 5]




5. Conclusion

We introduce a deep anomaly detection method by building a model with two EDE structures and using a two-stage training method. For the former, the emergence of the EDE model makes the training goal not only focus on the reconstruction of the image, but also reduce the loss of the latent vector. The two-stage method uses the idea of adversarial training to avoid the shortcomings of AEs and GANs.

We demonstrate our method outperforms other state-of-the-art deep learning methods on multiple image datasets above. For future work, we can generalize the model to high-resolution images and more general domains such as medical imaging or security imaging. We also want to explore the applicability of the model to anomaly detection in videos. In addition, other generative tasks are also optional research directions, such as image reconstruction.



Data availability statement

The original contributions presented in this study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.



Author contributions

HJ: conceptualization, methodology, software, and writing—original draft preparation. WL: writing—review and editing and supervision. Both authors contributed to the article and approved the submitted version.



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



References

Abdallah, A., Maarof, M. A., and Zainal, A. (2016). Fraud detection system: A survey. J. Netw. Comput. Appl. 68, 90–113. doi: 10.1016/j.jnca.2016.04.007

Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. (1998). “Automatic subspace clustering of high dimensional data for data mining applications,” in Proceedings of the 1998 ACM SIGMOD international conference on management of data (Seattle, WA: ACM), 94–105. doi: 10.1145/276304.276314

Akcay, S., Atapour-Abarghouei, A., Breckon, T. P. (2019). “Ganomaly: Semi-supervised anomaly detection via adversarial training,” in Computer vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, Vol. 11363, eds C. Jawahar, H. Li, G. Mori, and K. Schindler (Cham: Springer). doi: 10.1007/978-3-030-20893-6_39

Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J. (2000). “LOF: Identifying density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD international conference on Management of data, Dallas, TX, 93–104. doi: 10.1145/342009.335388

Chen, C., Yuan, W., Xie, Y., Qu, Y., Tao, Y., Song, H., et al. (2020). Novelty detection via non-adversarial generative network. arXiv [Preprint]. arXiv:2002.00522

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). “A density-based algorithm for discovering clusters in large spatial databases with noise,” in Proceedings of the international conference on knowledge discovery & data mining (New York, NY: ACM Press), 226–231.

Fan, J., Zhang, Q., Zhu, J., Zhang, M., Yang, Z., and Cao, H. (2020). Robust deep auto-encoding Gaussian process regression for unsupervised anomaly detection. Neurocomputing 376, 180–190. doi: 10.1016/j.neucom.2019.09.078

George, K., Han, E. H., and Kumar, V. (1999). CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. IEEE Comput. 27, 68–75. doi: 10.1109/2.781637

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). “Generative adversarial nets,” in Proceedings of the 27th international conference on neural information processing systems, Montreal, QC.

Hawkins, D. M. (1980). Identification of outliers. London: Chapman and Hall. doi: 10.1007/978-94-015-3994-4

He, Z., Xu, X., and Deng, S. (2003). Discovering cluster-based local outliers. Pattern Recognit. Lett. 24, 1641–1650. doi: 10.1016/S0167-8655(03)00003-5

Kingma, D. P., and Welling, M. (2013). Auto-encoding variational bayes. arXiv [Preprint]. arXiv:1312.6114

Kiran, B. R., Thomas, D. M., and Parakkal, R. (2018). An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. J. Imaging 4:36. doi: 10.3390/jimaging4020036

Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I., and Kim, K. J. (2019). A survey of deep learning-based network anomaly detection. Cluster Comput. 22, 949–961. doi: 10.1007/s10586-017-1117-8

Latecki, L. J., Lazarevic, A., and Pokrajac, D. (2007). “Outlier detection with kernel density functions,” in Proceedings of the international workshop on machine learning and data mining in pattern recognition (Berlin: Springer), 61–75. doi: 10.1007/978-3-540-73499-4_6

Masci, J., Meier, U., Cireşan, D., and Schmidhuber, J. (2011). “Stacked convolutional auto-encoders for hierarchical feature extraction,” in International conference on artificial neural networks, eds T. Honkela, W. Duch, M. Girolami, and S. Kaski (Berlin: Springer), 52–59. doi: 10.1007/978-3-642-21735-7_7

Ng, R. T., and Han, J. (1994). “Efficient and effective clustering methods for spatial data mining,” in Proceedings of the 20th VLDB conference (San Francisco, CA: Morgan Kaufmann Publishers Inc), 144–155.

Perera, P., Nallapati, R., and Xiang, B. (2019). “Ocgan: One-class novelty detection using gans with constrained latent representations,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (Long Beach, CA), 2898–2906. doi: 10.1109/CVPR.2019.00301

Pidhorskyi, S., Almohsen, R., and Doretto, G. (2018). “Generative probabilistic novelty detection with adversarial autoencoders,” in Proceedings of the advances in neural information processing systems 31 (Montreal, QC).

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408. doi: 10.1037/h0042519

Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S. A., Binder, A., et al. (2018). “Deep one-class classification,” in Proceedings of the 35th international conference on machine learning, PMLR (Stockholm), 4393–4402.

Salehi, M., Eftekhar, A., Sadjadi, N., Rohban, M. H., and Rabiee, H. R. (2020). Puzzle-AE: Novelty detection in images through solving puzzles. arXiv [Preprint]. arXiv:2008.12959

Schlegl, T., Seeböck, P., Waldstein, S. M., Langs, G., and Schmidt-Erfurth, U. (2019). f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44. doi: 10.1016/j.media.2019.01.010

Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U., and Langs, G. (2017). “Unsupervised anomaly detection with generative adversarial networks to guide marker discovery,” in Proceedings of the international conference on information processing in medical imaging (Cham: Springer), 146–157. doi: 10.1007/978-3-319-59050-9_12

Schölkopf, B., Williamson, R. C., Smola, A. J., Shawe-Taylor, J., and Platt, J. (1999). “Support vector method for novelty detection,” in Proceedings of the 12th international conference on neural information processing systems, Denver, CO, 582–588.

Sheikholeslami, S., Chatterjee, S., and Zhang, A. (1998). “WaveCluster: A multiresolution clustering approach for very large spatial databases,” in Proceedings of the 24th VLDB conference, Vol. 1. (San Francisco, CA: Morgan Kaufmannb Publishers Inc), 428–439.

Shvetsova, N., Bakker, B., Fedulova, I., Schulz, H., and Dylov, D. V. (2021). Anomaly detection in medical imaging with deep perceptual autoencoders. IEEE Access 9, 118571–118583. doi: 10.1109/ACCESS.2021.3107163

Tax, D. M. J., and Duin, R. P. W. (2004). Support vector data description. Mach. Learn. 54, 45–66. doi: 10.1023/B:MACH.0000008084.60811.49

Tuluptceva, N., Bakker, B., Fedulova, I., and Konushin, A. (2019). Perceptual image anomaly detection. arXiv [Preprint]. arXiv:1909.05904 doi: 10.1007/978-3-030-41404-7_12

Van den Oord, A., Kalchbrenner, N., Espeholt, L., Kavukcuoglu, K., Vinyals, O., and Graves, A. (2016). “Conditional image generation with PixelCNN decoders,” in Proceedings of the advances in neural information processing systems 29 (Barcelona).

Wang, W., Yang, J., and Muntz, R. (1997). “STING: A statistical information grid approach to spatial data mining,” in Proceedings of the 23rd very large database conference, Vol. 97. (San Francisco, CA: Morgan Kaufmann Publishers Inc.), 186–195.

Zhang, T., Ramakrishnan, R., and Livny, M. (1996). “BIRCH: An efficient data clustering method for very large databases,” in Proceedings of the ACM SIGMOD record, Vol. 25. (New York, NY: ACM Press), 103–114. doi: 10.1145/235968.233324

Zhou, C., and Paffenroth, R. C. (2017). “Anomaly detection with robust deep autoencoders,” in Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, Halifax, NS, 665–674. doi: 10.1145/3097983.3098052



OPS/images/fnbot-16-1046867-i021.jpg
Leor, < .(ﬂIIX- ‘r-||1+ﬂ|| = mll,)
(frm =23+






OPS/images/fnbot-16-1046867-i020.jpg
Ex(x,)





OPS/images/fnbot-16-1046867-g004.jpg
o
—
- -
T
O






OPS/images/fnbot-16-1046867-i029.jpg





OPS/images/fnbot-16-1046867-g005.jpg
True Positive Rate

ROC-AUC

1.0+

0.8 A

0.6 -

0.4 -

vz

0.0 A

— AUC = 0.939706

True Positive Rate

0.4

False Positive Rate

0.6

T

0.8

Ll

1.0

ROC-AUC

1.0 -

0.8 A

0.6 -

0.4 -

0.2

0.0 -

— AUC = 0.924600

0.4

False Positive Rate

0.6

0.8

T

1.0





OPS/images/fnbot-16-1046867-i028.jpg
2





OPS/images/fnbot-16-1046867-g002.jpg
-
\

—>7 1
Phase 1

Z1

Phase 2

2
(4

v
1

Phase 2

Encoder 2

A

Decoder 2

.
>

EDE2

Decoder 1

Encoder 1






OPS/images/fnbot-16-1046867-i027.jpg
D= ((hun), Gayr) -

(Rypeomza:, yppoon: )}






OPS/images/fnbot-16-1046867-g003.jpg
Input

—><Conv1 )——><Lea kyRe LU>—>(C0 nvZ)

(Conv?;}

[

Batch

Normalization

<@eakyReLU <

r
Batch

\

(

eakyReLQ/

\

Normalization

Input

T

"

Conv

(Convﬁf) > Tanh

Batch

' Normalization <LeakyReLU>

ranspose1j

Cconv
Transpose3

L

I

eakyReLq>*———

Batch

Conv
Normalization Tra nsposeZ

Y

Batch

Normalization

L

Be

eakyRelLU

Conv
Transpose

;}____, Tanh






OPS/images/fnbot-16-1046867-g001.jpg
~e—— i == —

Encoder 1 Dncoder 1 Encoder 2

- . .... — real / fake

Discriminator






OPS/images/fnbot-16-1046867-i024.jpg
Levey < 5 (@lbm = Zully + £ |lzm = 2l
(@t — 23/ ll+
1,)






OPS/images/cover.jpg
& frontiers | Frontiers in Neurorobotics

Anomaly detection in images
with shared autoencoders












OPS/images/logo.jpg
’frontiers ‘ Frontiers in Neurorobotics







OPS/images/fnbot-16-1046867-i012.jpg





OPS/images/fnbot-16-1046867-i011.jpg





OPS/images/fnbot-16-1046867-i010.jpg





OPS/images/fnbot-16-1046867-i019.jpg





OPS/images/fnbot-16-1046867-i018.jpg
Di(22)





OPS/images/fnbot-16-1046867-i017.jpg
£





OPS/images/fnbot-16-1046867-t005.jpg
AE 0.957
One EDE 0.961
Two EDE without adversarial 0.974
training

Two EDE + Adversarial training 0.989






OPS/images/fnbot-16-1046867-i016.jpg
Es(x})





OPS/images/fnbot-16-1046867-i015.jpg





OPS/images/fnbot-16-1046867-i014.jpg
Es(xh,)





OPS/images/fnbot-16-1046867-i013.jpg





OPS/images/fnbot-16-1046867-t001.jpg
Model MNIST fMNIST COIL-100
GPND 0.932 0.933 0.979
OCGAN 0.977 0.924 0.995
PIAD 0.979 0.949 1.000
AnoNAGN 0.985 0.995 1.000
Proposed 0.992 0.997 1.000
method

Bold values indicate that this value is the highest.





OPS/images/fnbot-16-1046867-t002.jpg
VAE 0.997 0.999 0.936 0.959
OCSVM 0.988 0.999 0.902 0.950
AnoGAN 0.966 0.992 0.850 0.887
Pixel CNN 0.531 0.995 0.476 0.517
Deep-SVDD 0.980 0.997 0.917 0.919
OCGAN 0.998 0.999 0.948 0.963
PIAD 0.996 0.999 0.985 0.981
DAGPR 0.993 0.993 0.979 0.959
Puzzle-AE 0.996 0.999 0.971 0.970
AnoNAGN 0.998 0.999 0.987 0.986
ADDPA 0.997 0.999 0.986 0.984
Ours 0.986 0.999 0.999 0.999

Bold values indicate that this value is the highest.






OPS/images/fnbot-16-1046867-t003.jpg
Model Plane Car Bird Cat Truck
VAE 0.700 0.386 0.679 0.535
OCSVM 0.630 0.440 0.649 0.487
AnoGAN 0.671 0.547 0529 0545
Pixel CNN 0.788 0.428 0.617 0.574
Deep-SVDD 0.617 0.659 0508 0591
OCGAN 0.757 0.531 0.640 0.620
PIAD 0.837 0.876 0.753 0.602
DAGPR 0.751 0.737 0.595 0.564
Puzzle-AE 0.789 0.780 0.700 0.549
AnoNAGN 0.962 0.638 0.725 0.643
ADDPA 0.865 0.922 0.768 0587
Ours 0.925 0.867 0.757 0.894

Bold values indicate that this value is the highest.





OPS/images/fnbot-16-1046867-t004.jpg
Cups Apples
VAE 0.588 0.432 0.658 0.512
OCSVM 0.612 0.429 0615 0533
AnoGAN 0.658 0.531 0563 0537
PixelCNN 0.754 0.431 0.695 0558
Deep-SVDD 0.748 0.637 0.656 0.584
OCGAN 0.739 0.581 0.632 0.638
PIAD 0.829 0.859 0.768 0.614
DAGPR 0.748 0.729 0.689 0.609
Puzzle-AE 0.801 0.769 0.724 0.637
AnoNAGN 0.833 0.713 0.904 0.756
ADDPA 0.841 0.893 0.714 0.761
Ours 0.931 0.872 0.809 0.857

Bold values indicate that this value is the highest.






OPS/images/fnbot-16-1046867-e007.jpg
wllz— 2l + 2|z - 7|,





OPS/images/fnbot-16-1046867-e006.jpg
1 1
Coony = 3 @l =l + A=)+ (1- 1)

(a|lx =, + B lz— 1], (]





OPS/images/fnbot-16-1046867-i001.jpg
9

[Gr, 1), (32, 32)






OPS/images/fnbot-16-1046867-i000.jpg





OPS/images/fnbot-16-1046867-e003.jpg
Lepk, = —allx= |, - 8|z -z, @





OPS/images/fnbot-16-1046867-i009.jpg





OPS/xhtml/Nav.xhtml




Contents





		Cover



		Anomaly detection in images with shared autoencoders



		1. Introduction



		2. Related work



		2.1. Autoencoders approaches



		2.2. GAN-based anomaly detection







		3. Proposed method



		3.1. Problem definition



		3.2. Network architecture



		3.3. Two-phase training



		3.3.1. Phase 1: Reconstruction training



		3.3.2. Phase 2: Adversarial training



		3.3.3. Loss function



		3.3.4. Anomaly score











		4. Experiments



		4.1. Datasets



		4.1.1. COIL-100



		4.1.2. MNIST



		4.1.3. fMNIST



		4.1.4. CIFAR-10



		4.1.5. CIFAR-100







		4.2. Experimental setup and evaluation methodology



		4.3. Experimental results







		5. Conclusion



		Data availability statement



		Author contributions



		Conflict of interest



		Publisher’s note



		References

















OPS/images/fnbot-16-1046867-e002.jpg
min max o lx— || +llz - 2|, (&)





OPS/images/fnbot-16-1046867-i008.jpg





OPS/images/fnbot-16-1046867-e005.jpg
1 3
Coony = 3 ale=xl+ Al =alh) - (1- 1)

(a|lx =], + 81z —=1l,) ©)





OPS/images/fnbot-16-1046867-i007.jpg





OPS/images/fnbot-16-1046867-e004.jpg
Leoe, = +allx—o|,+8|lz— 2], 5)





OPS/images/fnbot-16-1046867-i006.jpg





OPS/images/fnbot-16-1046867-i005.jpg





OPS/images/fnbot-16-1046867-i004.jpg
X





OPS/images/fnbot-16-1046867-e001.jpg
Lepex = allx—xll, + fllz— 22l @)





OPS/images/fnbot-16-1046867-i003.jpg





OPS/images/fnbot-16-1046867-e000.jpg
Lwr, = allx—xll,+ pllz—zll, [¢))





OPS/images/fnbot-16-1046867-i002.jpg





OPS/images/fnbot-16-1046867-i033.jpg





OPS/images/fnbot-16-1046867-i031.jpg
A (%) <« willzi — 24l + @2||zi — 74|,





OPS/images/fnbot-16-1046867-i030.jpg
Ex(zy)





OPS/images/cross.jpg
@ Check for updates.





