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Research on autonomous route
generation method based on AIS
ship trajectory big data and
improved LSTM algorithm

ChangXi Zhuang and Chao Chen*

Maritime School, Zhejiang Ocean University, Zhoushan, China

The autonomous generation of routes is an important part of ship intelligence

and it can be realized by deep learning of the big data of automatic

identification system (AIS) ship trajectories. In this study, to make the routes

generated by long short-term memory (LSTM) artificial neural network more

accurate and e�cient, a ship route autonomous generation scheme is

proposed based on AIS ship trajectory big data and improved multi-task LSTM

artificial neural network. By introducing an unsupervised trajectory separation

mechanism into LSTM, a fast and accurate separation of trajectories with

similar paths is realized. In the process of route generation, first of all, a

clustering algorithm is used to cluster the trajectories in massive AIS data

according to the density of trajectory points, so as to eliminate the trajectories

in the routes that do not belong to the target area. Furthermore, the routes are

classified according to the type of ships, and then the classified trajectories are

processed and used as datasets. Based on these datasets, an improved LSTM

algorithm is used to generate ship routes autonomously. The results show the

improved LSTM works better than LSTM when the generated route trajectories

are short.

KEYWORDS

AIS ship trajectory big data, ship intelligence, route autonomous generation,
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Introduction

With the development of the global shipping economy, ships are gradually

developing in the direction of large scale, high speed, and intelligence, andmore attention

has been paid to the safety and economy of ship navigation which depends to a large

extent on the adoption of a correct and reasonable route. As the first priority of ship

navigation planning, route planning design is an important and tedious task (Yao, 2019).

The automatic identification system (AIS) of ship is a kind of navigation aid equipment

and is used for maritime safety and communication between ships as well as between

ships and shore. AIS can broadcast the dynamic information of ships such as ship

position, ship speed, and heading to other ships and shore stations in the nearby waters

in combination with the static information of ships such as ship name, call sign, and

draft (Feng et al., 2021). The historical voyage big data of navigation ships can be
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FIGURE 1

Structure diagram of LSTM neuron.

obtained by collecting AIS data. Through the data mining of

the historical trajectory of ships’ navigation in a certain area,

the navigation patterns of ships can be analyzed. Furthermore,

based on this, reasonable routes can be recommended for ships

sailing in this area (Zhang et al., 2015). How to use the AIS big

data of ships to improve the intelligence of route planning design

and finally realize the autonomous generation of the route is a

challenging topic.

At present, the route generation technology can be mainly

divided into two classes. One is that the relevant experts and

technicians draw the route on the paper chart manually, and

the other is to use the evolutionary algorithms to automatically

generate the navigation route of the ship (Zeng and Ito, 2001;

Shen et al., 2019). The route designed by evolutionary algorithms

can greatly reduce the workload of the crew and enhance the

intellectualization of ship operation. Moreover, evolutionary

algorithms can be divided into two types, one is according

to the sea depth, weather, wind direction, wind speed, and

other factors, through computer simulation to find the optimal

path algorithm (Gasparetto et al., 2015; Dai et al., 2019). The

other is based on AIS big data combined with a deep learning

algorithm to achieve autonomous route generation (Lv et al.,

2018; Lazarowska, 2020). Compared withmanual route drawing,

the former reduces the complexity of route design but often

falls into a local optimal solution. In contrast, deep learning

algorithms have beenwidely used in image recognition, language

processing, traffic flow prediction, and other fields, and the

generation technology of vehicle driving recommended routes

based on big data is also becoming mature (Arel et al., 2010;

Islam et al., 2016; Zhou et al., 2017). Against this background,

this study proposes amethod to classify ship trajectory according

to the navigation routes by adding an unsupervised clustering

layer based on long short-term memory (LSTM) deep learning

algorithm with the historical trajectory of ships as the dataset

and finally realizing the autonomous generation of ship routes.

The algorithm can not only make the route design more

intelligent and convenient but can also improve the navigation

safety to a certain extent.

The trajectory clustering algorithm is an unsupervised

learning algorithm that can classify trajectories according

to the similarity of the trajectories (Pauletic et al., 2019).

According to the different measurement methods, the related

studies are mainly divided into two categories, one is based

on trajectory points, and the other is based on trajectory

segments. In the research on clustering algorithm based on

trajectory points, Morris and Trivedi (2009) compared various

trajectory clustering algorithms and their characteristics on

different datasets, but it has not been verified in practical

applications. Piciarelli et al. (2005) proposed a real-time

trajectory clustering algorithm based on video datasets, which

can obtain valuable data from higher-level anomaly detection

modules. Zhao et al. (2017) proposed a hierarchical clustering

method and an adaptive statistical method to solve the problem

of uneven distribution of ship trajectories, but the method

in a more complex environment was not considered. The

clustering method based on trajectory points can deal with

large trajectory data, but it ignores the space-time correlation

between points and is not sensitive to abnormal trajectory

points. In contrast, in the research on clustering algorithm

based on trajectory segment, Lee et al. (2007) proposed the

trajectory-based Hausdorff distance method that calculates

the distance between trajectory segments in terms of parallel

distance, vertical distance, and angular distance, and its results

are more accurate.

Lin and Su (2008) proposed a one-way distance method

based on the spatial shape of a moving object trajectory that

only pays attention to the similarity of trajectory space shape

and ignores time, speed, direction, and other attributes. The

clustering algorithm based on trajectory segment has a good

consideration for the accuracy of the trajectory, but the time

complexity is relatively high, which is not conducive to use

when the data volume is large. From the two kinds of clustering

algorithm, the current clustering algorithms cannot take into

account both trajectory integrity and efficiency, which is very

difficult to handle the huge AIS big data.

Long short-term memory artificial neural network is a kind

of recurrent neural network (RNN), which is used to solve

the gradient vanishing problem of RNN. Many scholars use

LSTM to generate trajectories. Xing et al. (2019) divided the

vehicles into different types according to their driving styles

and predicted the trajectory errors at different driving times.

However, it did not carry out the comparison of the accuracy

of the generated trajectories with different lengths. Xue et al.

(2020) used LSTM to predict pedestrian trajectory, but it has not

been confirmed whether it was effective in complex scenarios.

Kong et al. (2019) proposed a new RNN-based default logic

for path planning with graph-based search algorithms and

optimization methods among existing urban road planning

methods. Lin et al. (2021) proposed STA-LSTM to improve

the interpretability of vehicle trajectory prediction. The current

research on LSTM trajectory generation mainly focuses on

the improvement of the model, ignoring the influence of the

accuracy of the trajectory dataset on the final prediction results.
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FIGURE 2

Structure diagram of the improved LSTM.

The trajectories of vehicles on roads are relatively neat, while

the trajectories of ships at sea are sparse, and the trajectories of

different ship types vary greatly. Therefore, how to reduce the

trajectory generation error on the sea is an urgent problem to

be solved.

According to the problems in the above research, this work

makes the contributions as follows:

(1) Using the actual latitude and longitude to calculate

the distance instead of the Euclidean distance in the

clustering algorithm makes the clustering algorithm more

accurate in dealing with ship trajectories to produce more

accurate results.

(2) In the actual study, it is found that the sea surface

paths are sparse and the complete route trajectories are

more difficult to obtain. To address the problem of small

trajectory samples, this study proposes a random dilution

of high-density routes to obtain more samples.

(3) According to the AIS trajectory clustering problem, this

work uses the k-means algorithm to cluster the target

area. Then, a layer of unsupervised trajectory clustering

layer is customized on top of the LSTM algorithm, and

the adaptive DBSCAN clustering algorithm mentioned by

Zhao et al. (2017) is fused into the unsupervised trajectory

clustering layer. This study also widens the network width

of the LSTM so that the LSTM can generate trajectories
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FIGURE 3

Flowchart of the route generation process.

for multiple types of ships simultaneously. Moreover, this

study compares the errors when generating trajectories of

different lengths to prove the effectiveness of this study.

In this study, the western route with large navigable

volume and complicated sea conditions in the Zhoushan

sea area is selected as the research target area, and the

specific route between Cezi Island and Liuheng Island in the

western route is selected as the specific route planning target

route, which has certain practical significance. The general

arrangement of this study is as follows. The “Related principles”

section introduces the relevant principles involved in study

work and the improvement of the relevant principles. The

“Production of datasets” section introduces the production

process of the dataset. The “Route generation” section describes

the experimental process and the comparison of the results

of different models. The “Conclusion” section summarizes

this experiment.

Related principles

Clustering algorithm

(1) K-means algorithm

The k-means algorithm is a division-based clustering

method that needs to specify the clusters (K-values) during

clustering, the number of clusters will affect the final clustering

effect, and cross-validation can be used to select an appropriate

K-value for clustering unknown data (Nie et al., 2022). The

K-means algorithm has the following main steps:

Step 1. Let the trajectory data be D = { x1,x2,...,xm}, the

number of clusters is k, and the maximum number of iterations

is N.

Step 2. The output cluster is C =
{

C1,C2,...,Ck
}

.

Step 3. Initialize Ci = ∅, and choose suitable k points in D

at random as the initial center of mass µ =
(

µ1,µ2,...,µk

)

.
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FIGURE 4

Trajectory chart of a certain day in Dinghai Sea.

Step 4. Calculate the distance between each sample of D

in the trajectory data and each centroid, and yj denotes any

trajectory point within the cluster:

dist
(

xi,yj
)

=
∣

∣

∣

∣xi−µj

∣

∣

∣

∣

2
, i= 1,2,...,n;j= 1,2,...,k. (1)

Step 5. Assign the trajectory point xi into the nearest clusters

according to the distance calculated in the previous step, and

Cλi= Cλi

⋃

{xi} is updated.

Step 6. Update the initial center of mass of each cluster:

µ
′

j =
1

|Cj|

∑

x∈|Cj|

x (2)

Step 7. Repeat steps 4, 5, and 6 until the initial center of mass no

longer changes.

(2) Adaptive DBSCAN

The Adaptive DBSCAN algorithm is a clustering algorithm

that improves the DBSCAN algorithm. It improves the

characteristics of the DBSCAN algorithm that requires manual

input of parameters, introduces the concept of density threshold,

and uses the KNN algorithm to determine the optimal

parameters automatically. The specific steps are as follows:

Step 1. The density threshold is defined first, i.e.,

Density=
MinPts

π • Eps2
(3)

Step 2. MinPts is the specified minimum number of trajectory

points and Eps is the specified radius. On the premise that

the number of clusters in the clustering result is correct, the

smaller the density threshold, the better the clustering effect.

The following equation is used to calculate the distance between

the points:

Dn×n =
{

Dist(i,j)
∣

∣1 ≤ i ≤ n,1 ≤ j ≤ n
}

(4)

where n is the number of trajectory points, and Dist(i, j) is

the Euclidean distance between the two trajectory points. The

elements in D are sorted in ascending order for each row.

All data points in the kth column are the K-nearest neighbor

distance vector Dk. After averaging, we can get Dk, which is

calculated for all columns to obtain the list of Eps parameters:

DEps =
{

Dk

∣

∣

∣
1 ≤K≤n

}

(5)

Step 3. The definition ofMinPts is as follows:

MinPts=
1

n

n
∑

i=1

Pi (6)

where Pi is the number of Eps domain objects of the ith object,

and n is the number of trajectory points.

Step 4. Input the parameters in DEps and the corresponding

MinPts into the DBSCAN algorithm. The number of clusters
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FIGURE 5

Clustering map of ship trajectories of a certain day in Dinghai Sea.

N under different K values can be obtained. In addition, if

the number of clusters N is unchanged for more than three

consecutive times, the maximum K value corresponding to the

number of clusters N is determined as the optimal K value, and

then the Eps and MinPts values corresponding to the optimal K

value are determined as the optimal parameters.

The distance calculated in formula (4) is Euclidean distance,

which is not applicable to the distance of the trajectory points

of ships but it uses the actual latitude and longitude instead. Let

the latitude and longitude of point A and point B be (xi,yi) and

(xj,yj), respectively, and the formula is as follows:

Dist(i,j) = R
[

cos (xi−xj) cos yi cos yj+ sin yi sin yj
]

(7)

where R is the radius of the Earth.

Improved LSTM algorithm

Long short-term memory is a special RNN, which is

used to solve the problem of gradient vanishing and gradient

exploding in traditional RNN. Compared with the ordinary

RNN, LSTM solves the long-term dependence on historical

data, which greatly improves the effect of neural network in

solving regression problems (Zaremba et al., 2014). LSTM is also

widely used in language recognition, text classification, stock

forecasting, and other fields (Chakraborty et al., 2020). The

structure of LSTM is shown in Figure 1.

In the figure, σ represents the sigmoid layer, whose values

range is [0,1], where 0 means all forgotten and 1 means all

remembered; tanh is the activation function; ht represents

the hidden layer at moment t; Xt represents the input route

trajectory at moment t; Ct represents the route trajectory

information at moment t. The LSTM is mainly controlled by

input gate, output gate, and forget gate for the cell, and the

principle is as follows.

Forget gate:

ft = σ

(

Wf •
[

ht−1,xt
]

+bf

)

(8)

Input gate:

it = σ
(

Wi•
[

ht−1,xt
]

+bi
)

(9)

C̃t = tanh
(

Wc•
[

ht−1,xt
]

+bc
)

(10)

Ct = ft•Ct−1+it•C̃t (11)
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TABLE 1 Class A AIS message sending interval.

Vessel travel status Sending interval

Ship is anchor 3 min

Ship speed 0–14 knots and constant course 12 s

Speed 0–14 knots and course change 4 s

Speed 14–23 knots and constant course 6 s

Speed 14–23 knots and course change 2 s

Speed > 23 knots and constant course 3 s

Speed > 23 knots and course change 2 s

Output gate:

Ot = σ
(

Wo
[

ht−1,xt
]

+bo
)

(12)

ht = Ot•tanh (Ct) (13)

where Wf denotes the weight matrix in the forget gate, bf
denotes the bias matrix in the forget gate, C̃t denotes the

candidate vector at moment t, it denotes the input route

trajectory at moment t, Ot denotes the output at moment t, and

ft denotes the forget information at moment t.

Long short-term memory is a chain structure; in the

initial state, values of h0 and C0 are 0; and at this time, the

history information is empty. In addition, when the input route

trajectory information X1 passes through the first cell, ht−1 and

Ct−1 are generated. In the next cell, ht−1 and xt are output

through the ft of the sigmoid layer to decide which route

information to forget. Then, the input gate generates it and

C̃t according to ht−1 and xt , and the current state Ct can be

obtained by multiplying the two parts. The output gate outputs

Ot through the sigmoid layer according to ht−1 and xt , and

the final output ht can be obtained by multiplying Ot and the

activation tanh (Ct). Then, output ht can be used as the input to

the next cell and so on (Gers et al., 2000). During the operation

of the LSTM, ht−1 represents the short-term memory, which is

updated at each moment, while Ct−1 represents the long-term

memory, which can save the route trajectory information for a

certain time interval, but less than the long-termmemory, so the

LSTM is called the long- and short-termmemory neural network

(Huang et al., 2015). Equations (2-1) to (2-6) can be simplified as











C̃t

Ot

it

ft











=











tanh

σ

σ

σ











(

W

[

xt

ht−1

]

+b

)

(14)

Ct = ft•Ct−1+it•C̃t (15)

ht = Ot•tanh (Ct) (16)

The improved LSTM adds a clustering layer on top of the LSTM.

The input trajectories are not directly entered into the LSTM

layer but are first classified through the clustering layer. The

number of trajectories P for each class is counted according to

the MMSI number, and the classes exceeding P are input into

the LSTM layer. The improved LSTM is shown in Figure 2. In

the figure, yt denotes the output route trajectory at moment t,

and n denotes the length of the sequence.

The set of classified data is denoted asM= {m1,m2,. . .,mN },

and d is denoted as the class when Mi ≥ P. Then, Equation 9

should be

it = σ
(

Wi•
[

ht−1,dt
]

+bi
)

(17)

Evaluation of LSTM algorithm

In this study, two evaluation methods are used to evaluate

the performance of the model.

(1) Average absolute error

MAE=
1

N

N
∑

t−1

∣

∣y(t)−ŷ(t)
∣

∣ (18)

(2) Root mean square error (RMSE)

RMSE=

√

√

√

√

1

N

N
∑

t−1

(y(t)−ŷ(t))2 (19)

where N is the total number of routes, y(t) is the actual value of

the route at time t, and ŷ(t) is the predicted value of the route at

time t. RMSE has a faster convergence speed and more accurate

results, while MAE has strong robustness and is insensitive to

outliers. When the error value is smaller, the trajectory is more

similar, and the prediction accuracy of the model is higher (Felix

and Schmidhuber, 2000).

Route generation process

The autonomous route generation technique designed in

this work mainly includes the following steps.

(1) Determine the departure point and destination area of

the route.

(2) Screen and clean the AIS data in the area.

(3) The AIS trajectories in the area are clustered by the k-

means clustering algorithm, and the clusters that the routes

pass through are reserved.

(4) Interpolate routes with missing trajectories and sparse

dense routes into multiple trajectory samples.

(5) Compare the model before and after improvement and

analyze the results.
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The flowchart of the route generation process is shown in

Figure 3.

Production of datasets

Data cleaning

The original AIS data are chaotic, with noise and a large

amount of invalid data, as shown in Figure 4. Before clustering

the routes, the data also need to be cleaned. The cleaning mainly

includes the cleaning of abnormal data and redundant data and

is listed as follows:

1. The MMSI number is not nine digits.

2. Latitude exceeds the range of 0–90◦, longitude exceeds the

range of 0–180◦, or heading value is 511 which is a meaningless

number, or the speed value is 0.

3. The state of the ship is at anchor or stationary.

4. Data move too far in a short period of time.

K-Means algorithm for clustering

Figure 5 shows the clustering results of the ship trajectories

of a certain day in Dinghai Sea. It can be seen that most of the

divided clusters fall on each channel in the sea, which is due to

the relatively dense trajectory points in the channel, resulting in

the distance between the trajectory points in the region being

close, and the center of mass also tends to fall in the channel. For

clusters without fairways, the internal distances tend to be bigger

and the shape of the cluster is more narrower. From Figure 5, we

can see that clusters 0, 1, 4, 7, 8, and 9 are irrelevant clusters

and should be removed from the route data. After the analysis

of the reserved routes, it is found that the ships involved in

the routes are mainly cargo ships, tankers, and container ships,

which means that these three ships are the representative ships

of the region, so this work will design routes for these three ship

types.

Interpolation and sparseness of
trajectories

According to IMO RESOLUTION MSC.74(69) (Fujii et al.,

2019), the AIS sending frequency of the route is related to the

speed and heading. In addition, the LSTM requires the input

data to be standard equal-length data. In the process of actual

cleaning of the routes, it is found that the AIS data lengths

of the routes are far different, some route data are too sparse

and there are long missing values in the middle, which are not

enough to extract the route features, while some route data

are too dense, and the value provided by some data points is

not high, which is a great waste of computing resources. To

preserve the features of the route to the maximum extent, this

study interpolates and samples the trajectories and compares

the trajectories of different lengths. Before interpolation, it is

necessary to distinguish whether the route is sparse or missing,

and Table 1 lists the information on sending interval of Class A

AIS equipment according to IMO RESOLUTIONMSC.74 (69):

According to Table 1, the number of missing values of routes

can be calculated. If the route is sparse or the lack of data

is not much, it can be interpolated. First of all, the scope of

the lack of trails needs to be defined. When the absolute value

of the heading difference near the missing value is within 5◦,

it is determined as a straight line trajectory; otherwise, it is a

curve trajectory (Gao et al., 2021). After calculating the number

of missing values according to Table 1, routes with straight

continuous missing values between 0 and 5% of the total route

length and curved continuous missing values between 0 and

2% of the route were interpolated, and trajectories exceeding

these criteria were rejected (Vinisha and Sujihelen, 2022). As

the linear interpolation algorithm has high operating efficiency,

the route distance designed in this study is relatively short,

and the routes are relatively smooth, it is suitable to use linear

interpolation for implementation (Huang et al., 2011). Suppose

the first two points of interpolation are
(

tm, pm
)

and
(

tn, pn
)

,
(

ti, pi
)

is the data to be interpolated, where ti denotes the current

time stamp and pi represents the ship’s latitude, longitude, speed,

and heading at the current time point, and then pi can be

expressed as

pi = pn+

(

pn−pm
)

(tn−tm)
(ti−tm) (20)

Figure 6 shows the trajectory before route interpolation on

the left and the trajectory after route interpolation on the right.

Considering the characteristics of the trajectory samples are

“dense trajectories of single sample and small total number

of samples”. Therefore, this study uses a random mean sparse

method (Huang and Zhu, 2022) to spare the high-density

trajectories into multiple routes with fixed length every time,

which reduce the trajectory density and increase the number

of trajectory samples. The purpose of this study is to dilute

the trajectory length into four lengths, 100, 200, 400, and 800,

respectively. On the one hand, the purpose of this study is to

reduce the error caused by interpolation, generally speaking,

the longer the trajectory is, the greater the possibility of

missing values, and the more interpolation is needed, so the

moderate dilution of the trajectory can reduce the error. On

the other hand, many trajectories cannot be used because the

span of continuous missing values is too long. To increase

the data sample, the continuous missing values become less

after moderate dilution so as the available trajectory data

are increased.
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FIGURE 6

Ship trajectories before and after interpolation.

Normalization of data

There are differences in attributes and units in the trajectory

points, and when calculating the model, the data needs to be

normalized to facilitate the calculation and training of themodel.

In this study, min-max normalization is used to process the AIS

data with the following equation:

x
′
=

x−min(x)

max (x)−min(x)
(21)

where x represents the data before normalization and x
′

represents the data after normalization, followed by the

normalization of the data, which is used to accelerate the

convergence rate of the model weight parameters with the

following equation:

x
′
=
x−x

σ
(22)

where

x =
1

n

n
∑

i−1

xi, σ=

√

√

√

√

1

n− 1

n
∑

i− 1

(xi−x)
2
. (23)

Route generation

Model construction

This experiment is mainly developed based on the python

language using the Pytorch framework. The compilation

software is Pycharm and Jupyter Lab, and the operating system

is Ubuntu. The training process of using Pytorch to build an

LSTM network mainly includes the following steps: generate

sequence data; divide training set, validation set, and test

set; normalize it; determine the network structure layers; and

select the corresponding optimizer, activation function, and loss

function, which is the main construction process of LSTM. In

this study, an unsupervised trajectory clustering layer is defined

on top of the LSTM model, its main role is to integrate adaptive

DBSCAN into the LSTM, and the input data are automatically

classified into trajectories based on the similarity of the trajectory

of the ship. For the trajectory of the ship with <3,000 datasets,

the sample size is too small to ensure the error of the generated

route within a reasonable range. Therefore, this study sets 3,000

trajectory data samples as the threshold and only takes the

route with more than 3,000 samples of each ship for training.

The structure of the adaptive LSTM neural network is shown

in Figure 7.

First, the input routes were classified according to ship types,

and the classified data were input to the unsupervised clustering

layer. Each ship’s data were processed using an unsupervised

clustering neuron, all the navigation trajectories in the area of

that type of ship were obtained, and each path route data were

separated. Figure 8 shows the route data separation process, and

the routes with black dots indicate that they do not belong to

the cluster.

The routes with more than 3,000 samples in the route

path dataset are transferred to the LSTM layer, and each route

contains four features, namely, longitude, latitude, speed (SOG),
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FIGURE 7

Adaptive LSTM network structure.
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FIGURE 8

Route separation by path.

TABLE 2 Error comparison of di�erent trajectory lengths and

di�erent models.

Trajectory length Feature LSTM Adaptive LSTM

MAE RMSE MAE RMSE

100 Longitude 0.013277 0.074095 0.010324 0.047461

Latitude 0.014565 0.068520 0.010869 0.045931

COG 0.021355 0.091246 0.018327 0.073722

SOG 0.023546 0.085233 0.017546 0.065511

200 Longitude 0.015329 0.062920 0.012339 0.059245

Latitude 0.012496 0.062457 0.012319 0.056924

COG 0.024317 0.085332 0.020315 0.079856

SOG 0.021365 0.090227 0.021335 0.071183

400 Longitude 0.017241 0.059824 0.013255 0.068548

Latitude 0.015312 0.073946 0.012703 0.067906

COG 0.026750 0.093240 0.025416 0.089685

SOG 0.021362 0.103741 0.022693 0.090050

800 Longitude 0.015766 0.088312 0.016899 0.088865

Latitude 0.019624 0.090315 0.014079 0.093658

COG 0.025846 0.101320 0.024932 0.104418

SOG 0.029627 0.132548 0.024062 0.092673

Bold values indicate the smaller value of the two algorithms.

and heading (COG), which are trained separately. LSTM layer

consists of four LSTM stacks, which are used to learn the route

features, and the hidden state of each layer is set to 600. A

fully connected layer is connected for each ship trajectory. The

fully connected layer is followed by the dropout layer to prevent

model overfitting. The parameter is set as 0.2, and the result is

output through linear regression. In the experiment, the learning

rate is 0.001, the batch size is 64, the number of iterations is 400,

and Adam is used as the optimizer. Notably, 60% of the dataset

is used for training, 20% for validation, and 20% for testing.

The mean absolute error (MAE) and RMSE are chosen for the

loss functions.

Results and evaluation

During the experiment, it is found that the length of the

trajectory also has an influence on the prediction results. In this

study, it is considered that when the trajectory length is lower

than 100, it is not enough to fully characterize the ship’s motion

information, and when the trajectory length exceeds 800, the

ship’s motion information will overflow.

From Table 2, it can be seen that the error of the improved

LSTM is reduced compared with the original LSTM, and the

error decreases by 0.01–0.03 on average when using MAE and

RMSE evaluation. After comparing the prediction accuracy of

different lengths of trajectories, it was found that the longer the

trajectory, the larger the error, mainly due to two reasons, one is

the degradation of the model performance due to the large input

and output scales, and the other is that the longer the route,

the more the interpolation, resulting in an increase in error. It

is also found that the improved LSTM is better than the LSTM

when the predicted length is 100–200, and not necessarily when

the length is more than 200. Five items of the LSTM are better
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FIGURE 9

Prediction of route data with di�erent lengths.

FIGURE 10

Generated routes. Blue is the actual route, green is the generated routes, and from left to right, the types are cargo ships, tankers, container ships.

than the improved LSTM, indicating that the improved LSTM

prediction decreases faster when the length of the trajectory

grows. The error of COG and SOG is larger than that of latitude

and longitude. After analysis, it is believed that the prediction

range of COG and SOG is larger, resulting in a higher loss value,

and the error of the model is larger because of more missing

values of COG and SOG.

Figure 9 shows the prediction accuracy of the route data

under different lengths. It can be seen that the improved LSTM

for latitude and longitude predicts better compared to the LSTM
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when the trajectory length is 100 to 200, and the error of

latitude and longitude is below 0.001◦ on average, the prediction

error of COG is below 9◦, and the error of SOG is around

0.1 knot on average, which are all in the acceptable range. When

the length exceeds 200, the improved LSTM in this study has

less improvement in prediction accuracy relative to the LSTM.

The overall trend of latitude value in the route prediction data

shows a continuous decline, and the value of a segment tends

to be parallel, indicating that the ship is moving laterally. The

overall trend of longitude value shows a rise and then a decline,

indicating that the ship is turning. The COG first rises and falls

in a small range and continues to rise to 0◦ when the ship’s

direction approaches 360◦. In the prediction of SOG, although

the prediction accuracy is high when the trajectory length is

short, the rise and fall of speed are too steep, while the steepness

trend of SOG decreases with the longer trajectory length.

Figure 10 shows the actual situation of cargo ships, tankers,

and container ships on the chart when the predicted length is

100–200; it can be seen that the error with the actual route

is within the acceptable range, and the predicted route is

shorter and smoother in terms of trajectory length compared

with the actual route, which indicates that the model has

the ability to extract the route features from the dataset.

Therefore, this study concludes that when the trajectory

points are short, the improved LSTM generates better routes

than LSTM.

Conclusion

This study implements an autonomous route generation

technique using the historical trajectory of a ship combined

with an improved LSTM and discusses the comparison of the

prediction error between the LSTM and the improved LSTM

when the trajectory points are divided into different lengths. The

results show that the prediction error of the improved LSTM

is smaller than that of the LSTM when the trajectory length

is smaller.

In the future, there are still many areas that need to be

studied and improved. First of all, because the generation of the

route relies too much on the historical trajectory of the ship,

the routes with fewer ship trajectories are not considered. At

the same time, due to the lack of detailed information about

the ship, the factors affecting the ship’s navigation are not

considered enough, such as the weather and other factors are not

considered. Navigational restrictions may result in routes being

less practical. Second, when interpolating the missing trajectory,

it does not consider whether the interpolation point will lead

to the navigation restriction of the ship, which may cause the

generated trajectory point to fall into the restricted area of the

ship. In the following study, the abovementioned problems will

be deeply studied to improve the efficiency and practicability of

the autonomous route generation algorithm.
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