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Introduction: Improving the robustness of myoelectric control to work over

many months without the need for recalibration could reduce prosthesis

abandonment. Current approaches rely on post-hoc error detection to verify

the certainty of a decoder’s prediction using predefined threshold value.

Since the decoder is fixed, the performance decline over time is inevitable.

Other approaches such as supervised recalibration and unsupervised self-

recalibration entail limitations in scaling up and computational resources. The

objective of this paper is to study active learning as a scalable, human-in-the-

loop framework, to improve the robustness of myoelectric control.

Method: Active learning and linear discriminate analysis methods were used

to create an iterative learning process, to modify decision boundaries based

on changes in the data. We simulated a real-time scenario. We exploited

least confidence, smallest margin and entropy reduction sampling strategies

in single and batch-mode sample selection. Optimal batch-mode sampling

was considered using ranked batch-mode active learning.

Results: With only 3.2 min of data carefully selected by the active learner,

the decoder outperforms random sampling by 4–5 and ∼2% for able-bodied

and people with limb di�erence, respectively. We observed active learning

strategies to systematically and significantly enhance the decoders adaptation

while optimizing the amount of training data on a class-specific basis. Smallest

margin and least confidence uncertainty were shown to be the most supreme.

Discussion: We introduce for the first time active learning framework for

long term adaptation in myoelectric control. This study simulates closed-loop

environment in an o	ine manner and proposes a pipeline for future real-time

deployment.

KEYWORDS

myoelectric control, active learning, machine learning, prosthetics, adaptation

1. Introduction

Benefiting from an exponential increase in computational power and the availability

of data, machine learning stands as one of the main pillars of the digital revolution.

Not surprisingly, the literature on myoelectric control has also seen the reemergence of

academic interest in the use of machine learning for the classification of the myoelectric
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signals (Buongiorno et al., 2019). Likewise, myoelectric industry

has recently developed or adopted machine learning-based

solutions, although large scale deployment of such methods

is challenging because the performance of current machine

learning algorithms degrades over time (Kaufmann et al.,

2010; Amsüss et al., 2013; He et al., 2013). It is caused by a

range of intrinsic factors, e.g., changes in muscle physiology

(atrophy or hypertrophy; Kyranou and Erden, 2018) and motor

behavior (Hahne et al., 2020) as well as extrinsic perturbations

such as electrode displacement and arm position (Scheme and

Englehart, 2011; Radmand et al., 2014).

A conventional way to enhance the robustness of machine

learning-based decoding is to use a post-hoc error detection

system that determines whether a decoder’s prediction is certain

enough. Based on predefined criteria of certainty, the model

outputs a movement class label, and the prosthesis executes

the movement if the predicted probability attains a preset level

of confidence (Scheme et al., 2013; Amsüss et al., 2014; Al-

Timemy et al., 2018; Krasoulis et al., 2020). In this approach, the

classifier is fixed, that is, it is not updated upon the detection

and rejection of errors. Hence, these approaches do not address,

but partially circumvent, the issue of performance decline over

time. To address this concern, ideally both human motor

function as well as the machine learning system should modify

their behavior over time, that is the so-called co-adaptation.

However, in all earlier literature that advocates for motor

learning/adaptation for prosthesis control (Radhakrishnan et al.,

2008; Segil and Weir, 2015; Dyson et al., 2018, 2020; Antuvan,

2019; Segil et al., 2020), a fixed decoder was used and

learning/adaptation was quantified by probing the human’s

motor behavior. On the other hand, despite the use of terms

such as co-adaptive, machine adaptation has been shown to

work for short term data and in fixed environment, without any

direct involvement from the user beyond the operation of the

interface (Hahne et al., 2015; Vidovic et al., 2016; Igual et al.,

2019).

To the best of our knowledge there is no platform that

enables and explicitly verifies a human user and the machine

co-adapt. Nevertheless, research on the development of closed-

loop frameworks that allow machine adaptation is ongoing.

Broadly, these can be grouped into supervised recalibration and

unsupervised self-recalibration.

In supervised re-calibration, a set of predefined tasks is

performed at every iteration of decoder update (He et al., 2015).

This naive approach puts the onerous of regular system updates

on a user. An alternative approach uses a new set of labeled

samples (Liu et al., 2014; Vidovic et al., 2015). Specifically, Liu

et al. (2014) modified the classifier using all prior models from

previous days to recalibrate the decoder. In contrast, Vidovic

et al. (2015) focused on optimizing the decoder using small runs

of daily data. Examples of periodic recalibration using transfer

learning were also used in an attempt to decrease the amount

of needed data (Prahm et al., 2017; Côté-Allard et al., 2019).

Moreover, Gu et al. (2018) used an incremental learning scheme

to redefine a representative sample set for model training. These

scenarios however can account for small shifts in the distribution

of the data only, and hence are more suited for short term

laboratory research.

System recalibration shows performance improvement, but

retraining is not a sustainable solution for long-term prosthesis

usage. It disrupts the prosthesis use, requires memory, and

is costly computationally. To address these shortcomings, the

method of pseudo-labeling for unsupervised self-calibrating has

been proposed. By using models’ predictions to annotate/label

the data, the system is able to adapt using only estimation

of the user intents (Sensinger et al., 2009; Chen et al.,

2013; Zhai et al., 2017; Côté-Allard et al., 2020). Given its

unsupervised nature, it removes the burden of successive

retraining processes and hence becomes easier for the user.

Initial attempts toward system recalibration involved post-

hoc comparison analysis, by enlarging the training pool with

respect to controller confidence using unsupervised entropy-

based confidence threshold (Sensinger et al., 2009). Using the

predictions of testing data from previous sessions, Chen et al.

(2013) updated the model to maintain the performance. Such

a self-enhancing classifier is a self-recalibrating system because

it continuously updates its parameters without enlarging the

dataset, that is the testing data is discarded after each model

update. Preliminary results were promising, but they were

based on single-day data acquisition (with 2–3 and 6–7 h time

span between training and testing data collection). Recently,

Zhai et al. (2017) suggested refining decoder by using the

predictions from the previous training sessions and those

based on adjacent window segments. This concept was based

on assumption that neighboring segments share the same

class movement. To enhance relabeling using context-based

predictions, domain adaptation was applied in Côté-Allard et al.

(2020). They report performance improvement over the no

calibration setting. Yet, when compared with recalibration, the

performance degradation was significant.

The aim of this paper is to demonstrate, in an offline

setting, this bottleneck can be addressed fundamentally

using active learning (Settles, 2009). We offer a structured

perspective and methodology, via which a user can interact

with the machine. The intuition behind this approach is

based on selecting new (unlabeled) data samples that are

representative of the underlying real-world data distribution

or they provide new information for the model during

the training process. Specifically, the objective of active

learning algorithms is to define samples for optimal model

training by minimizing labeling costs while maximizing a

model’s performance.

We will argue that this approach can provide a sustainable

solution for the shortcomings of all previously stated
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approaches. Active learning is capable of detecting new

regions of interest and modifying decision boundaries based

on changes in data (possible distribution shifts and others).

Rejection-based calibration dismisses those samples. This is a

feasible solution in a short term scenario, however over time it

will lead to discrepancy and system limitations. This problem

can be solved by simply retraining the decoder using more

data (supervised recalibration). Yet, active learning increases

robustness of the model by choosing informative samples and

simultaneously using less samples for training (a.k.a. decreasing

computational costs). Unsupervised calibration tries to tackle

the problem from the annotation point of view. However, as

it often relies on initial calibration being well-optimized, if

impaired it can lead to a drastic decrease in the performance

of the model over time. Active learning can optimize this

performance with as fewest samples as possible, leaving this

approach supreme in all aspects.

2. Materials and methods

2.1. Data collection

Data was collected as part of Krasoulis et al. (2020). For

completeness we briefly described the experimental process.

The myoelectric signals were collected from the forearm of 12

able-bodied and the stump of two subjects with trans-radial

limb loss. See Table 1 for a description of participants with

limb loss. Prior to the placement of myoelectric sensors, we

cleansed participants’ skin using 70% isopropyl alcohol. In the

first group, we placed 16 TringoTM sensors (Delsys, USA) on

the participants’ in two rows of eight equidistant electrodes. For

subjects with limb loss, we used 13 and 12 sensors based on

their physiology of the stump after amputation. We used an

adhesive elastic bandage to secure the locations of the electrodes

throughout the sessions.

Sampling rates in data recording were originally 1,111

and 128 Hz for the myoelectric channels and the inertial

measurement data, respectively. This sampling rate was the

standard and fixed hardware sampling rate of Delsys Trigno

system when inertial data was recorded simultaneously. We

did not use the recorded inertial data in this study. In the

process of data cleaning, the Hampel filter was applied to up-

sampled (2 kHz) data to eliminate the power line inference.

This pre-processing followed the process introduced in Atzori

et al. (2014). The data was then band-pass filtered in the range

30–400 Hz using a 4th-order Butterworth filter. In this paper,

we used only the myoelectric data. In a sliding window of

128 ms (256 raw signal samples) with an increment of 50

ms (100 raw signal samples) the waveform length for each

channel was calculated resulting in 16 values per window

(one per sensor), and 13 and 12, respectively participants with

limb loss. In the discussion, we described why we chose only

one feature.

Data was collected in two identical sessions, namely T1 and

T2, which were conducted sequentially on the same day. During

the recording session, each subject was instructed to perform the

grips that were shown on a computer screen. The experiment

involved five grips, namely power grip, lateral grasp, tripod

grasp, index pointer, and hand open. During two blocks of data

recording, each grip was repeated 10 times, with 5 s of muscle

activation followed by 3 s of rest.

The first dataset, T1, was used for training and the second

dataset, T2, was used for testing the decoder.

2.2. Active learning

A general framework for an active learner includes two sets

of data, namely an initial small set of labeled data L and a large

pool of unlabeled samples U. Based on initial subset of data,

L∗ ⊂ L, a model f (x|L∗) is trained. The aim of an active learner

is to choose an L∗ such that f (x|L∗) ≈ f (x|L). Note that these

two sets are not the same sets as T1 and T2.

To obtain L∗, the active learner adopts a query strategy and

a current model f (x|L′), where L′ is a transitional annotated

set, and selects new samples for annotation by an oracle,

e.g., the prosthesis user. The oracle has the task of labeling

the unlabeled data. Figure 1 presents a generic active learning

framework. Starting from the initial dataset, themodel is trained.

Adopting on a query strategy, the active learner selects new

instances xU from the pool of unlabeled data for labeling

by the oracle and moving them from U to L. The model is

then updated.

There are three main strategies of sampling from the pool of

unlabeled data, namely, stream-based selective sampling (Atlas

et al., 1990), membership query synthesis (Angluin, 1988), and

pool-based active learning (Lewis and Gale, 1994). We adopted

the pool-based samplingmethod in this proof of concept, offline,

study. We also shared our views as to how active learning can be

implemented in a real-time myoelectric control setting.

2.3. Query strategy

Active learning is based on defining optimal criteria for

deciding whether the oracle needs to label an unlabeled

sample, that is a query. Using measures that determine the

informativeness and/or representativeness of a sample, there are

many algorithms for querying the label. Informativeness is

typically measured with uncertainty sampling. In this method,

the active learner finds samples in the pool about which the

decoder is least certain. We used the following metrics:
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TABLE 1 Medical records of amputee subjects.

Gender Age Type of

amputation

Cause of amputation Years Missing limb Hand dominance

(prior to amputation)

Prosthesis use

Male 28 Transradial Car accident 6 Right Right Split hook

Male 54 Transradial Cancer (epitheliod sarcoma) 18 Right Right Split hook

FIGURE 1

The generic framework of active learning. The feedback loop

includes a small set of labeled data L that is used to train a

machine learning model. Based on that, the active learner

explores a large pool of unlabeled data U and selects new

samples. These samples are then passed to an oracle, which

would be a prosthesis user in this paper, for labeling. These

samples join the training set for model retraining.

1. Least Confidence Uncertainty (Lewis and Gale, 1994)

considers querying a sample that it is the least certain about

the predicted class:

x∗LC = argmax
x

1− Pθ (ŷ|x) (1)

where ŷ = argmaxy Pθ (y|x). This approach is intuitive,

however, it focuses on the most probable label without

considering the remaining label distribution.

2. Smallest Margin Uncertainty (Scheffer et al., 2001) considers

the uncertainty between two most likely labels:

x∗M = argmin
x

[Pθ (ŷ1|x)− Pθ (ŷ2|x)] (2)

where ŷ1 and ŷ2 are the two labels with the highest

probabilities predicted by the model. Intuitively, large

margins are easy to identify as they are expected to be far

from the decision boundary. Instances with small margins

dictate potential ambiguity in discriminating between the

two classes. Acquiring such instances improves classification

within the decision boundary area.

3. Entropy Reduction (Shannon, 1948) sampling strategy uses

entropy to measure the amount of information necessary to

depict a distribution. As such, often described in machine

learning as a measure of impurity.

x∗H = argmax
x

−
∑

i

Pθ (yi|x) log Pθ (yi|x) (3)

where yi indicates all plausible annotations.

Alternative to the single sample selection, a batch-mode

active learning can be applied, which allows querying larger

sets of samples. We used ranked batch-mode active learning

(RBMAL) (Cardoso et al., 2017), which generates an optimized

ranked list (Q) of unlabeled samples. Specifically, the uncertainty

estimation step calculates two sets. First, uncertainty scoreUscore

for all unlabeled samples in U, and Destimate set with L samples

and already included (if any) samples within the ranking Q. The

set Destimate presents the expected training set given all samples

within the ranking Q will be annotated. Then, for instance,

ranking score value for each sample within U (Equation 4) is

calculated using similarity score 8 and Uscore. To define 8, the

highest similarity between samples from the expected training

set Destimate and each U instance was calculated. Combining

this information enables the calculation of score to determine an

instance with the highest value to be added to Q (and removed

from U). This process for ranking construction is repeated until

U = ∅ or |Q| = batchSize.

score(x) = α×
[

1.0−8(x,Destimate)
]

+(1.0−α)×Uscore(x), (4)

where α =
|U|

|U|+|L′|
balances the trade-off between

exploration and exploitation.

2.4. Experiment design

We ensured that all classes, including the rest and grasp

classes, had the same number of samples, i.e., balanced

classification. This was achieved by under-sampling of the rest

class which appeared between each grip repetition. The initial

training set L ⊂ U included 300 samples in total, that is 50

samples per class. We sought to simulate a real-life scenario

and hence picked the first 50 samples of data in each class in

T1. This is equivalent to ∼2.6 s of myoelectric data per class,

in the time domain. We treated the rest of the data in U as

unlabeled samples. All training data was from the first recording

session, T1.
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FIGURE 2

Averaged test accuracy across all able-bodied participants (A) and people with limb di�erence (B). Initial training sets for subjects in both groups

contained 50 samples from each class. Initial accuracy without active learning is presented at query step zero. O	ine baseline: 82% (A) and 63%

(B) for able-bodied and people with limb loss, respectively.

TABLE 2 Method comparison between query 200 and 1,500. All accuracy are reported in %.

Able-bodied Amputee 1 Amputee 2

Q200 Q1500 Q200 Q1500 Q200 Q1500

Acc (std) F1 Acc (std) F1 Acc F1 Acc F1 Acc F1 Acc F1

Entropy 77.2 (12.7) 0.76 85.9 (7.3) 0.86 65.1 0.65 67.8 0.66 61.1 0.58 62.3 0.59

Uncertainty 79.1 (11.8) 0.78 86.1 (7.3) 0.86 68.4 0.67 68.1 0.66 62.1 0.58 63.7 0.61

Margin 80.9 (10.9) 0.8 85.9 (7.6) 0.86 69.6 0.68 67.8 0.66 61.6 0.58 64.7 0.62

Random 76.7 (11.9) 0.76 81.7 (9.1) 0.82 66.8 0.66 67 0.65 60.1 0.58 62.4 0.6

For single instance sample selection we compared the four

approaches, namely random sampling (i.e., passive learning),

least confidence uncertainty, smallest margin uncertainty,

and entropy reduction. We used the results of the random

sampling approach as benchmark. We made 1,500 queries

iteratively and at each iteration the training set was normalized

to its z-scores. Then a linear discriminant analysis model

was fitted on the normalized training set, L′. All resultants

1,500 models were tested with the data from the second

session, T2.

The second analysis compared the performance of single

instance sampling with that of two batch-mode sampling

methods, namely naive and ranked. The former approach

focuses on finding n best samples to query within single

iteration. The latter learns to obtain an optimal set of samples

to query from. The ranked method removes potential sample

redundancy within a queried batch (if queried samples are

too similar) by emphasizing sample diversification using the

Euclidean distance measure.

To avoid any bias in training the decoder using the

random batch sampling method, we imposed the constraint

of sampling one sample per class within the same batch,

keeping the batch size to 6. This ensured an independent and

identically distributed random sampling condition, imposed

on random sampling scenario, throughout all the iterations.

All previously mentioned query strategies were used in this

analysis too.

2.5. Analysis

Metrics used for the evaluation of the proposed approaches

included accuracy and F1-score (i.e., harmonic mean of

precision and recall). Accuracy is the percentage of samples that

have their labels correctly recognized. F1-score was calculated

per class using one-vs.-all scheme and then averaged across the

classes, that is micro-averaging. These measures, together, reflect

the overall success of the proposed approach.
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FIGURE 3

Accuracy plots to compare all investigated query strategies at two stages: After the first 200 and after all 1,500 queried samples. Each marker

represents results from one participant. Random sampling (in A) compared against the remaining three approaches shows a visible tendency to

achieve lower accuracy. Irrespective of the choice of query sampling, active learning outperformed the conventional random sampling, because

results from all participants lie above the unity line, i.e., in the blue zone, when 1,500 samples were selected. A similar conclusion can be drawn

when 200 samples wee drawn although for a very few participants, random sampling was more successful. When di�erent active learning query

strategies were compared (B), di�erent query sampling were comparable but margin sampling seemed to o�er a lightly higher performance.

3. Results

3.1. Single query sampling

Four query strategies were compared across 1,500 single

queries (equivalent to 3.2 min of data). Figure 2 presents the

accuracy scores of all query strategies plotted against a number

of queried samples and averaged across all participants. The

classifier was initially trained with 50 samples from each class

(giving 15.9 s of training data per subject). The mean accuracy

and standard deviation for able-bodied participants and people

with limb difference, before the first query was 63.66± 16.13 and

54.24± 2.65%, respectively.

Analysis of data from able-bodied participants showed that,

active learning, irrespective of the adopted sampling method,

outperforms random sampling by 4–5%. This improvement

for people with limb difference was ∼2%. Although entropy

sampling outperformed the baseline, it required more samples

to level off with remaining active learners. These improvements

might seem small, but we would like to remind the reader that

they were achieved with only 1,500 samples (only 3.2 min of

data) and very little additional computations. For completeness

we also considered the case of 200 queries only. Details on

obtained results for both query numbers and all sampling

strategies are presented in Table 2.

3.2. Comparison of queries

Figure 3 depicts accuracy scores obtained by all the

subjects after querying the first 200 and after all 1,500

samples. For a comprehensive analysis, all combinations are

reported. In the first row, three adjacent plots map out

random sampling against active learning query strategies. In

all cases, active learning outperformed random sampling in

almost all subjects, that is markers representing accuracy

results from individual participants lie above the unity line in

Figure 3A. When active learning approaches were compared

against each other, results were relatively similar (c.f. Table 1).

Interestingly, for most subjects, margin sampling proved slightly

more successful.

Figure 4 represents number of queried instances from each

grasp per query strategy (Figure 4A), averaged across all able-

bodied participants. In random sampling, the data is picked

with discrete and uniform probability distribution across all

the classes, hence when 1,500 samples is being queried, ∼ 250
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FIGURE 4

Grip instances acquisition during 1,500 querying process across

all the subjects: able-bodied participants (A) and people with

limb di�erence (B). Query strategies are compared against class.

In (A), the highest demand for new instances within 1,500

queries was for the lateral grip. The pointer grip and hand open

classes needed the fewest samples. In contrast to able-bodied

participants, active learning requested fewest samples for the

rest class. In all cases, random sampling drew 250 samples on

average.

samples is acquired from each grip class. These are then

averaged across all participants. However, with active learning,

we can observe a class-specific sampling. When inspecting grip

trends for active learning query strategies, we observed rest

class being acquired the most by entropy sampling for both

participant groups. Characteristic for all strategies, most samples

were queried for the lateral grasp class. This is explainable

from an anatomical point of view: the abductor pollicis brevis

longus muscle, which is responsible for thumb movement

and stabilization, is a deep muscle in the forearm. Hence the

FIGURE 5

Comparison of single instance (A), batch mode (B) and ranked

batch mode (C) sampling methods in one representative

participant.

myoelectric data from this muscle is affected significantly by

volume conduction and interference from other muscles. As

such active learning prioritized querying this class.

Figure 4B shows the same analysis on data, averaged across

the two people with limb difference. Themost striking difference

between data from the two groups was that active learning

required significantly smaller number of samples for the rest

class. Yet, the inter-subject differences were too large to warrant

statistical significance.

3.3. Batch mode

For batch mode analysis, two scenarios were considered:

naive batch sampling and ranked batch sampling. Both

approaches followed similar protocol for experimental design

as in single instance sampling. Active learning framework was

constructed with a linear discriminator analysis decoder, 50

initial samples (acquired in the same manner as in the previous
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FIGURE 6

The envisaged real-time operation of a user-in-the loop setting with an active learning. Movement intention generates new signal data each

second (w.r.t. the sampling rate). Unlabeled samples after being preprocessed are classified by pre-trained decoder. Active learner using query

sampling criteria decides whether to request the label or not. Confident samples pass certainty check criteria to be sent to the prosthesis

actuator. If a sample is queried by the active learner, the oracle dis-/approves the decoder prediction. Incorrect predictions are filtered with R&I

(representativeness and informativeness criteria) for outlier detection and interesting samples to be weakly-labeled. These combined with

ground truth samples are used to update the decoder. *R&I, representativeness and informativeness.

experiment) and 250 queries (with six samples per batch,

corresponding to 3 ms) which is the equivalent of the number of

samples obtained after 1,500 queries for single instance sampling

(250 queries× 6 samples).

Observed results in Figure 5 indicate single instance

sampling and batch mode sampling behave in a similar manner.

Margin and uncertainty sampling perform the best. However,

ranked batch mode sampling presents divergent results. In the

initial stages of querying, random batch sampling outperformed

active learning query strategies. Entropy and uncertainty

sampling slowly converged and outperformed random batch

sampling (as the number of iterations increased). Important

to note, random batch sampling was constraint to querying a

sample from each class (within a single batch) at each iteration to

ensure no bias across classes occurs in further iterations. Based

on this constrained, batch size for sampling new instances was

set to six (number of classes) for all query approaches. In contrast

with the previous approaches, margin ranked batch sampling

had the lowest performance across all sampling methods.

4. Concluding remarks

We introduced active learning for myoelectric control as

a potential approach to ease re-calibration and enhance long-

term decoding stability. We reported the results of an offline,

feasibility study in a simulated human-in-the-loop setting. We

will draw conclusions as to how the proposed approach can

be implemented in real-time. We envisage that the machine

learning decoder, supplied with only a small subset of labeled

data, using an active learning boost can efficiently exploit an

abundance of unlabeled data in closed-loop, real-life settings.

We utilized a linear decoder, as an example. Nevertheless,

we could have used active learning with any machine learning

decoder. Results reported during the experiments prove the

effectiveness of this approach with such a simple decoder.

The input feature was the waveform length of the myoelectric

signals. We chose it because it has been shown as one of the

most effective features for myoelectric signal classification. This

approach also enabled us to avoid the curse of dimensionality,

especially in the initial phase of learning when the decoder was

trained on the 300 samples only.

Within a pool-based setting, three sampling methods were

considered: single instance sample selection, batch-mode and

ranked batch-mode. Although, active learning can consider a

cold start with no initial dataset, using a small number of labeled

samples can initially boost active learning performance. We

included the first 50 samples from each class, equivalent to 2.65

s of data, mimicking real-life scenarios.

We demonstrated that active learning outperforms random

sampling. Within proposed query strategies, the smallest margin

sampling and least confidence uncertainty achieved higher

accuracy in most participants. Intuitively, we expected large

margins to be further away from the decision boundary,

which consequently means instances with a small margin

could potentially provide information to improve the decision

boundary. Least confidence uncertainty focuses on sampling

cases which the model is the most unsure about. In the initial

stages of training, entropy sampling presents a decrease in

performance for able-bodied participants and is comparable

to baseline results for amputees. This type of behavior can

be caused by emphasizing feature space exploration over

exploitation by query strategy.

As stated earlier, the objective of an active learner is to

optimize amount of data needed for training the decoder

while maximizing its performance. Using passive learning, i.e.,

random sampling, gave us performance comparison against

the baseline. Since our experiment is static, that is the pool
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of the data does not change with time, the active learners

after querying all the samples will converge to the same

performance as the random sampling solution. This would

provide the results equivalent to offline training on the entire

block T1 (initial and pool data set altogether). Figure 2

presents the results after training the decoder on the entire

block T1. As noticed, the performance of active learner at

query no. 1500 is greater than when entire data set is being

used. We presume the potential noise of the signal and

transient periods created noisy input data, leading to decreased

performance.

When considering query sampling size, we applied batch-

mode active learning and ranked batch mode active learning.

Performances of single instance sampling and BMAL were

comparable. In RBMAL, exploration (uncertainty measure)

was compromised by exploitation (distance measure). Thus,

active learning at the initial querying stages showed a lower

performance than the benchmark. Among those, margin

sampling was the one to perform the worst. Smallest margin

sampling looks for n best samples that potentially lay on decision

boundaries (difference between two most probable classes is the

smallest in respect to the pool of the data). We presume this

can be potentially caused by samples with the smallest margin

being quite similar/close to each other which is compromised

by similarity score (distance measure) to avoid potentially

redundant samples.

4.1. From o	ine to real-time deployment

Creating a human-in-the-loop environment has the

potential to motivate the users to engage more with the decoder

and ultimately lead to an enhanced control of the prosthesis.

We presented a closed-loop setting in which an oracle and a

prostheses user are the same. Figure 6 offers one perspective by

which an active learning paradigm could be implemented in

real-time.

One might assume that asking the user for specific

labels in a real-time setting, e.g., in the stream-based active

learning paradigm, can prove difficult and indeed no hardware

setting is readily available to capture such user input. To

minimize user input when the active learner is requesting

incoming data to be labeled, the user has to specify only

whether the decoder prediction was correct or not (a binary

choice). Real-time prosthesis movement is performed only

after unlabeled samples from movement intention pass safety

check (certainty/confidence criteria) or the user has confirmed

the decoder prediction. The additional R&I criteria on

incorrect predictions (false positives) would work as a filter

for noise/outlier detection and sample re-selection for weak

supervision.

This way samples will augment additional information and

can be re-integrated into the pool. Furthermore, this approach

has the potential to minimize the annotation/labeling noise. It is

possible that additional steps may be required to resolve issues

around the user bias.

4.2. Limitations

A limitation of this work is in using a simulated human

annotator as an oracle for the active learning framework;

meaning the entire dataset contains pairs of
{

x, y
}

data.

Nonetheless, labels were introduced to the learner only when

requested by query strategy.

In this study, we focused on the informativeness of the

samples. Further experiments with alternative query strategies

may be needed for more detailed understanding of the

potential benefits of active learning for prosthetic control.

Considering long-term adaptation of the prosthesis in the real-

world, the exploration versus exploitation paradigm could be

further investigated. The trade-off between data informativeness

and representativeness could potentially enhance the decoder

functionality. While initially greedy feature space exploration

enables the model to rapidly boost its performance, with time

defining specific grip characteristics could possibly establish its

singularity aspects.

Data used during this study presented an example of a high-

quality dataset with multiple subjects including people with

limb differences. From each participant, data was recorded in

two distinct, but consecutive, sessions in 1 day. Between the

two sessions, the electrodes remained stuck to the skin with

the help of adhesive tape. This arrangement minimized the

between-session variability in the data, as one would expect to

see with dry electrodes especially when considering the donning

and doffing of a prosthesis socket. This is neither a limitation

of the proposed active learning method nor a shortcoming

of the paper. Nevertheless, this repeatable recording method

minimized the additional benefit of using active learning.

Commercial myoelectric controllers such as Sense (IBT,

USA), Myo Plus (Ottobock, Germany), and CoAPT Gen2

(CoAPT, USA) provide supervised recalibration options with

varying levels of user-friendliness. CoAPT also offers Adaptive

AdvanceTMas an automatic, continuous-learning algorithm that

combines new calibration data into the existing state of

users’ control. However, no technical information about this

adaptive calibration method is available, beyond the generic

text in paragraph [0011] of CoAPT pattern recognition patent

(WO2020172261).

5. Conclusions

We explored the feasibility of using active learning for

pattern recognition-based myoelectric control. We observed

that all adopted active learning strategies improve decoders

adaptation and significantly reduce or optimize the amount of

training data on a class-specific basis. Query strategies, such
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as smallest margin sampling and least confidence uncertainty

were found to improve decoders performance when compared

to conventional random sampling. Future work will include

the development of a setup for testing the active learning in

real-time and with a prosthesis user in the loop.
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