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Modern air defense battlefield situations are complex and varied, requiring

high-speed computing capabilities and real-time situational processing

for task assignment. Current methods struggle to balance the quality

and speed of assignment strategies. This paper proposes a hierarchical

reinforcement learning architecture for ground-to-air confrontation (HRL-

GC) and an algorithm combining model predictive control with proximal

policy optimization (MPC-PPO), which effectively combines the advantages of

centralized and distributed approaches. To improve training efficiency while

ensuring the quality of the final decision. In a large-scale area air defense

scenario, this paper validates the effectiveness and superiority of the HRL-

GC architecture and MPC-PPO algorithm, proving that the method can meet

the needs of large-scale air defense task assignment in terms of quality and

speed.
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Introduction

Modern air defense operations are becoming more complex with the rapid
development of long-range, elemental, and intelligent processes. The rational planning
of interception plans for incoming air targets to maximize operational effectiveness has
become a massive challenge for the defenders in modern air defense operations (Yang
et al., 2019). Task assignment changes the weapon target assignment (WTA) fire unit-
target model to a task-target assignment model. This improves the ability to coordinate
the various components, and the assignment scheme is more flexible, providing
fundamental assurance of maximum operational effectiveness (Wang et al., 2019). With
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the continuous adoption of new technologies on both
sides of the battlefield, the combat process is becoming
increasingly complex, involving many elements. The battlefield
environment and the adversary’s strategy are rapidly changing
and challenging to quantify. Relying on human judgment and
decision-making can no longer adapt to the requirements of
fast-paced and high-intensity confrontation, and depending
on traditional analytical model processing cannot adapt to
the needs of complex and changing scenarios. Reinforcement
learning (RL) does not require an accurate mathematical model
of the environment and the task and is less dependent on
external guidance information. Therefore, some scholars have
investigated the task assignment problem through intelligent
methods such as single-agent reinforcement learning, multi-
agent reinforcement learning (MARL), and deep reinforcement
learning (DRL). Zhang et al. (2020) proposed an Imitation
augmented deep reinforcement learning (IADRL) model to
enable unmanned aerial vehicles (UAVs) and unmanned ground
vehicles (UGVs) to form a complementary and cooperative
alliance to accomplish tasks that they cannot do alone. Wu
et al. (2022) proposed a dynamic multi-UAV task assignment
algorithm based on reinforcement learning and a deep neural
network, which effectively solves the problem of poor mission
execution quality in complex dynamic environments. Zhao
et al. (2019) proposed a Q-learning-based fast task assignment
(FTA) algorithm for solving the task assignment problem of
heterogeneous UAVs.

In modern air defense operations, the threat to the defense
can be either a large-scale air attack or a small-scale contingency,
so mission assignment methods must balance effectiveness
and dynamism. A centralized assignment solution is not fast
enough, while a fully distributed assignment method does
not respond effectively to unexpected events (Lee et al.,
2012). The one-general agent with multiple narrow agents
(OGMN) architecture proposed in the literature (Liu J. Y. et al.,
2022), which divides agents into general and narrow agents,
improves the computational speed and coordination ability.
However, the narrow agent in the OGMN is entirely rule-
driven. It lacks a certain degree of autonomy, which cannot fully
adapt to the complex and changing battlefield environment.
Therefore, this paper proposes the hierarchical reinforcement
learning architecture for ground-to-air confrontation (HRL-
GC) architecture based on the OGMN architecture, which layers
the agents into scheduling and execution. The scheduling agent
is responsible for assigning targets to the execution agent,
which makes the final decision based on its state. Data drive
both types of agents. Considering the inefficiency of the initial
phase of agents training, this paper proposes a model-based
model predictive control with proximal policy optimization
(MPC-PPO) algorithm to train the execution agent to reduce
inefficient exploration. Finally, the HRL-GC is compared with
two other architectures in a large-scale air defense scenario,
and the effectiveness of the MPC-PPO algorithm is verified.

Experimental results show that the HRL-GC architecture and
MPC-PPO algorithm are suitable for large-scale air defense
problems, effectively balances the effectiveness and dynamics of
task assignment.

Related work

Deep reinforcement learning

Reinforcement learning was first introduced in the 1950s
(Minsky, 1954) with the central idea of allowing an agent to
learn in its environment and continuously refine its behavioral
strategies through constant interaction with the environment
and exploration by trial and error (Moos et al., 2022). With the
continuous development of RL, algorithms such as Q-learning
(Watkins and Dayan, 1992) and SARSA (Chen et al., 2008)
have been proposed. However, when faced with problems in
large-scale, high-dimensional decision-making environments,
traditional RL methods also rapidly increase the computation,
and storage space required to solve such problems.

Deep reinforcement learning is a combination of RL and
deep learning (DL). DL enables reinforcement learning to be
extended to previously intractable decision problems and has
led to significant results in areas such as drone surveys (Zhang
et al., 2022), recommender search systems (Shen et al., 2021),
and natural language processing (Li et al., 2022), particularly in
the area of continuous end-to-end control (Zhao J. et al., 2021).
In the problem studied in this paper, the decisions shaped by the
DRL for the agents must be temporally correlated, thus enabling
the air defense task assignment strategy to maximize future gains
and take the lead on the battlefield more easily.

Hierarchical reinforcement learning

Hierarchical reinforcement learning (HRL) was proposed
to solve the curse of dimensionality in reinforcement learning.
The idea of this method is to decompose a whole task into
multi-level subtasks by introducing mechanisms such as State
space decomposition (Takahashi, 2001), State abstraction (Abel,
2019), and Temporal abstraction (Bacon and Precup, 2018) so
that each subtask can be solved in a small-scale state space,
thus speeding up the solution of the whole task. To model
these abstract mechanisms, researchers introduced the semi-
Markov Decision Process (SMDP) (Ascione and Cuomo, 2022)
model to handle actions that must be completed at multiple
time steps. The state space decomposition approach decomposes
the state space into different subsets. It adopts a divide-and-
conquer strategy for solving so that each solution is performed
in a smaller subspace. Based on this idea, this paper divides
the task assignment problem into two levels, scheduling and
execution, and proposes the HRL-GC architecture to combine
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the advantages of centralized and distributed assignment
effectively.

Model-based reinforcement learning

Model-free RL does not require environmental models (e.g.,
state transfer probability models and reward function models)
but is trained directly to obtain high-performance policies
(Abouheaf et al., 2015). On the other hand, model-based RL
is an approach that first learns the model during the learning
process and then searches for an optimized policy based on that
model knowledge (Zhao T. et al., 2021). Model-free RL is less
computationally intensive at each iteration because it does not
require learning model knowledge but has the disadvantage that
too much invalid exploration leads to inefficient agents’ learning.
Model-based RL methods can use a minimal number of samples
to learn complex gaits, using the data collected to understand
the model. The model is then used to generate a large amount of
simulation data to learn a "state-action" value function to reduce
the interaction between the system and the environment and
improve sampling efficiency (Gu et al., 2016). For air defense
scenarios, the sampling cost is high, and it isn’t easy to collect
many data samples. Therefore, this paper uses a model-based
RL approach to build a neural network model based on a small
amount of sample data collected. The agent interacts with the
model to obtain the data, thus reducing the sampling cost and
improving the training efficiency.

Model predictive control

Model predictive control (MPC) is a branch of optimal
control (Liu S. et al., 2022), and the idea of MPC is widely
used in model-based RL algorithms due to its efficiency in
unconstrained planning problems. It is based on the specific idea
of using the collected data to train a model and obtain an optimal
sequence of actions by solving an unconstrained optimization
problem (Yang and Lucia, 2021), as shown in Eq. 1.

a∗t , a∗t+1, . . . , a∗t+H = arg max
at,at+1,...,at+H

∑H
k=0 r

(
st+k, at+k

)
s.t. st+k+1 = f̂

(
st+k, at+k

)
, k = 0, 1, . . . ,H

(1)
Where f̂ (•) is the learned model, the model is often a

parametric neural network whose input is the current moment
action at , and the present moment state st outputs the predicted
state ŝt+1 for the next moment; the loss function of the neural
network can be constructed as (Yaqi, 2021)

ε(θ) =
1
|D|

∑
(st,at,st+1)∈D

1
2

∣∣∣∣∣∣∣∣ (st+1 − st)− f̂θ (st, at)

∣∣∣∣ ∣∣∣∣2 (2)

Where D is the collected demonstration dataset, it is
obtained by first generating random strategies to interact with

the model, calculating the reward value for each policy, and
selecting the sequence of actions with the highest cumulative
reward. The first action of this sequence is then acted upon
in the environment to obtain a new state, add the data to
the demonstration dataset D, and repeat the same method
to get the next action value. The model is trained using
Eq. 2, and the dataset is continuously optimized, repeating the
process until both the model and the taught dataset achieve
good performance. By doing so, model errors and external
disturbances can be effectively suppressed, and robustness can
be improved (Nagabandi et al., 2018). Based on this idea, the
MPC-PPO algorithm is proposed to train the model by the MPC
method and then use the model to pre-train the network of PPO
to improve the pre-training efficiency.

Problem modeling

Problem formulation

Modern large-scale air defense missions are no longer a one-
to-one confrontation of one interceptor against one incoming
target but rather a one-to-many and many-to-one confrontation
accomplished through efficient organizational synergy in the
form of tactical coordination. This is in response to saturated
long-range attacks by cruise missiles and a multi-directional and
multi-dimensional suppression attack by a mixture of human-
crewed and uncrewed aircraft. However, this one-to-many and
many-to-one confrontation assignment is not fixed; during air
defense confrontations, the air attack offensive posture changes
in real-time, and the confrontation assignment needs to be
highly dynamic to respond to changes in the posture of the air
attack threat (Rosier, 2009). The critical issue in this paper is
the effective integration of combat resources according to the
characteristics of different weapon systems and the ability to
dynamically change the strategy according to the situation so
that they can play a “1 + 1> 2” combat effectiveness.

To reduce complexity while satisfying dynamism, this paper
divides the air defense operations process into two parts,
resource scheduling and mission execution, based on the idea of
HRL. The complexity of the high-dimensional state-action space
is reduced by decomposing the entire process into multiple more
minor problems and then integrating the solutions to these
problems into a solution to the overall task assignment problem.

Markov Decision Process modeling of
executive agents

In this paper, we study the air defense task assignment
problem in a red-blue confrontation scenario, where the red side
is the ground defender, and the blue side is the air attacker.
We define a sensor and several interceptors around it as an
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interception unit. We use an independent learning framework
to build the same MDP model for each interception unit.

State space: (1) states information of the defender’s defended
objects; (2) resource assignment of the unit, sensor and
interceptor states; (3) states information of the attacker’s
targets within its own tracking and interception range; (4)
states information of the attacker’s incoming targets that
are assigned to it.

Action space: (1) what timing to choose to track the target;
(2) which interceptor to choose to intercept the target; (3) how
many resources to choose to intercept the target; and (4) what
timing to choose to intercept.

Reward function: To balance the efficiency of exploration
and learning of the agent, guiding the agent progressively toward
the winning direction. This paper uses the principle of least
resources to design the reward function.

R = 5m+ 2n− 5i+ j (3)

Where m is the number of human-crewed aircraft
intercepted, n is the number of high threat targets blocked, j is
the number of missiles intercepted, and i is the number of times
our unit has been attacked as a result of a failed interception.
Add five points for blocking staffed units, two points for
intercepting high-threat targets, one point for intercepting
missiles, and five points for each time our unit is attacked due
to a failed interception.

Markov Decision Process modeling of
scheduling agents

The task of the scheduling agent is to coordinate the tracking
and interception tasks to interception units based on the global
situation, with a state space, action space, and reward function
designed as follows:

State space: (1) states information of the defender’s defended
objects; (2) states information of the defender’s interception
units, including resource assignment, sensor and interceptor
states, and states information of the attacker’s targets within the
unit’s interception range; (3) states information of the attacker’s
incoming targets; and (4) states information of the attacker’s
units that can be attacked.

Action space: (1) select the target to be tracked; (2) select the
target to be intercepted; (3) select the interception unit.

Reward function: The merit of the task assignment strategy
depends on the final result of the task execution, so the reward
of the scheduling agent is the sum of the tips of all the executing
agents at the bottom plus the base reward, as shown in Eq. 4.

R=

{∑n
i=1 ri Fail

50+
∑n

i=1 ri Win
(4)

Where ri is the bonus value earned by each executing agent,
with a base bonus value of 50 points for a win and 0 points

for a failure, the failure and victory conditions are described
in Section “Experimental environment setting” based on the
specific scenario. This paper uses a stage-by-stage approach of
giving reward values to guide the agent to find the strategy that
achieves victory. For example, the corresponding reward value
is given after losing the blue side high-value unit. After the red
side wins, it is given the winning reward value. This approach
can increase the effect of maximizing global revenue on the
agent’s revenue and reduce the agent’s self-interest as much
as possible, enhancing robustness while ensuring the reliability
of the strategy.

Hierarchical architecture design
for agents

General structure

Reinforcement learning methods applied to task assignment
can be broadly classified into two categories, centralized and
distributed. The centralized idea is to extend the single-agent
algorithm to learn the output of a joint action directly, but it
is not easy to define how each of these agents should make
decisions (Moradi, 2016). Distributed is where each agent learns
its reward function independently, where for each agent, the
other agents are part of the environment (Suttle et al., 2020). In
large-scale air defense mission assignment problems, centralized
methods can achieve globally optimal results but are often of
low value for large-scale complex issues that are too costly in
terms of time spent. Distributed algorithms, on the other hand,
can negotiate a better result more quickly without having to
have information about the specific parameters of individual
weapons and the state of the surrounding environment. Still,
they also face a significant problem: the assignment results are
locally optimal and less globally coordinated for unexpected
events (Wu et al., 2019).

To combine global coordination capability and high-
speed computing capability, this paper follows the idea of
OGMN architecture and proposes HRL-GC architecture. This
architecture layers the agent into scheduling agents and
executing agents, strengthening the autonomy of the underlying
executing agent and making the assignment policy more
reasonable, as shown in Figure 1.

The agent interacts with the environment to generate the
simulation data, which the output port of the environment
converts into state information as input to the scheduling agent;
the high-level scheduling agent outputs the task assignment
result and assigns the task to the underlying agent; the task
execution agent outputs the final action information according
to the assignment result and its state information; finally, the
action information is then transformed into combat instructions
according to the required data structure and input to the
simulation environment. The above is a complete interaction
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FIGURE 1

HRL-GC architecture.

process of the HRL-GC architecture at one time. We decompose
the whole process into scheduling and execution, with different
agents making decisions to reduce the complexity of the high-
dimensional state-action space. The framework retain the global
coordination capability of the centralized approach and add the
efficient advantage of multiple agents. This method can preserve
the scheduling agent’s coordination ability, avoiding missing key
targets, duplicate shots, and wasted resources. Moreover, it can
reduce the computational pressure of the scheduling agent and
improve assignment efficiency.

Design of a hierarchical training
framework for agents

Based on the idea of HRL, we need to train the scheduling
and execution agents separately offline and then combine them
for online inference. The reward function of the scheduling
agent requires the reward values of all executing agents, which
in turn depend to some extent on the outcome of the assignment
of the scheduling agent. Therefore, the executive agent is
trained to a certain level using expert assignment knowledge.
All the executive agent’s network parameters are then fixed for
introducing the scheduling agent, and the trained scheduling
agent’s parameters are set for training the executive agent. The
training framework is shown in Figure 2.

The task assignment scheme of the knowledge rule base
(Fu et al., 2020) is first used to train the underlying executing
agent. When the executing agent reaches a certain level, the
parameters of the executing agent are then fixed to train the
scheduling agent. This paper is based on the Actor-Critic
architecture (Fernandez-Gauna et al., 2022), which uses a

centralized learning and decentralized execution approach for
the training of multiple executing agents, as shown in Figure 3.

During training we use the n-value network (critic) to obtain
actions, state observations and rewards for each executing agent,
which are used to evaluate the decisions of the n-strategy
network (actor). At the end of training, the critic is no longer
used. The algorithm for executing the training of the agents
is one of the critical issues studied in this paper and will be
described in detail in Section “Model-based model predictive
control with proximal policy optimization algorithm.” The
training method for the scheduling agent refers to the proximal
policy optimization for task assignment of general and narrow
agents (PPO-TAGNA) algorithm in the literature (Liu J. Y.
et al., 2022) to ensure the training effect and demonstrate more
intuitively the changes the executive agent brings.

Network architecture design for
hierarchical reinforcement learning

For DRL, the network structure of the agents is key to
the research. For the HRL-GC architecture, we decoupled the
general agent network in the OGMN into two parts. We
improved them according to the MDP model in Sections
“Markov Decision Process modeling of executive agents” and
“Markov Decision Process modeling of scheduling agents” as
the training networks for the scheduling and execution agents,
respectively, as shown in Figure 4.

The input to the scheduling agents is global situational
data, and the global features are obtained through feature
extraction, vector concatenation, and other operations. After
that, the global features output the value evaluation and
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FIGURE 2

Hierarchical training framework.
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FIGURE 3

Centralized learning and decentralized execution.

FIGURE 4

Network structure.

task assignment results through two layers of FC-ReLU and
attention mechanism operations, respectively. It is noteworthy
that the actor’s output is changed from the real action to the

task assignment matrix, i.e., the subject of the action, which
significantly reduces the dimensionality of the action space and
improves the computational speed.
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The actor-network structure of the executing agent is the
focus of this paper. Its input mainly consists of its state and
the state of the assigned incoming target. After generating
local features through feature extraction, vector connection,
and Gated Recurrent Unit (GRU), it once again combines the
information of the assigned target state to perform attention
operations and finally outputs the timing of the execution of the
task. We somewhat reuse the scheduling agent’s network and
combine it vertically with a rule base, which is used to select
the resources to be used. In this way, instead of using the rule
base exclusively for decision making, we enhance the autonomy
of the task execution agent, share more computational pressure
on the scheduling agent, and make the assignment results
more reasonable.

Model-based model predictive
control with proximal policy
optimization algorithm

Sampling for large-scale adversarial tasks is a significant
factor in excessive training time costs. The model-based RL
approach can effectively improve this problem by building
virtual models to interact with the agents. We use the MPC
approach to train the virtual model, allowing the agent to
interact with the model to obtain the demonstration data.
To reduce the impact of model errors, we use only the
demonstration data set to pre-train the network for the PPO
algorithm, thus accelerating the exploration process during the
initial training phase.

Model predictive control approach for
multi-agent task assignment

Based on the idea of MPC, this paper defines the entire
task process time domain as [0, nT], and the system makes
a decision every T moments. The time domain [0,T] is the
period in which the task is executed. Before reaching the
moment T, the agent needs to optimize the prediction of the
strategy in the time domain [T, 2T] based on the available
situational information and resources. After reaching moment
T, the agent executes the first action of the optimal action
sequence while predicting and optimizing the decision solution
for [2T, 3T] in moment [T, 2T], and so on until the end
of the task.

Define the system as a synergy of m agents, s
(
k
)

denotes
the states at moment k, µ

(
k
)

represents the command input
in the period k, k+ T,f is the resource selection model, and
k = 0,T, 2T . . . nT denotes the decision time point, then the
discrete-time equation of state of the system is

s
(
k+ T

)
= f

(
s
(
k
)
, µ
(
k
))
, s
(
k
)
µ
(
k
)
∈ ∪ (5)

where the system state s
(
k
)

and the input decision µ
(
k
)

can be
expressed as{

s
(
k
)
=
[
s1
(
k
)
, s2

(
k
)
, · · · sm

(
k
)]T

µ
(
k
)
=
[
µ1
(
k
)
, µ2

(
k
)
, · · ·µm

(
k
)]T (6)

With sk+iT denoting the predicted state of the control
resource for the subsequent iT moments, using moment k as
the current moment, the above equation shows that the expected
state within

[
k, k+ T

]
can be obtained based on the state s

(
k
)

at the moment k and the input decision µ
(
k
)
, then Eq. 7 can be

obtained.
sk+(i+1)T = f

(
sk+iT, µk+iT

)
,

i = 0, 1 . . .H
(7)

where H is the number of predicted steps.
Defining the value of the reward at moment k as r

(
s
(
k
))

, the
global reward in the

(
k, k+ T

)
time domain of h is

r
(
s
(
k
))
=

m∑
j=1

r
(
s
(
j|k
))

(8)

Where r
(
s
(
j|k
))

is the reward of the jth agent at the moment
k, this leads to an optimal task assignment model for the global
system.

ψ ∗
(
k
)
= arg max

ψ(k)

H∑
i=0

r
(
sk+iT, µk+iT

)
s.t. (9)


sk+(i+1)T = f

(
sk+iT, µk+iT

)
, (i = 0, 1, . . . ,H)

ψ
(
k
)
= µk, µk+T, . . . µk+HT

ψ∗
(
k
)
= µ∗k, µ

∗

k+T, . . . µ
∗

k+HT
Y
(
s
(
k
)
, ψ

(
k
))
≤ 0

Where Y
(
s
(
k
)
, ψ

(
k
))
≤ 0 is the system constraint, which

will be described in detail in Section “Constraints on the
system.”

ψ∗
(
k
)

is the action input sequence of the executing agent;
the first action of this sequence, i.e., µk

∗, is acted upon in the
environment to obtain a new state. This round of data is added
to the demonstration data set, and the next game of information
is repeated using the MPC method, and so on until the end of the
task. We then use the demonstration dataset D to train model f̂θ
via Eq. 10 and so on to continuously improve the quality of the
taught dataset for the next step of network pre-training.

ε(θ) =
1
|D|

∑
(sk,µk,sk+1)∈D

1
2

∣∣∣∣∣∣∣∣ (sk+1 − sk
)
− f̂θ (sk, µk)

∣∣∣∣ ∣∣∣∣2 (10)

Model predictive control with proximal
policy optimization algorithm

After training the model and obtaining samples using
the MPC method, combined with the principles of the PPO
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algorithm, this method uses a pool of demonstration experience
playback Rd to store this demonstration data and additionally
constructs a pool of exploration experience playback Re to store
the exploration data of the agent. We obtained data from the
two empirical playback pools mentioned above in a particular
proportion. Considering the cumulative error of the model, the
balance of demonstration data to the extracted data decreases
with increasing time steps, and after 1,000 steps, the exploration
data is used exclusively. The specific algorithm is described as
shown in Algorithm 1.

Initialize the demonstration dataset

Rd, model f̂θ
Repeat for N rounds

Train f̂θ using data from Rd
Repeat T-step

Estimation of the optimal action

sequence A using the MPC

algorithm

Interact the first actionat in

A with the environment to obtain

the statest+1
Add

(
st, at, rt, st+1

)
to the data set Rd

Initialize the policy parameters θ,

θold, and the exploration data pool

Re
Repeat each round of updates

Repeat for εN Actors

Repeat t steps

Each step uses the old policy

parameters θold to generate

decisions

The advantage estimate A is

calculated in each step

Store the sample data in Re

Iterate K steps

Solving for the strategy

gradient of the cumulative

expected reward function

Using small batches of data at

a time, scaled from Re and Rd
The policy parameter θ is

updated with the policy

gradient

Update the new policy

parameters to θold
Algorithm 1. Model predictive control with proximal policy

optimization (MPC-PPO) algorithm.

Where θold and θ refer to the old and new parameters,
respectively, and in each iteration, the algorithm runs εN
Actors in parallel, with ε being the proportion of the total data

explored. Each Actor runs T steps, collecting a total of εNT.
The dominance estimate A1 . . .AT is calculated at each step,
and the remaining data is extracted from Rd. After the data has
been acquired, it will be used to update the policy parameters,
iterating through each round and selecting small batches of data
sets. Since, in the PPO algorithm, the data in the buffer needs to
be emptied after x updates, a certain amount of demonstration
samples need to be added after each emptying of the buffer. The
proportion of demonstration samples decreases as the number
of updates increases so that the impact of the cumulative error
of the model can be reduced to a certain extent.

Constraints on the system

Air defense tasks require the highest safety level in policy
and maximum avoidance of unsafe maneuvers during training.
Therefore, to suppress the uncertainty in the model learning
process and make the model error smaller, we also need to add
some constraints to the system to satisfy the realism and safety
of the model. The specific rules are as follows:

(1) Cooperative guidance constraints

For multi-platform cooperative systems, the constraints on
unified guidance accuracy and distance must be satisfied during
suitable guidance, as shown in Eq. 11.

θT ∈ θguide,T ∈ {1, 2, ..., n}
σT ≥ σmin,T ∈ {1, 2, ..., n}⋃

i=m Si ≥ ST,T ∈ {1, 2, ..., n}
(11)

Where n denotes the number of missiles to be guided,
θT represents the set of flight airspace angles of the target
missile, θguide denotes the operating range of the sensor, σT

denotes the guidance accuracy, σmin denotes the minimum
guidance accuracy requirement, Si means the guidance distance
of the sensor, and ST represents the distance of the missile.
That is, the constraints of minimum guidance accuracy
and maximum guidance distance must be satisfied during
cooperative guidance.

(2) Time constraints

Due to the highly real-time nature of air defense tasks, task
assignment is highly time-constrained, and, for the executing
agent, the factors associated with the time constraint are mainly
reflected in

1. Timing of interceptions

Longest interception distance:

DLI =

√
D2

LS + (vmtL)2 + 2vmtL

√
D2

LS −
(
H2 + P2

)
(12)
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Nearest interception distance:

DNI =

√
D2

NS + (vmtN)2 + 2vmtN

√
D2

NS −
(
H2 + P2

)
(13)

Where vm is the speed of the target, H is the altitude of the
target, P is the shortcut of the target’s flight path, DLS and DNS

are the target’s kill zone oncoming far boundary and the target’s
kill zone oncoming near the border, and tL and tN are the times
the target flies to the distant and near edges of the oncoming kill
zone, respectively.

2. Timing of sensor switch-on:

Sensor detection of the target is a prerequisite for
intercepting the target. In combat, it takes a certain amount of
time, called pre-interception preparation time tP, from sensor
detection to interceptor’s interception of the target.

The required distance for sensors to find a target DS is based
on the length of the target at the furthest encounter point.

DS =

√
D2

NS + v2
m(tL+tP)2 + 2vm(tL+tP)

√
D2

NS −
(
H2 + P2

)
(14)

We define the state that satisfies the security constraint as S,
which gives us Eq. 15.{

Y
(
s
(
k
)
, ψ

(
k
))
> 0 st 6⊂ S

Y
(
s
(
k
)
, ψ

(
k
))
≤ 0 st ⊂ S

(15)

In this multi-platform collaborative system, assignments can
only be made when Y

(
s
(
k
)
, ψ

(
k
))
≤ 0; otherwise, assignments

against this batch of targets are invalid.

Experiments and results

Experimental environment setting

As an example of a large-scale air defense mission, the red
side is the defender, with seven long-range interception units
and five short-range interception units to defend a command
post and an airfield. The long-range interception unit consists
of one long-range sensor and eight long-range interceptors, and
the short-range interception unit consists of one short-range
sensor and three short-range interceptors. Blue is the attacker,
setting up 18 cruise bombs, 20 UAVs, 12 fighters, and 2 jammers
to attack Red in batches. Red loses when Red’s command post is
attacked three times; Red loses when the distance between Blue
bombers and Red’s command post is less than 10 km; Red loses
when Red’s sensor losses exceed 60%; Red wins when Blue loses
more than 30% of its fighters.

A schematic diagram of the experimental scenario is shown
in Figure 5.

In the experiments in this paper, the agent’s interaction
with the environment takes place on the digital battlefield.
The digital battlefield is a DRL-oriented air defense combat
simulation framework, which is responsible for the presentation
of the battlefield environment and the simulation of the
interaction process, including the simulation of the behavioral
logic of each unit and the damage settlement of mutual attacks.
It supports operations such as combat scenario editing and
configuration of weapon and equipment capability indicators,
allowing agents to be trained in different random scenarios. And

FIGURE 5

Schematic diagram of an experimental scenario.

Frontiers in Neurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1072887
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-16-1072887 November 25, 2022 Time: 18:3 # 11

Liu et al. 10.3389/fnbot.2022.1072887

physical constraints such as earth curvature/obscuration can be
randomly changed within a certain range.

Experimental hardware configuration

The CPU running the simulation environment is an Intel
Xeon E5-2678v3, 88 core, 256 G memory; GPU × 2, model
Nvidia GeForce 2080Ti, 72 cores, 11G video memory. In PPO,
the hyperparameters is ε = 0.2, the learning rate is 10−4, the
batch size is 5,120, and the number of hidden layer units in the
neural network is 128 and 256.

Agent architecture comparison

Alpha C2 (Fu et al., 2020) uses a commander structure, to
which OGMN (Liu J. Y. et al., 2022) adds rule-driven the narrow
agent, and the HRL-GC architecture proposed in this paper uses
data-driven the narrow agent on top of OGMN. Therefore, in
this experiment, we first trained the execution agents 50,000
times using a rule base and fixed parameters and then used
three different algorithms to verify the differences in training
efficiency between the three agent architectures. We iterated the
three architectures 100,000 times on the digital battlefield using
the PPO, A3C, and DDPG algorithms, respectively, collecting

FIGURE 6

Comparison of agent architecture training effect.

FIGURE 7

Algorithm performance comparison.
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data from each game of the confrontation and counting the
reward values and win rates obtained by the red-side agents. The
results are shown in Figure 6.

Comparing the mean reward curves shows that the HRL-GC
architecture can significantly improve the training efficiency,
and the final mean reward value is higher. The reward curve is
more likely to stabilize. In terms of win ratio, the proposed agent
architecture also achieves higher win ratios faster and is more
likely to stabilize than Alpha C2 and OGMN. Experiments have
demonstrated that the HRL-GC architecture further improves
training efficiency and agents’ decision-making while retaining
the ability to coordinate.

Algorithm performance comparison

Comparison of training data
To verify that the MPC-PPO algorithm proposed in this

paper can improve the efficiency of the pre-training period, we
first trained the scheduling agent 50,000 times using the PPO-
TAGNA algorithm based on the HRL-GC architecture in the
same scenario setting. Then, the execution agent performed the
MPC-PPO algorithm, the PPO-TAGNA algorithm, and the PPO
(Fu et al., 2020) algorithm 50,000 times for centralized training.
The training results are shown in Figure 7.

The comparison results show that the MPC-PPO algorithm
proposed in this paper can achieve a higher initial reward and
a significant increase in win ratio in the early stages. Both the
reward value curve and the win ratio curve of the training have
an inevitable decline and are not very stable after the rise due to
model errors and other factors; however, in general, MPC-PPO
is more efficient in the first 50,000 steps of training compared to
PPO-TAGNA and PPO and can achieve a faster increase in the
reward value and win ratio obtained by the agent.

Behavioral analysis
The model-based RL approach aims to allow the agent to

reduce ineffective exploration in the initial training stages and
reach a certain level quickly. So we trained only the PPO agent,
the PPO-TAGNA agent, and the MPC-PPO agent proposed
in this paper 50,000 times in a complex scenario. We then
performed behavioral analysis separately and compared them
with the untrained agent. The results are shown in Figure 8.

The behavioral analysis shows that the untrained agents (top
left) adopt a random policy, wasting too much ammunition in
defending against the first attacks and eventually failing because
they run out of resources; the PPO agents (top right) have not yet
explored a mature policy at this stage and only attack high-value
targets without dealing with incoming high-threat targets; the

FIGURE 8

Comparison of behavioral details.
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PPO-TAGNA agents (bottom left) at this stage The MPC-PPO
agents (bottom right) has learned the strategy of coordinated
interception, but the response timing is inaccurate, and the
scope of coordination is small; the MPC-PPO agents (bottom
right) at this stage can effectively coordinate the interception of
high-threat targets while attacking high-value targets. Therefore,
the MPC-PPO algorithm in large-scale complex scenarios
enables the agents to reduce ineffective exploration in the initial
stages of training and learn practical policies more quickly.

Conclusion

To address the problem that modern air defense task
assignment is difficult to balance effectiveness and dynamism,
this paper proposes the HRL-GC architecture, which layers
the agents into a scheduling agent and execution agents,
with the scheduling agent coordinating the global situation to
ensure effectiveness and the execution agent distributing the
execution to improve efficiency and thus ensure dynamism. To
enhance the efficiency of the initial stage of agents training, this
paper proposes a model-based MPC-PPO algorithm to train
the execution agents. Finally, experiments compare the agent
framework and the algorithm’s performance in a large-scale air
defense scenario. The experimental results show that the HRL-
GC architecture and MPC-PPO algorithm can further improve
the decision-making level of the agents and train them more
efficiently. The assignment scheme is more in line with the needs
of large-scale air defense, effectively balancing the effectiveness
and dynamics of air defense task assignment.
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