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In recent years, with the deep exploitation of marine resources and the

development of maritime transportation, ship collision accidents occur

frequently, which leads to the increasingly heavy task of maritime Search

and Rescue (SAR). Unmanned Aerial Vehicles (UAVs) have the advantages

of flexible maneuvering, robust adaptability and extensive monitoring, which

have become an essential means and tool for emergency rescue of maritime

accidents. However, the current UAVs-based drowning people detection

technology has insufficient detection ability and low precision for small

targets in high-altitude images. Moreover, limited by the load capacity, UAVs

do not have enough computing power and storage space, resulting in the

existing object detection algorithms based on deep learning cannot be directly

deployed on UAVs. To solve the two issues mentioned above, this paper

proposes a lightweight deep learning detection model based on YOLOv5s,

which is used in the SAR task of drowning people of UAVs at sea. First, an

extended small object detection layer is added to improve the detection effect

of small objects, including the extraction of shallow features, a new feature

fusion layer and one more prediction head. Then, the Ghost module and the

C3Ghost module are used to replace the Conv module and the C3 module

in YOLOv5s, which enable lightweight network improvements that make

the model more suitable for deployment on UAVs. The experimental results

indicate that the improved model can effectively identify the rescue targets

in the marine casualty. Specifically, compared with the original YOLOv5s, the

improved model mAP 0.5@ value increased by 2.3% and the mAP 0.5@ :0.95

value increased by 1.1%. Meanwhile, the improved model meets the needs of

the lightweight model. Specifically, compared with the original YOLOv5s, the

parameters decreased by 44.9%, the model weight size compressed by 39.4%,

and Floating Point Operations (FLOPs) reduced by 22.8%.
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Introduction

Ships are an essential means of transportation for people
worldwide to communicate and conduct business. However,
while the voyage ships get rich benefits, they also bear the risk
of shipwreck (Figure 1). There are many types of shipwrecks,
including ships hitting rocks, running aground, colliding with
each other, losing control of ships, etc. Shipwreck will cause
loss of personnel and property. Marine Search and Rescue
(SAR) is crucial to saving the lives of wrecked ships. Traditional
maritime SAR relies on a large number of human resources
and material resources. An ideal way of modern marine SAR
is to be completely unmanned. The Unmanned Aerial Vehicles
(UAVs) look for the drowning person and cooperate with the
Unmanned Surface Vessels (USVs) to rescue. UAVs reduce
unnecessary human risks in rescue operations in severe weather
and have the ability to find victims quickly. UAVs can serve as
an invaluable modern technology for life-saving emergencies,
saving more lives while racing against time in SAR operations
at sea and near shore (Yeong et al., 2015).

In recent years, more and more scholars have begun to
devote themselves to the application of UAVs in maritime
rescue. Ramírez et al. (2011) proposed a coordinated maritime
rescue system based on USVs and UAVs. In the proposed
system, the USVs benefit from the information provided by the
UAVs, which locates the victims faster than the USVs. The USVs
are in charge of rescuing the castaways. These two subsystems
can work in real-time. The system offered a good foundation for
improving automatic object detection effect.

In Leira et al. (2015) proposed a machine vision system that
incorporates the use of a thermal imaging camera and onboard
processing power. The proposed machine vision system is
used to perform real-time object detection, classification, and
tracking of objects on the ocean surface.

In Dinnbier et al. (2017) used Gaussian Mixture Model
(GMM) and Fourier Transforms for target detection in UAVs
maritime SAR. They not only presented a method to combine

FIGURE 1

Shipwreck.

color analysis and frequency pattern identification, but also dealt
with the dynamically changing background through an adaptive
algorithm.

Scientific advances in the field of deep neural networks
have revolutionized several technical domains, such as image
processing (Girshick et al., 2014). In particular, the use of
networks based on convolutional topologies brought significant
performance gains in the tasks of classification, detection, and
automatic image segmentation (Krizhevsky et al., 2017). The
networks based on convolutional topologies have also gradually
begun to be applied to detection and segmentation tasks at sea,
with great success (Cane and Ferryman, 2018).

Target detection algorithms based on deep learning can
be divided into two-stage detection algorithms and one-
stage detection algorithms. The two-stage detection algorithms
select candidate regions and then perform location regression
and classification on the candidate regions. Such as Region
Convolutional Neural Network (R-CNN) (Girshick et al., 2014),
Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2015),
and Mask R-CNN (He et al., 2017). This type of model has
higher detection accuracy but slower detection speed. The one-
stage algorithm removes the selection step of the candidate
region and directly classifies and regresses the image. Such as
the You Only Look Once (YOLO) series (Redmon et al., 2016).
This type of model detection speed is faster, but the detection
accuracy is slightly lower. Therefore, the YOLO series is more
suitable for detecting rescue targets in marine casualties.

Redmon et al. (2016) proposed YOLO for the first
time. Drawing on the design idea of Faster R-CNN, they
inputted the whole image into the neural network and directly
predicted the target position and label at the output stage.
Subsequently, YOLOv2 (Redmon and Farhadi, 2017) adopted
optimization strategies such as batch normalization, high-
resolution classifier and anchor box by Redmon and Farhadi,
2017. YOLOv3 was proposed by Redmon and Farhadi, 2018.
The original Darknet-19 network in the feature extraction part is
replaced by the Darknet-53 network structure, and the Feature
Pyramid Network (FPN) (Lin et al., 2017) structure is used to
realize multi-scale detection. Bochkovskiy proposed YOLOv4
(Bochkovskiy et al., 2020) based on Redmon’s research. Through
a large number of experiments, it found the best balance
among input network resolution, convolution layer number

TABLE 1 The comparison results of four versions of YOLOv5.

Model mAP@
0.5

mAP@
0.5:0.95

Speed/ms Params/M FLOPs/G

YOLOv5s 56.8% 37.4% 6.4 7.2 16.5

YOLOv5m 64.1% 45.4% 8.2 21.2 49.0

YOLOv5l 67.3% 49.0% 10.1 46.5 109.1

YOLOv5x 68.9% 50.7% 12.1 86.7 205.7
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and parameter number. Thereby comprehensive performance of
YOLOv4 is improved.

YOLOv5 was proposed by the Ultralytics team in 2020. The
author has not published a corresponding academic paper, only
the source code has been disclosed, and the website is https:
//github.com/ultralytics/yolov5. YOLOv5 is faster and more
accurate than YOLOv4. There are four versions of the YOLOv5,
which are YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.
The four models have different widths and depths. Each of
the four models has its own merits in terms of performance.
The performance of these models is investigated and obtained
on the Microsoft Common Objects in Context (MS COCO)
test datasets (Lin et al., 2014), as shown in Table 1. It can be
concluded from the comparison results that YOLOv5s has the
fastest processing speed. Yolov5s is suitable for the application
background of this paper and is selected as the benchmark
model.

The existing models have the problems of low recall rate
and high false detection rate when faced with images with many
small objects and large-scale changes among various objects.
In addition, the existing models have problems of too large
volume and too much computation in the process of deploying
on UAVs. In view of the above problems, this paper proposes
a lightweight detection model for rescue targets in marine
casualty based on UAVs image analysis of YOLOv5s, which can
significantly reduce the computational complexity, parameter
amount, and weight size of the model while maintaining a high
model prediction accuracy.

Our main contributions are summarized as follows.

1) In this paper, a data set for the training of the marine rescue
model is proposed.

2) This paper adds an extended small object detection layer to
improve the detection effect of small objects, including the
extraction of shallow features, a new feature fusion layer
and one more prediction head.

3) The Ghost module and the C3Ghost enable lightweight
network improvements that make the model more suitable
for deployment on UAVs.

The remainder of this article is organized as follows. In
Section 2, a brief review of the original YOLOv5s model is
given. In Section 3, the improved model is proposed. In Section
4, the experiment and result analysis were shown. Finally, the
conclusions are summarized in Section 5.

Introduction to YOLOv5s network

YOLOv5s is used as the benchmark model. Each component
of YOLOv5s is described below (Figure 2), which includes
Input, Backbone, Neck, and Head.

Input

The input end includes adaptive image scaling and adaptive
anchor box calculation. Adaptive image scaling is in the process
of image transmission to the network. Many images have

FIGURE 2

The architecture of YOLOv5s.
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TABLE 2 Anchor size.

Level Anchor size

P3 (10,13), (16,30), (33,23)

P4 (30,61), (62,45), (59,119)

P5 (116,90), (156,198), (373,326)

FIGURE 3

SiLU activation function.

different aspect ratios. The common method is to uniformly
scale the images to a standard size. Therefore, after scaling and
filling, the black borders at both ends are different in size. If
there are many black borders filled, it will cause information
redundancy and affect the inference speed. However, YOLOv5
employs adaptive image scaling to add minimal black borders.
Redundant information is reduced and the inference speed is
significantly improved.

During model training, the network outputs the prediction
box based on the initial anchor box. The network calculates
the gap between the prediction box and the ground truth box.
The network obtains the most suitable anchor frame size after
backpropagation and parameters iteration. Therefore, the initial
anchor size is also a crucial part. The initial anchor size set by
YOLOv5 on the MS COCO datasets is shown in Table 2.

Backbone

The backbone part is mainly composed of Conv, C3, SPPF,
and other modules. The Conv module realizes the output
layer by passing the input features through Conv2d function,
BatchNorm2d function, and activation function. The activation
function uses the Sigmoid-Weighted Linear Units (SiLU) shown
in Figure 3.

The SiLU was proposed by Elfwing et al., 2018, which is
an approximate function based on reinforcement learning. The
SiLU function is computed as Sigmoid multiplied by its input.

The activation function f (x) of the SiLU is given by

f (x) = x · σ(x) (1)

where x is the input vector, σ(x) is the sigmoid function. Sigmoid
function is given by

σ(x) =
1

1 + e−x (2)

The C3 module contains three Conv modules and several
Bottleneck modules as shown in Figure 4. This module is the
main module for learning residual features. Its structure is
divided into two branches, one branch passes through a Conv
module and several stacked Bottleneck modules in turn, and the
other branch passes through only one Conv module. Then the
two branches are fused. Finally, the output is obtained through
a Conv module.

Spatial Pyramid Pooling-Fast (SPPF) (Figure 5) is proposed
by YOLOv5 authors based on Spatial Pyramid Pooling (SPP)
(He et al., 2015), which is much faster than SPP. The SPPF
serialize the input through one Conv module and three
MaxPool2d layers of 5 × 5 size. Then the four outputs in
the serial process are concated. Finally, the output is obtained
through a Conv module. Although SPPF pools the feature map
multiple times, neither the feature map size nor the number of
channels changes, so the four outputs can be fused. The main
function of the SPPF module is to extract and fuse high-level
features.

Neck

The network structure design of the Neck part uses the
Pyramid Attention Networks (PANet) (Liu et al., 2018). FPN
can fuse features of different resolutions. It can be seen that the
FPN in Figure 6A is a top-down route. The high-level strong
semantic features are passed down. It can be seen that the PANet
in Figure 6B creates bottom-up path enhancement based on
FPN to compensate and strengthen the positioning information.

Head

The loss function in the head part includes the confidence
loss lobj, the classification loss lcls, and the bounding box loss
lbox. The calculation equations are as follows:

Loss = lobj + lcls + lbox (3)

The CIoU Loss (Zheng et al., 2020) function is used to
express the bounding box loss lbox:

lbox = LCIoU = 1 − IoU +
ρ2(b, bgt)

c2 + αv (4)

where b and bgt denote the central points of the predicted
box and ground truth box, c is the diagonal length of the
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FIGURE 4

The C3 module.

FIGURE 5

The SPPF module.

smallest enclosing box covering the two boxes, ρ is the Euclidean
distance, v measures the consistency of the aspect ratio, and α is
a positive tradeoff parameter. The formulas are as follows:

v =
4
π2

(
arctan

ωgt

hgt − arctan
ω

h

)2

(5)

α =
v

(1 − IoU) + v
(6)

CIOU Loss takes into account the scale information of
the bounding box aspect ratio, which is measured from the
angles of aspect ratio, center point distance, and overlap area.
Therefore, the speed and accuracy of prediction box regression
are greatly improved.

Improved YOLOv5s network
architecture

In order to improve the detection accuracy of the rescue
targets in the marine casualty, an extended small object
detection layer is added. To achieve a lightweight network
design, the Ghost module and the C3Ghost module are used
to replace the Conv module and C3 module in the original
YOLOv5s. The improved YOLOv5s network architecture is
shown in Figure 7.

The extended small object detection
layer

The original YOLOv5s model is not good at dealing with
small targets. To improve the detection accuracy of small

objects, we refer to the method in reference (Zhu et al.,
2021; Zhan et al., 2022) and propose an extended small object
detection layer as shown in Figure 8. Specifically, the extended
small object detection layer consists of the extraction of shallow
features, a new feature fusion layer and one more prediction
head.

In the Backbone part, the feature maps obtained by
different downsampling are set as (Stage1, Stage2, Stage3,
and Stage4), which are four times downsampling, eight times
downsampling, sixteen times downsampling, and thirty-two
times downsampling. The size of the (Stage1, Stage2, Stage3,
and Stage4) is 160 × 160, 80 × 80, 40 × 40, and 20 × 20,
where Stage1 has the least information loss and the most
complete feature information of the small objects. However,

FIGURE 6

(A) Feature pyramid network (FPN) and (B) Pyramid Attention
Networks (PANet).
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FIGURE 7

The improved YOLOv5s network architecture.

FIGURE 8

The extended small object detection layer.
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TABLE 3 New anchor size.

Level Anchor size

P2 (5,6), (8,14), (15,11)

P3 (10,13), (16,30), (33,23)

P4 (30,61), (62,45), (59,119)

P5 (116,90), (156,198), (373,326)

only the feature maps corresponding to (Stage2, Stage3, and
Stage4) are extracted in the original YOLOv5s, lacking shallow
features. It is difficult for the original model to learn the
features of small objects. Therefore, the feature map Stage1
obtained by only four times downsampling is extracted in the
improved model.

In the Neck part, a new feature fusion layer is added to
capture shallow feature information Stage1 from the Backbone.
The feature fusion network is changed from three-scale to
four-scale, which enhances the learning ability of the network
for small targets.

In the Head part of the original network, only prediction
heads (P3, P4, and P5) are used, which lead to the loss
of small object information. Therefore, the 160 × 160
prediction head P2 is added to receive the low-level, high-
resolution feature map from Neck, which is more sensitive

to small objects. The resulting new anchor size is shown in
Table 3.

Lightweight network design

Limited by the load capacity and computing power of
UAVs, the original YOLOv5s model is not suitable for
deployment on UAVs. Therefore, the Conv module is replaced
by the lightweight Ghost module and the C3 module is
replaced by the C3Ghost module to conduct the lightweight
network design.

The Ghost module is a crucial creative module proposed in
GhostNet (Han et al., 2020). It has successfully achieved feature
maps with few parameters and calculations. The operating
principles of the common convolution and the Ghost module
are shown in Figure 9. The Ghost module employs common
convolution to generate a few intrinsic feature maps. Then
cheap operations 8 are utilized to augment the features and
increase the channels. The identity mapping is paralleled
with linear transformations to preserve the intrinsic feature
maps.

Next, the benefits are analyzed between the Ghost module
and the common convolution. Floating Point Operations

FIGURE 9

The common convolution and the Ghost module. (A) The common convolution. (B) The Ghost module.
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(FLOPs) is used to measure the module complexity. During this
common convolution procedure, the required number of FLOPs
can be calculated as follows:

roc = n · h′ · w′ · c · k · k (7)

where h × w × c is the size of input feature map, h′ × w′ × n
is the size of output feature map, k k is the size of the
convolution kernel, · is multiplication.

During the implementation of the Ghost module, the
required number of FLOPs can be calculated as follows:

rgm =
n
s
· h′ · w′ · c · k · k

+ (s − 1) ·
n
s
· h′ · w′ · d · d (8)

where d × d refers to the size of the kernel of linear operations
(has a similar magnitude as that of k × k), s refers to the number
of cheap transformation operations, and s� c.

Comparing the FLOPs of the Ghost module with that of the
common convolution, the theoretical ratio can be calculated as
follows:

rs =
roc

rgm
=

n · h′ · w′ · c · k · k
n
s · h′ · w′ · c · k · k
+ (s − 1) · n

s · h′ · w′ · d · d

≈
s · c

s + c − 1
= s (9)

From formula (9), it can be seen that the FLOPs of the
common convolution are approximately s times of that of the
Ghost module. The statistic of the parameter amount is similar
to FLOPs and can also be approximated to s times. Apparently,
the module cannot only effectively save computing resources,
but also reduce the number of parameters.

The C3Ghost module mainly consists of a Ghost Bottleneck
structure and three Conv modules in Figure 10. The Ghost
Bottleneck built by taking advantage of the ghost module is
shown in Figure 11. When the stride of the Ghost Bottleneck
is set to one, it is composed by two stacked Ghost modules.
The first Ghost module is an extension layer, which increases
the number of channels and increases the feature dimension.
The second Ghost module reduces the number of channels
and feature dimensions, which compress the network model

while ensuring the same number of input and output channels.
Finally the inputs and outputs of these two Ghost modules are
connected. When the stride of Ghost Bottleneck is set to two,
a Ghost module is used to perform feature extraction on the
input feature layer. Then a depthwise convolution is used to
compress the height and width of the feature layer. Then the
second Ghost module is used for feature extraction. Finally the
input and output are connected.

Experiment and result analysis

Datasets preparing

The improved model is used to identify the drowning person
in the maritime SAR. However, there is no relevant public
datasets. We have collected a large number of pictures and
videos of people’s activities in the sea. These data are mainly
from the Internet and our seaside aerial photography. For the
video data, we adopt the production strategy of extracting one
frame every five frames. Some datasets pictures are shown in
Figure 12.

The datasets contain 1,700 original pictures, including
11,880 target objects. The datasets are divided into training
set and verification set according to the ratio of 8:2. LabelImg
labeling tool is used to calibrate the personnel in each image
manually. Mosaic data augmentation (Figure 13) is to crop
four pictures and take a part of each and mix them into a new
picture. Both the length and width of the cropping position
are generated randomly. Mosaic data augmentation not only
expands the datasets but also improves the detection effect of
small targets.

Measurement indicators

Some typical performance measurement indicators are used
to evaluate the performance of the improved model, including
P (Precision), R (Recall), mAP (mean Average Precision),
parameter quantity, FLOPs, and model weight size. Before
introducing the above indicators, we must present the following

FIGURE 10

The structure of the C3Ghost.
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FIGURE 11

Ghost bottleneck. (A) Ghost bottleneck with stride = 1. (B) Ghost bottleneck with stride = 2.

FIGURE 12

Some pictures of the datasets.
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FIGURE 13

Mosaic data augmentation.

basic concepts. IoU (Intersection over Union) refers to the
intersection of the prediction box (A) and ground truth box (B)
divided by the union of the two. Its formula is:

IoU =
A ∩ B
A ∪ B

(10)

TP represents the number of IoU greater than the set
threshold, which is calculated only once for the same ground
truth box; FP represents the sum of IoU less than the set
threshold or the number of redundant prediction frames
detected for the same real frame; and FN represents the number
of real frames not detected.

P (Precision) is the correct proportion of all the targets
predicted by the model. Precision is calculated by

P =
TP

TP + FP
(11)

R (Recall) is the correct proportion of model prediction in
all marked targets. Recall is calculated by

R =
TP

TP + FN
(12)

AP (Average Precision) is the area enclosed by the curve
with recall as the horizontal axis and precision as the vertical
axis. The average precision is calculated by

AP =
∫ 1

0
P(R)dR (13)

mAP (mean Average Precision) is used to measure the
recognition accuracy, which is the average of all categories of
AP. The mean Average Precision is calculated by

mAP =
∑

AP
n

(14)

mAP 0.5@ represents mAP when IoU is 0.5. mAP 0.5@ :0.95
represents the average mAP (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8,

0.85, 0.9, and 0.95) on different IoU thresholds (from 0.5 to 0.95,
in steps of 0.05).

Model training

The specific configurations are provided in Table 4.
During the training process, the epoch of model training

is set to 300, the batch size is set to 8, the learning rate is
dynamically adjusted and optimized by the Stochastic Gradient
Descent (SGD) optimizer, and the initial learning rate is 0.01.
The specific parameter settings of the model are shown in
Table 5.

The training loss curves are shown in Figure 14, including
the bounding box loss curve, the confidence loss curve, and
the classification loss curve. The bounding box loss curve and

TABLE 4 Configurations of the experimental platform.

Parameter Configuration

Programming language Python 3.8

GPU accelerated environment CUDA 10.1

Central Processing Unit (CPU) Intel(R)Core(TM)i9-11900K@ 3.50GHz

Random Access Memory (RAM) 32GB

Graphic Processing Unit (GPU) NVIDIA GeForce GTX3080Ti

TABLE 5 Model training parameters.

Parameter Value

Input size 640× 640×3

Epochs 300

Batch size 8

Optimizer SGD

Initial learning rate 0.01
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FIGURE 14

Training loss curve: (A) Bounding box loss (CIoU) curve, (B) confidence loss curve, (C) classification loss curve.

the confidence loss curve indicate that the loss value decreased
rapidly in the first 50 epochs of network training, and tends to be
stable after 250 epochs of training. Since there is only one class
(person) in this model, the classification loss curve remains at
0. Furthermore, the mAP 0.5@ curve and mAP 0.5@ :0.95 curve
are shown in Figure 15, which indicates that the model is well
trained without overfitting.

Ablation studies

In order to explore the effect of the two improved
parts on the model, we conducted ablation experiments as
shown in Table 6. The “YOLOv5s+P2” model represents
the model after adding an extended small object detection
layer. The computational cost of this model has grown
exaggeratedly from 15.8 to 23.4. But at the same time,
the detection accuracy is also significantly improved. The
“YOLOv5s+P2+Ghost” model represents the model after using
the Ghost module and the C3Ghost module based on the
above model. The detection accuracy is slightly reduced, but
still better than the original YOLOv5s model. The number
of parameters decreased from 7352040 to 3860736. The

FIGURE 15

The mAP curve: (A) mAP 0.5@ curve, (B) mAP 0.5@ :0.95 curve.

FLOPs dropped from 23.4 to 12.2. The lightweight effect
is remarkable.

The comparison results with related
methods

In order to prove the effectiveness and superiority of
the improved model, the improved model is compared with
the original YOLOv5s, the mainstream lightweight networks
YOLOv4-tiny and YOLOv3-tiny. The results are shown in
Table 7. It can be seen in Table 7 that compared with the original
YOLOv5s, the improved model mAP 0.5@ value increased by
2.3%, the map 0.5@ :0.95 value increased by 1.1%, the parameters
decreased by 44.9%, the model weight size compressed by
39.4%, and FLOPs reduced by 22.8%. Compared with the
experimental results of other models in the table, it can be seen
that the improved model has the highest detection accuracy,
the minimum amount of training parameters, the minimum
model weight and the minimum amount of calculation, which
is conducive to the deployment of this model on UAVs. It
can be concluded that this method has advantages over other
mainstream lightweight networks.

Visualization result

In order to further prove the effectiveness and superiority of
our model. Some visualization results of the original YOLOv5s
model and the improved model on the test set. See Figure 16 for
the practical effect.

Figure 16A shows the detection results of the original
YOLOv5s model, and Figure 16B shows the detection results
of the improved model. Box A, Box B, and Box C are partial
magnifications of the test picture. First of all, by comparing the
Box A of Figure 16A and that of Figure 16B, the confidence of
the improved model for small object detection is significantly
improved. In addition, comparing Box B in Figure 16A and that
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TABLE 6 Ablation study.

Model mAP 0.5@ mAP 0.5@ :0.95 Parameters Weight size/M FLOPs/G

YOLOv5s 86.4% 55.0% 7,012,822 13.7 15.8

YOLOv5s+P2 88.9% 57.9% 7,352,040 14.9 23.4

YOLOv5s+P2+Ghost 88.7% 56.1% 3,860,736 8.3 12.2

TABLE 7 The comparison results with related methods.

Model mAP 0.5@ mAP 0.5@ :0.95 Parameters Weight size/M FLOPs/G

YOLOv3-tiny 79.8% 41.6% 8,666,692 16.6 12.9

YOLOv4-tiny 81.5% 46.1% 5,878,736 11.3 16.2

YOLOv5s 86.4% 55.0% 7,012,822 13.7 15.8

Ours 88.7% 56.1% 3,860,736 8.3 12.2

FIGURE 16

Comparison of visualization results before and after model improvement. (A) Detection result of the original YOLOv5s model. (B) Detection
result of the improved model.

of Figure 16B, the original YOLOv5s model misjudged the white
spray as a person, which led to false detection. However, the
improved model has no error detection. Finally, comparing Box
C in Figure 16A and that of Figure 16B, the original YOLOv5s
model has an omission. However, both people were detected by
the improved model. Therefore, it can be concluded that the
detection effect of the improved model for small targets is greatly
enhanced.

Conclusion

Due to the target scale in the perspective of the UAVs is
small, and these small objects bring difficulties to detection.
In addition, due to the limitations of UAVs’ computing power
and storage space, UAVs need to carry a model with small
weight, few parameters, low computational complexity, and
easy deployment. In order to solve the two issues mentioned

above, this paper proposes a lightweight detection model for
rescue targets in marine casualty based on UAVs image analysis
of YOLOv5s. In this paper, the datasets for the training of
marine rescue model is proposed. Then, an extended small
object detection layer is added to the original YOLOv5s. In
the end, the Ghost module and the C3Ghost module are used
to replace the Conv module and the C3 module in YOLOv5s,
which achieve lightweight network design. It can maintain
high model prediction accuracy and significantly reduce the
volume of the model. Compared with other mainstream
models, the experimental results indicate that the improved
model can effectively identify the drowning person and meets
the requirements of the lightweight embedded model. This
improved model is easier to deploy on UAVs to carry out
maritime rescue tasks, and has certain social value.

Although the improved YOLOv5s network has achieved
good results in detecting drowning persons, the detection
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accuracy still needs to be improved. According to our
observation, the application background also has the problem
of mutual occlusion caused by too dense small targets. In future
research, the network model structure will be further optimized
to improve the network performance.
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