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In human-robot collaboration scenarios with shared workspaces, a highly

desired performance boost is o�set by high requirements for human safety,

limiting speed and torque of the robot drives to levels which cannot harm

the human body. Especially for complex tasks with flexible human behavior,

it becomes vital to maintain safe working distances and coordinate tasks

e�ciently. An established approach in this regard is reactive servo in response

to the current human pose. However, such an approach does not exploit

expectations of the human’s behavior and can therefore fail to react to fast

human motions in time. To adapt the robot’s behavior as soon as possible,

predicting human intention early becomes a factor which is vital but hard

to achieve. Here, we employ a recently developed type of brain-computer

interface (BCI) which can detect the focus of the human’s overt attention

as a predictor for impending action. In contrast to other types of BCI, direct

projection of stimuli onto the workspace facilitates a seamless integration in

workflows. Moreover, we demonstrate how the signal-to-noise ratio of the

brain response can be used to adjust the velocity of the robot movements to

the vigilance or alertness level of the human. Analyzing this adaptive system

with respect to performance and safetymargins in a physical robot experiment,

we found the proposed method could improve both collaboration e�ciency

and safety distance.

KEYWORDS

human-robot collaboration, brain-computer interface, intention prediction, collision

avoidance, trajectory optimization

1. Introduction

Modern industrial production facilities include a variety of manipulation tasks,

many of which have to be performed by robots and require super-human precision.

Others require human-level dexterity and can (as of now) only be handled by human

workers.When these task domains become entwined for complex assembly, the concepts

of human-robot collaboration (HRC) and shared workspaces enter the picture to

make use of both robot automation and human intelligence (Castro et al., 2021).
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However, especially in tight workspaces, HRC approaches must

fulfill the strict requirements for human safety. Human motion

is often fast and diverse, whereas robots should remain relatively

slow in HRC scenarios to be predictable and safe. Thus, it

becomes challenging to adjust the robot’s behavior in time to

coordinate with the human’s movements.

For physical HRC tasks, e.g., handover or collaborative

carrying, the interaction forces between the robot and the

human constitute the most important aspect of safety and

are usually handled by high-frequency impedance controllers

(Ficuciello et al., 2015; Agravante et al., 2019; Stouraitis et al.,

2020). In contrast, this paper focuses on a collaboration scenario

without physical interaction and instead explores how to

strike an efficient balance between working distances and task

performance. The key to achieve this goal is to endow robots

with the ability to not only monitor but also predict the human

partner’s movements or general task plan. Several studies have

investigated methods to monitor or predict human behavior.

In Qi and Su (2022), a multimodal network was proposed

to monitor human activities and health states. As to human

behavior prediction, one approach used time series classification

to predict human reaching targets (Pérez-D’Arpino and Shah,

2015). The human palm trajectory wasmodeled as amultivariate

Gaussian distribution, and the human’s intention was estimated

by conditioning on observed partial trajectories. Another

approach employed Gaussian Mixture Model (GMM) to

classify human arm trajectories (Luo et al., 2018; Park et al.,

2019). It classified human reaching actions through an offline

learning method and could generate collision-free and smooth

trajectories for a robot arm. Human motion was implicitly

modeled through a reward function of hand-target distance and

hand velocity (Cheng et al., 2020; Zhao et al., 2020). In a more

related work (Lyu et al., 2022), a framework was proposed to

combine human trajectory prediction, intention estimation, and

robot trajectory optimization to achieve efficient and collision-

free HRC. Other methods included gaze information in HRC

scenarios. Vision and arm motion data were fused for human

reach target prediction (Ravichandar et al., 2018). The proposed

gaze estimation method was based on external camera data and

failed when the human face was occluded. Gaze information

from an eye tracker was considered to evaluate whether the

human got distracted by the robot’s actions (Cini et al., 2021). In

Trick et al. (2019), gaze, gesture, and speech information were

fused in a Bayesian framework to reduce intention recognition

uncertainty.

We think that multidisciplinary research can provide

alternative information channels between the robot and the

human and help improve HRC (Kragic and Sandamirskaya,

2021). To this end, we investigate the use of brain-computer

interfaces (BCIs) in combination with online trajectory

optimization for safer and more efficient HRC. Robot control

is a prominent application area for BCIs. Applications can

be broadly grouped into human intention prediction for

collaboration and direct or high-level robot control for

teleoperation. The time point of a movement onset can be

predicted from the readiness potential, a conspicuous deflection

in the EEG signal which starts about 500 ms before the

movement. This signal can be used to predict whether the

human will move the left or right arm, and the speed of

the robot can be adjusted according to whether or not the

human is in the shared workspace (Cooper et al., 2020; Buerkle

et al., 2021). Movement-related cortical potentials, recorded

by an EEG amplifier around the time of movement onset,

have been shown to be informative about the upcoming grasp

action, e.g., palmar, pinch, etc. (Xu et al., 2021). Motor imagery

is another prominent BCI paradigm for communicating the

human’s intention. Imagining to move one’s hands, feet or the

tongue generates different patterns in the EEG topographies,

and impressive classification accuracy of these patterns by

deep neural networks have been achieved (Zhang et al.,

2019; Huang et al., 2020). A larger number of intentions

can be encoded by mapping them to keys of a BCI spelling

application. For example, a P300 BCI has been used to control

an assistive robot arm and a mobile robot (Song et al.,

2020).

Another BCI paradigm makes use of the brain’s response

when the human looks at flickering visual stimuli (steady-

state visual evoked response, SSVEP), and it has been used to

select targets in a pick-and-place scenario (Chen et al., 2019).

Typical P300 and SSVEP BCIs present the user interface on

a computer screen or LED panel. Hence a human operator

has to continuously switch gaze between the workspace,

where he plans the next operation, and the BCI interface

to issue the corresponding command for the robot (Chen

et al., 2018, 2019; Song et al., 2020). Augmented reality

environments have been used to overlay the BCI interface

with a camera view of the workspace, but they require the

human to wear virtual reality equipment, and corresponding

studies are scarce (Liu et al., 2019; Ke et al., 2020). To

address the downsides of these SSVEP BCIs, we employ a

recently developed variant that can recognize the gaze direction

relative to a single flicker stimulus (Maye et al., 2017). For

this spatially-coded SSVEP BCI, the user interface can easily

be projected on the workspace, and the operator can control

the BCI by gazing at dedicated locations in the workspace.

As humans tend to look at the location where they are going

to deploy an action (Land et al., 1999; Johansson et al.,

2001), we suggest that detecting the gaze direction enables

seamless integration of the intention prediction in the human’s

workflow.

In addition to this overt attention detection, we decode and

monitor the vigilance or attention level of the operator. EEG-

based methods for vigilance monitoring have been investigated

for decades, and the literature abounds with corresponding

methods (reviewed in Stancin et al., 2021). Using an SSVEP

BCI for intention prediction suggests looking at SSVEP-based
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vigilance monitoring methods. It has been known since the

end of the 1980s that attention can modulate the amplitude

of visual evoked responses (Mangun and Hillyard, 1988). For

SSVEP BCIs, it has been shown that fatigue and fading attention

is associated with reduced amplitude and signal-to-noise ratio

(SNR) of the SSVEP response (Cao et al., 2014). Other studies

found an inverse relationship between attention and SSVEP

amplitude (Silberstein et al., 1990), and the actual association

may depend on the brain network that responds to the stimulus

frequency (Ding et al., 2005; Gulbinaite et al., 2019). Here,

we consider vigilance as a dynamic process which is not only

influenced by the human’s ability to maintain a stable attention

level or fatigue but also by the interaction with the robot.

Therefore we monitor vigilance changes on a sub-minute scale

(Jung et al., 1997) and take the SSVEP SNR as an index

of the operator’s vigilance which can modulate the robot’s

behavior.

Most studies on BCI methods for HRC focus on the

development of the BCI component (Chen et al., 2018, 2019)

or evaluate the interaction in simulation (Buerkle et al.,

2021). Here, we demonstrate methods for integrating BCI

output as well as human arm tracking data with the robot

controller in a physical setup. To this end, we integrated

the reach target prediction and vigilance monitoring from

the BCI with an online trajectory optimizer. The robot’s

current workspace target was adjusted online according

to the BCI-based intention predictions, and the robot’s

operating velocity was modulated according to the operator’s

vigilance level. Human arm positions were tracked online

and used by a trajectory optimization algorithm for collision

avoidance, ensuring human safety. The system was evaluated

on seventeen participants, comparing three conditions in

which the robot controller received information about the

target either after the operator started to move the arm

(arm tracking), before moving the arm (BCI), or adjusted

the robot’s velocity according to the operator’s vigilance in

addition to the BCI-based target prediction. Our results suggest

that the proposed BCI and vigilance monitoring strategy

can improve both HRC efficiency and safety at the same

time.

Given the above, the key contributions of this work are as

follows:

1. To our best knowledge, this is the first attempt to investigate

the use of a BCI in combination with online trajectory

optimization for HRC in a narrow shared worksapce.

2. We employed a recently developed BCI paradigm that can

recognize the gaze direction relative to a single flicker

stimulus to predict human intention. The SSVEP SNR was

used as an indicator of the human’s vigilance to modulate the

robot’s behavior.

3. We demonstrated the method of integrating BCI output as

well as human arm tracking data with the robot controller.

2. Materials and methods

2.1. Setup and task description

This study targets scenarios with non-physical collaboration.

In such setups, the robot and a human work at multiple

locations in the same workspace, but they are never assigned

the exact same work location at the same time. Such tasks

include component allotment (Pérez-D’Arpino and Shah, 2015;

Li and Shah, 2019; Park et al., 2019; Unhelkar et al., 2020),

collaborative assembly (Cheng et al., 2020; Zhao et al., 2020),

and daily food preparation (Unhelkar et al., 2020). We consider

a similar scenario about collaborative screw assembly. In

this scenario, there are five products to be screwed in five

locations. The human will put the screws into the screw

holes of the products, and the robot needs to get the

screws in. In order not to interfere with humans, the robot

must work on different products with screws from the one

the humans are working on. To simplify, we simulate this

scenario using stand-in touch gestures and define five target

locations, marked by colored blocks, between the human and

the robot.

We used a UR10e robot arm with a Shadow C6 dexterous

left hand. The architecture of the proposed HRC framework is

shown in Figure 1.

The human and the robot touched the individual blocks

with their index finger tips. At each target location, they

hovered the hand for 1.5 s above the block and actuated

a simple finger motion to touch its top. The robot had

to avoid contact with the human’s arm and needed to

adjust its reach target location accordingly. In addition, the

robot’s arm velocity was modulated by the vigilance level of

the human.

2.2. Participants

Seventeen subjects participated in the study; five of them

were female. They were between 17 and 40 years old

(mean: 27.82 years). All of them had normal vision and

were free of neurological and ophthalmological disorders. All

but two participants declared to be right-handed; the two

left-handers stated that their right hand would be equally

skilled with regard to the described task. Eight participants

were external to the associated institutions and received

financial compensation.

Before the experiment, the purpose and content of the

study were explained to the participants. Safety procedures were

pointed out including velocity and force limits of the robot arm

as well as a foot pedal and emergence stop controlled by the

experimenter. The participants were informed that they had the

right to quit the experiment at any time without justification. A
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FIGURE 1

The proposed HRC framework.

consent form was provided and explained to the participants in

detail before the experiments.

2.3. Experimental conditions

The study was comprised of three conditions, preceded

by an initial training session to calibrate the BCI. The order

of the conditions was randomized and counterbalanced across

participants.

In the training session, the robot hand approached the

targets in a fixed order, tipping each one as described above. The

participants were instructed to stand still in front of the table and

gaze at the target positions that were cued by the BCI (see below).

The recorded EEG signals were used to train the classifier of the

BCI.

In the arm-tracking condition (AT), the online robot

controller relied solely on arm tracking data for safe robot

control. For each time step, the target location that was closest

to the participant’s palm was taken to be the current reach goal

of the participant. The robot’s velocity limits were constant.

This condition served as a baseline for evaluating the two BCI-

enabled conditions.

The BCI condition provided the robot controller with

the target location that the participant was gazing at before

commencing the reach gesture. The operator instructions and

robot control method were the same as for the AT condition.

The third condition (BCI+VCV) utilized the BCI target

prediction but additionally considered the current estimation

of the participant’s vigilance for controlling the robot’s velocity

(vigilance-controlled velocity). Following the hypothesis that a

more vigilant participant can interact safely with a faster robot

partner, the estimated vigilance was used to adjust the robot’s

joint velocity limits within a margin.

In the breaks between sessions, participants were

encouraged to improve the classification accuracy of the

BCI in the next session by increasing their visual attention to

the target locations and suppressing any distracting thoughts.

2.4. Brain-computer interface

A recently developed, spatially-coded SSVEP BCI was

employed to detect the human’s gaze direction. In contrast to

conventional frequency-coded SSVEP BCIs in which targets are

defined by different frequencies and/or phases of several flicker-

stimuli, it requires only a single flicker-stimulus and identifies

targets from the location of this stimulus in the visual field

of the operator. Preliminary results suggest that this approach

may reduce visual strain from operating the BCI in addition to

simplifying its stimulation setup. A detailed description of the

paradigm and a comprehensive analysis of its performance can

be found in Maye et al. (2017); here, we explain its adaptation to

the HRC scenario.

Reach target locations can be decoded from brain activity

by their position in relation to a flicker stimulus. This visual

flicker elicits a standing wave of steady-state evoked potentials

(SSVEPs) in the occipital cortex at the flicker frequency, and

the topographic distribution of this response across the scalp

can be used to infer the human’s gaze direction. Since EEG

topographies show substantial variability across the population,

the approach works best when for each user samples are

recorded in a training session and used for classifying data

in the application phase. EEG data were recorded from 32

electrodes placed on the scalp according to the 10-20 system and
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FIGURE 2

Relationship between valid target locations for the robot (light blue targets) given an intended human target location (green). Red targets are

blocked by the human arm.

connected to an ActiveTwo amplifier (BioSemi instrumentation,

Amsterdam, The Netherlands). This system employs active

electrodes and common mode rejection to reduce artifacts from

external electromagnetic fields, making it suitable for application

in environments with common levels of electromagnetic noise.

Apart from band-pass filtering, no other measures were taken

to eliminate artifacts in the EEG data. The flicker stimulus

in our setup was a white disc appearing and disappearing

with a frequency of 15 Hz. The disc was projected through

a Toshiba TDP P9 overhead projector on the workspace and

had a diameter of 40 cm. Five target locations were defined in

the center and at the eastern, southern, western, and northern

periphery of the disc, labeled by the numbers 1–5, respectively

(see Figure 2).

For each trial, participants were cued about the next reach

target by a small red disc near the target block. The cue was

shown for 1 s, and participants had to direct their gaze at the

respective number. In case the robot hand shadowed the cued

location, or the participants inadvertently missed the cue, they

were instructed to gaze at the target that they believed had

been cued. After each cue, the disc was flickering for 2 s, and

EEG readings were recorded during this interval. When the

stimulation interval was over, participants reached to the cued

target location and tapped on the top of the wooden block.

They had another 2 s time for this action, including moving

the hand back to the rest position in front of the abdomen.

Then the next trial started by cueing another, randomly selected

target location. Ten trials per target were collected in the training

session. The size of the flicker stimulus, its frequency, the total

number of targets as well as the stimulation period all affect the

BCI’s classification accuracy, and we adjusted these parameters

on the basis of a pilot experiment.

With the EEG data from each trial, a canonical correlation

(CCA) with a sine and cosine reference signal at the

flicker frequency was calculated, and the resulting correlation

coefficients formed features for linear discriminant analysis

(LDA). Data from the training session were used to train the

classifier. In the three experimental conditions, EEG data were

classified online after each trial, and the classifier output, i.e.,

the number that the human gazed at, was sent to the robot

controller.

2.5. Robot trajectory generation

2.5.1. Target selection

The target location for the robot to reach was selected online

based on the predicted reach goal of the human. If the operator

started moving during a reaching motion of the robot, the

robot’s current target was discarded, and a smooth trajectory was

generated as described below. To simplify the target selection

process, we manually encoded geometric dependencies between

targets by the set of conditions that is illustrated in Figure 2.

Essentially, these rules prevented the robot from trying to reach

a target which is physically blocked by the human arm during

the reaching motion. The robot still reached for each target in

order, but skipped the ones occupied by the current human

motion prediction. Note that even when an invalid target was

selected for the robot due to an erroneous prediction of the

human’s reach target, collisions still were avoided because the

trajectory optimization, relying on the arm tracking data, made

the robot remain in a local minimumuntil the human unblocked

the target or the target changed.

2.5.2. Trajectory optimization algorithm

With goal positions and human arm pose information,

collision-free, and goal-directed trajectories were generated by

the trajectory optimization algorithm in a Model Predictive

Control (MPC) style. MPC adjusts the control variables to

minimize an objective function under defined constraints

(Morari et al., 1988). l1 is the robot first finger tip’s (FFT) pose

loss and is used to drive the FFT pose (xk, rotk) to the desired

pose (xdes, rotdes) in Cartesian space. rotdes is set to prevent

the robot from shadowing other target objects on the table

from the viewpoint of the operator. The constant c is used to

generate more fluent and consistent robot trajectories, and N is
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FIGURE 3

Geometric model of the work cell. In this view, the human stands on the left side of the table with only the right arm reaching into the shared

workspace. (A) We use capsules (yellow) as geometric primitives for each part of the robot and the operator arm (palm, wrist, lower arm, upper

arm). Trajectory planning and collision avoidance were based on the pairwise human-robot capsule distances, which can be calculated

e�ciently. Also shown are two separating planes (blue) with their origins (red) on the midpoint between the two closest pairs (human-hand and

-palm vs. robot palm) of capsules. (B) Static boundaries of the robot workspace; no part of the robot was allowed outside of the cuboid defined

by the six planes.

the number of robot trajectory waypoints.

l1 =

N∑

k=1

min(c, ||xk − xdes||)+ ||rotk − rotdes|| (1)

The generated trajectories should satisfy the robot’s kino-

dynamic constraints:

q ≤ qk ≥ q (2)

q̇ ≤ q̇k ≥ q̇ (3)

q̈ ≤ q̈k ≥ q̈ (4)

We modulated the robot’s velocity limits in the BCI+VCV

condition by the vigilance level as −q̇ = q̇ = (1 +

0.3 vigilance)Vmax. Vigilance levels were clipped to [−1, 1],

resulting in a speed limit between 0.7 Vmax and 1.3 Vmax. In

contrast, the velocity limit was fixed at 0.7 Vmax in the BCI and

AT conditions. Hence the robot arm was moving generally faster

in the BCI+VCV condition than in the other two conditions.

In order to get smoothmovements, velocity and acceleration

were also regulated. c1 and c2 were weights of the loss function.

l2 =

N∑

k=1

c1q̇k
2 + c2q̈k

2 (5)

To avoid collisions between the robot’s and the operator’s

arm, we modeled both arms by capsule-shaped collision objects.

Capsules with a radius (ra,i)
4
i=1 were created between all

connected joints of the operator’s arm, and capsules with a

radius (rr,j)
6
j=1

were created between all connected robot joints.

TABLE 1 Trajectory optimizer parameters.

Parameter Value

Radii of capsules 0.1m

Joint velocity limit Vmax 0.02 rad/s

Joint acceleration limit 1 rad/s2

Robot trajectory length N 3

Weights c1 , c2 1

Safety offset d 0m

Constant value c 0.2m

Then the two closest points between every paired robot-operator

arm capsules were calculated, and the segment line connecting

these two points was the normal of the separation plane Ni,j

which separated the two capsules i and j (see Figure 3). The

positions of the arm joints and the robot joints in Cartesian

space were denoted by (Pa,i)
4
i=1, (Pr,j)

6
j=1, respectively. Then soft

constraints were used to avoid collisions between the robot’s and

the operator’s arms.

l3 =

4∑

i=1

6∑

j=1

min(0, (NT
i,j(Pa,i − Pr,j)− ra,i − rr,j − d)2) (6)

Six boundary planes (Nb,m)
6
m=1 were employed as hard

constraints to restrict robot motion in the desired area as shown

in Figure 3.

PTr,kNb,m ≤ 0,∀ k ∈ [1,N],m ∈ [1, 6]

During the experiments, the trajectory optimizer-related

parameters were set to the values in Table 1. The robot trajectory
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FIGURE 4

Example scenario for the robot arm trajectory generation based on the operator’s movement prediction and arm tracking. The purple sphere is

the goal position of the robot’s first finger tip. Red cylinders visualize the current position of the operator’s arm. The green curve represents the

trajectory of the first finger tip. (A) The operator gazed at target object no. 5, and the robot touched object 4. EEG signals were collected in this

state (white circle shows flicker stimulus). (B) The BCI predicted the operator will target object 5, and the robot controller adjusted its next goal

from target object 5 to target object 2 after touching target object 4. (C–E) The operator touched target object 5, then returned to the rest

position. A collision-free robot trajectory was generated by the proposed trajectory optimization method.

was optimized at 10 Hz with the latest operator intention

prediction and vigilance estimation results. As the foundation

of our implementation, a primal-dual interior-point solver,

proposed in Ruppel and Zhang (2020), was used to solve

the optimization problem. One example trajectory during the

experiment is shown in Figure 4.

2.5.3. Minimum distance analysis

During the experiment, operator arm, robot joint

trajectories, and cue signals were recorded synchronously.

The data were then segmented into trials. Afterwards, the

minimum distance (MD) per trial between the human arm and

robot limbs was calculated based on the method described in

the trajectory optimization section above. MD values were used

for HRC safety assessment.

3. Results

3.1. HRC performance

The main indicator for the robot’s performance was the

number of targets touched in a session. We considered the robot

performance in the training session, when the operator could not

interfere with the robot’s actions, as the baseline and compared

it with the performances in the BCI+VCV, BCI as well as AT

sessions. We found that the mean performances in these three

conditions were about 110.28, 95.04, and 92.76%, respectively

(Figure 5). Paired t-tests suggest significant differences between

FIGURE 5

Robot performance relative to the training session. The

horizontal line in a box shows the performance median. The

upper and lower lines of a box represent the upper and lower

quartiles, respectively. The whiskers extend to points that lie

within 1.5 interquartile ranges of the lower and upper quartile.
∗p < 0.05, ∗∗p < 0.001.

the conditions [BCI+VCV vs. BCI: p = 1.67e−13, BCI+VCV

vs. AT: p = 1.95e−11, BCI vs. AT: p = 0.039, Lilliefors’ test

(Conover, 1999) for normal distribution]. The result indicates

that considering the operator’s action for planning the robot’s

movements degrades performance, but that this negative impact

can be compensated by adjusting the robot’s velocity according

to the attentional state of the operator.
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FIGURE 6

(A) MMD distribution per participant over sessions and t-test results for significance check. (B) Distribution about 0.15 quantile of MD distribution

per participant over sessions and t-test results for significance check. ∗∗p < 0.01. n.s., not significant where p > 0.05.

3.2. Safety distance analysis

In an HRC scenario, robot performance should not be

the only performance indicator though. The safety of the

interaction, evaluated by the minimum distance between the

robot’s and the operator’s arm, should be kept above a safe limit.

The distribution of the mean minimum distances (MMDs)

across participants shows that the BCI condition resulted in the

largest safety distances (Figure 6A). Despite the higher robot

arm velocity, safety distances were only marginally smaller in

the BCI+VCV condition (p > 0.49). In contrast, MMDs were

substantially smaller in the AT condition (both p < 0.01).

In order to further investigate whether the BCI+VCV or

BCI methods could improve HRC safety, we calculated the

0.15 quantile of the MMD per participant per session. The

distributions over participants are shown in Figure 6B. The 0.15

quantile of the BCI condition seems to be somewhat higher than

the BCI+VCV condition (p = 0.058) but substantially higher

than the AT condition on average (p < 0.01).

The trajectory optimization algorithm was instructed to

ensure that the distance between the operator’s and robot’s arm

was kept above 20 cm. Individual samples in Figure 6 indicate,

however, that the distance fell below this threshold in some trials.

To elucidate whether the sub-threshold distances were caused

by fast movements of the operator or the ineffectiveness of the

trajectory optimization algorithm, we selected five participants

randomly and analyzed the relative motions between their

and the robot’s arm. We only considered situations where

the minimum distance was <20 cm. The minimum distances

(dt), velocities (vPt , vRt) as well as accelerations (aPt , aRt) of

the closest points between the operator and the robot were

calculated per time step t. All of the time steps were divided into

three groups: (1) the robot arm was moving away (MA) from

the operator’s arm (dt+1 > dt); (2) the robot was braking (BR,

dt+1 < dt , but the angles between vPt and vRt , vPt , aRt were

larger than 90◦); (3) the robot failed to avoid the operator’s arm

(FA, time step is neither MA nor BR). For this experiment, the

robot was set to not consider the operator’s movements when it

was touching the block. However, the operator’s target could be

the same as the one the robot was touching already. This resulted

in several FA cases where robot velocities were zero.

Looking at the distribution of collision situations in Figure 7

suggests that almost all of them resulted from swift movements

of the operator, and the robot could not move quickly enough

to keep the desired safety distance because of its dynamic

limitations.

3.3. Target prediction accuracy and
vigilance

In the first session after training, the reach target prediction

achieved a median accuracy of 88% across all participants.

The performance remained stable in the two subsequent

sessions (85.6, 86.4%, see Figure 8). Pairwise Kruskal–Wallis

tests support this observation (all p > 0.93). Whereas the

BCI achieved a prediction accuracy of 80% or better for the

majority of participants, accuracies can be as low as 50% for
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FIGURE 7

Velocities of the pairwise closest points between the operator’s

and the robot’s arm. MA, robot was moving away; BR, robot was

braking; FA, robot failed to avoid operator arm.

FIGURE 8

BCI classification accuracy of the participants in the three

sessions. Thick black curve is the median, error bars show the 25

and 75%, quantiles.

individual operators. The observation that the performance of

these individuals remains below 80% for all conditions suggests

that this reflects individual traits rather than concentration

lapses, novelty, or training effects etc.

In Figure 9, we show an example for the time course of

the vigilance over the three application sessions. As expected,

vigilance varies between trials. However, there are clearly

episodes in which vigilance tended to have higher values and

episodes in which lower values dominated. In the example,

vigilance decreased at the end of each session, and values were

generally lower in session 3. Episodes of high vigilance can be

noted at the beginning and toward the end of session 2 with a

pronounced drop in between.

Averaging vigilance values across trials and participants in

Figure 10A shows that, like for BCI performance, participants

were able to keep up attention over the course of the experiment.

Pairwise Kruskal–Wallis tests likewise gave no indication for

systematic changes of attention levels between sessions (all p >

0.79).

We were interested in the question whether vigilance had

an effect on classification accuracy. To this end, we analyzed the

distribution of vigilance values conditioned on the classification

result. The plot in Figure 10B shows that both distributions

largely overlap. Nevertheless, the median of vigilance values in

trials with classification errors was slightly lower than in trials

where the classification was correct (−0.1165 vs. −0.1932, p =

0.043, Kruskal–Wallis test). One problem of this analysis is that

vigilance is not the only factor that affects classification accuracy.

The robot arm casting a shadow on the flicker stimulus or hiding

target locations as well as participants not looking at the cued

target likely result in classification errors. This may explain the

high values in the distribution of vigilance values for wrong

classifications in Figure 10B, leading to an underestimation of

the true difference of the medians. Hence, low vigilance likely

impedes classification accuracy, but it nonetheless seems fairly

robust against attention lapses.

To verify that vigilance was the driving factor in the

performance of the robot in the BCI+VCV condition, we

analyzed the relationship between the average normalized

vigilance of each participant and the robot performance in

the BCI+VCV session. Figure 11 shows that a linear model is

an adequate fit for this relationship (p = 5.74e−8). We did

not observe a similar relationship between BCI classification

accuracy and robot performance, corroborating the finding that

target prediction and vigilance are independent information

channels that are provided by the BCI.

4. Discussion

Robots and humans excel at different tasks, and HRC is

becoming a critical concept for combining their respective

expert skills (Castro et al., 2021). Robots moving at high

velocities could improve HRC efficiency, but they are liable to

compromise safety. Reliably predicting human intention may

come as a solution to this problem. In robotics, many approaches

for intention prediction employ motion tracking of the human

body or parts thereof (Pérez-D’Arpino and Shah, 2015; Luo et al.,

2018; Ravichandar et al., 2018; Park et al., 2019; Trick et al., 2019;

Cheng et al., 2020; Cooper et al., 2020). They have in common

that accurate predictions can be made only after the movement

of the human partner commenced. When the potential targets

are located closely to each other, the initial segments of the hand’s

motion trajectories will be similar; therefore, reliable predictions
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FIGURE 9

Vigilance time course of an individual participant (08). Blue curve: Vigilance (SSVEP SNR) for each trial, red curve: low-pass filtered vigilance time

course (0.01 Hz cut-o�).

FIGURE 10

(A) Median vigilance levels for the three sessions. Error bars show the 25 and 75% quantiles. (B) Distribution of vigilance values for trials with

correct and incorrect classification results. Width of a scatter block corresponds to the number of samples in the interval marked by its height.

Dotted lines indicate medians of the two distributions.

can be made only after a substantial part of the reach movement

has been executed.

In order to predict the human’s intention earlier, EEG-

based methods have been investigated in previous studies

(Shafiul Hasan et al., 2020). For example, the Bereitschafts-

potential, a conspicuous deflection in the EEG signal about

500 ms before movement onset, has been used to predict when

the human will move the arms and which kind of grasp action

will be executed (Buerkle et al., 2021; Xu et al., 2021).

As hand and eye are coordinated during human action

execution, analyzing the gaze direction may allow predicting

impending movements early on. Instead of using optical eye-

tracking devices, we here used a BCI to demonstrate that this

technology enables gathering information about the cognitive

state of the operator in addition to the gaze direction. The

majority of studies about BCI methods for robotics focus on the

development of BCI components or evaluate the BCI technology

in simulation (Buerkle et al., 2021). Our study extends previous
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FIGURE 11

The relationship between human vigilance and robot performance fitted by a linear model. (A) The robot’s velocity is controlled by the

operator’s vigilance (BCI+VCV condition). (B) Robot velocity is not modulated by vigilance (BCI condition). Numbers at data points indicate

participant number.

investigations and demonstrates an integrated system for a

closed-loop BCI-controlled HRC scenario.

4.1. BCI can improve HRC e�ciency and
enhance safety

We evaluated our approach in a study in which the

participants performed a pick-and-place task together with

a robot arm in a narrow shared workspace. Our system

monitored the participants’ vigilance in the EEG signals and

increased or reduced the robot’s velocity depending on whether

vigilance was high or low. Our results show that BCI-

based intention prediction, in particular in combination with

vigilance-modulated velocity, can improve HRC performance

and safety compared to a motion-tracking-based approach. In

especial, the higher performance with the vigilance-controlled

velocity did not degrade the HRC safety level indexed by the

minimum distance between the operator’s and the human’s arm.

Since the BCI allows the robot to know the reach target

before the human actually deploys the action, it has sufficient

time for adjusting its task position accordingly. This leads to the

performance increase that we observed in the two BCI-enabled

conditions compared to the AT condition, in which predictions

relied solely on motion data. By evaluating the vigilance, we

could adjust the robot velocity according to the level of the

operator’s alertness. As the result of this strategy, the robot

performance improved further in the BCI+VCV condition as

shown in Figure 5.

The performance of the BCI classifier, however, varies across

participants and remains below 80% for some of them. This

distribution is a well-known property of every BCI paradigm

and has been termed “BCI illiteracy” (Allison et al., 2010). Lower

BCI performance may result from a mismatch between the

stimulation parameters, which were fixed for all participants,

and the individual response properties. By optimizing flicker

frequency, stimulus size and stimulation duration for each

participant, accuracy of the intention prediction could be

improved. In case such a parameter optimization does not

yield the expected improvement, the system can still rely on

motion-tracking data for predicting the target location of a reach

movement.

Another important advantage of using BCI for HRC is safety

improvement. MPCs have been studied for almost 40 years.

They can generate optimal robot control commands in a short

time horizon in the future by solving an optimization problem

with various constraints and objective functions (Morari et al.,

1988). A prerequisite of MPC is that changes in the environment

can be predicted in advance. Several studies have shown that

the combination of human motion prediction and MPC can

enhance safety inHRC (Li and Shah, 2019; Park et al., 2019; Zhao

et al., 2020). Therefore, we employed MPC in our approach and

modeled, for simplicity, the predicted operator’s reach trajectory

by a cylinder which connected the human’s palm joint and

the predicted target position. This method accounts for human

arm movements being very fast and the duration of reaching

movements being very short. Hence, early intention prediction

together with the proposed MPC-style trajectory optimization

algorithm could also enhance the HRC safety in this study. For
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more complex optimization problems, e.g., with non-convex

constraints or objective functions, the learning-based methods

could also be used, like in Su et al. (2020), to improve the

computation speed.

One more interesting result we found is that the BCI+VCV

method, in spite of higher average robot arm velocities

as described in the trajectory optimization algorithm part,

maintained similar safety metrics like the BCI method in

which the velocity was fixed. Typically, faster robot movements

increase the danger of collisions in HRC (Buerkle et al., 2021).

If the robot controller is designed to account for the operator’s

attentional state, higher velocities may be tolerable without

reducing safety margins.

5. Conclusion and future work

In conclusion, our findings suggest that the proposed

BCI+VCV strategy together with the MPC-style trajectory

optimization algorithm could improveHRC efficiency and safety

at the same time. Performance could be further improved

with a better operator trajectory prediction module using, e.g.,

an artificial neural network. Thus, the robot could adjust its

trajectories more precisely to ensure operator safety.

For future work, one interesting direction is to search for

new methods to predict human intentions from EEG signals

with shorter latencies. For example, in this work, the operator

had to gaze at the intended target position for 2 s in order to

collect enough EEG data for a reliable classification. By reducing

the amount of data to a few hundred milliseconds, human

intention could be predicted faster and thus HRC performance

would increase further.

Another direction we propose to investigate are alternative

strategies to modulate the robot velocity according to the

alertness of the operator. For example, one could use a neural

network instead of the linear relation here to capture more

suitable and likely more complex relationships. The input of

the network could be EEG signals or vigilance estimates, and

the network would output speed limits for the robot. This

network could be trained together with the robot in a virtual

reality environment. It would also be interesting to develop

methods for fusing the multi-modal information from EEG,

electromyography (EMG), and motion tracking for faster and

more detailed intention and movement prediction.
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